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Abstract

The problem of approximating a given set of data points by splines composed of Pythagorean Hodograph
(PH) curves is addressed. We discuss this problem in a framework that is not only restricted to PH spline
curves, but can be applied to more general representations of shapes. In order to solve the highly non-
linear curve fitting problem, we formulate an evolution process within the family of PH spline curves.
This process generates a family of curves which depends on a time–like variablet. The best approximant
is shown to be a stationary point of this evolution process, which is described by a differential equation.
Solving it numerically by Euler’s method is shown to be related to Gauss–Newton iterations. Different ways
of constructing suitable initial positions for the evolution are suggested.
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1. Introduction

Curves with simple closed form descriptions of their parametric speed and arc–length are
useful for various applications, such as NC machining. Theygreatly facilitate the control of the
tool along a curved trajectory with constant (or user–defined) speed. In addition, these curves
admit a simple exact representation of their offset curves.

This motivated the investigation of the interesting class of Pythagorean Hodograph (PH)
curves, see (Farouki, 2002) and the references cited therein. This class consists of (piecewise)
polynomial curves with a (piecewise) polynomial parametric speed, see Fig. 1 for an example.
Various constructions for PH curves were developed. Due to the non–linear nature of PH curves,
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Fig. 1. Examples of piecewise polynomial Pythagorean hodograph curves (black) and their piece-
wise rational offsets (grey). Each character is composed ofthree PH quintics.

which rely on quadratic representation formulas for Pythagorean triplets and quadruplets in the
ring of polynomials, these constructions are mainly based on local techniques, such as the inter-
polation of Hermite boundary data (Meek and Walton, 1997; Moon et al., 2001; Farouki et al.,
1998a;̌Sı́r and Jüttler, 2005;̌Sı́r et al., 2006)1 . These local constructions lead to small non–linear
systems of equations, which can be dealt with efficiently.

In many situations, it is more appropriate to use global approximation techniques, such as
least–squares fitting, since this generally reduces the data volume and produces a more com-
pact representation. In the case of PH curves, very few global methods are available, dealing
with interpolation and least–squares fitting (Farouki et al., 1998b, 2001). In the latter paper, the
authors use non–linear optimization to generate a PH quintic which interpolates two boundary
points and approximates additional points, where the parameter values assigned to them (i.e., the
parameterization of the given points) are kept constant.

Even for simple curve representations, such as polynomial spline curves, curve fitting is a
non–linear problem, due to the influence of the parameterization. Different approaches for deal-
ing with the effects of this non–linearity have been developed (Alhanaty and Bercovier, 2001;
Hoschek and Lasser, 1993; Rogers and Fog, 1989; Pottmann andLeopoldseder, 2003; Pottmann
et al., 2005; Speer et al., 1998; Wang et al., 2006), such as ‘parameter correction’ or the use of
quasi–Newton methods. Clearly the choice of a good initial solution is of outmost importance for
the success of the optimization. Geometrically motivated optimization strategies (Pottmann and
Leopoldseder, 2003; Pottmann et al., 2002, 2005; Wang et al., 2006), where the initial solution
is replaced by an initial curve and the formulation of the problem uses some geometric insights,
may lead to more robust techniques. Due to the iterative nature of the techniques for non–linear
optimization, one may view the intermediate results as a time–dependent curve which tries to
adapt itself to the target shape defined by he unorganized point data (Pottmann et al., 2002;
Wang et al., 2006). This is related to the idea of ‘active curves’ used for image segmentation in
Computer Vision (Kass et al., 1987).

Recently we formulated a general framework for evolution–based fitting of general objects
(Aigner and Jüttler, 2006). It can be shown that the evolution process defines a flow on the
manifold of objects (Aigner and Jüttler, 2007); consequently, the resulting path is independent
on the choice of the shape parameters describing the objects. In the present paper we apply this
framework to the case of PH curves. In addition we analyze itsrelation to the Gauss–Newton
method.

The remainder of this paper is organized as follows. In the next two sections we recall some
basics about PH curves, and we introduce a general frameworkfor abstract curve fitting. Then,

1 Similar techniques for space curves exist also, see (Farouki, 2002).
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this framework will be applied to the special case of Pythagorean hodograph curves, and its
relation to Gauss–Newton iteration will be analyzed. Finally we conclude the paper.

2. Pythagorean hodograph curves

The hodographof a planar polynomial curvec(u) = [x(u), y(u)]⊤ of degreen is the vec-
tor h(u) = [x′(u), y′(u)]⊤ of degreen − 1, where′ denotes the first derivative. Recall that a
polynomial curve is calledPythagorean Hodograph (PH)if the length of its tangent vector is
a (piecewise) polynomial of the parameteru. More precisely,c(u) = [x(u), y(u)]⊤ is called a
planar PH curveif there exists a polynomialσ(u) such that

x′(u)2 + y′(u)2 = σ2(u). (1)

Three polynomialsx′, y′ andσ satisfy equation (1)2 if and only if there exist three polynomials
α, β, ω such that

x′ = ω(α2 − β2), y′ = ω(2αβ), σ = ω(α2 + β2), (2)

see Kubota (1972). As a major advantage of PH curves, compared to ‘ordinary’ polynomial
curves, they possess a (piecewise) polynomial arc length function

s(u) =

∫ u

u0

|σ(v)| dv (3)

and (piecewise) rational offset curves (parallel curves)

od(u) = c(u) +
d

|σ(u)|
[y′(u),−x′(u)]⊤, (4)

whered is the (oriented) offset distance.
Throughout the remainder of this paper we will assume thatω = 1, restricting ourselves to

curves with hodographs of the form

x′(u) = α2(u) − β2(u), y′(u) = 2α(u)β(u). (5)

As to be justified by Proposition 1, these PH curves will be called regular PH curves. They form
a subset of all PH curves distinguished by the property thatgcd(x′(u), y′(u)) is a square of a
polynomial.3

Regular PH curves can be constructed as follows: First we choose two polynomials
[α(u), β(u)]⊤ which define the so–calledpreimagecurve. We generate the hodograph using
(5) and integrate the two components. This gives the parametric representation of the PH curve.

Since two curvesc(u), c̃(u) have the same hodograph if and only if they differ only by trans-
lation, a regular planar PH curvep(u) is fully determined by the preimage[α(u), β(u)]⊤ and by
the location of its starting pointc(0) (which is specified by choosing the integration constant).

While the ‘ordinary’ PH curves may have cusps (namely for allparameter values ofu which
are roots ofω), regular PH curves are always tangent continuous.
Proposition 1 Any regular (i.e., generated using(5)) Pythagorean hodograph curvec(u), where
the two polynomialsα(u) and β(u) defining the preimage are not both identically to zero,
(α(u), β(u)) 6≡ (0, 0), has a smooth field of unit tangent vectors for all valuesu ∈ R of the

2 They are said to form a Pythagorean triplet in the ring of polynomials.
3 This includes the generic casegcd(x′(u), y′(u)) = 1.
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curve parameter. Moreover its parametric speed and arc-length are polynomial functions, and
its offsets are rational curves.

PROOF. Clearly,σ(u) = α(u)2 + β(u)2 is a non-negative polynomial representing the speed
function ofc(u). The absolute value can be omitted in (3) and the arc-length function is a poly-
nomial. Consider

q(u) =

[

α(u)2 − β(u)2

α(u)2 + β(u)2
,

2α(u)β(u)

α(u)2 + β(u)2

]⊤

. (6)

Except for the real roots ofα(u)2 + β(u)2, the vectorq(u) is a unit vector tangent toc at c(u)
and it has the same orientation as[x′(u), y′(u)]⊤. Moreover, any real rootu0 of α(u)2 + β(u)2

has an even multiplicity2k, sinceα(u)2 + β(u)2 is non-negative. Also(u − u0)
k must divide

bothα(u) andβ(u) and therefore(u−u0)
2k divides the numerators and the denominator of (6).

After eliminating all common factors of numerators and denominators, we can therefore extend
q(u) smoothly tou ∈ R and we obtain a smooth unit vector field alongc(u).

Finally we note that the offset formula (4) simplifies to

od(u) = c(u) + dq(u)⊥, (7)

and it defines a rational curve.2

The observation formulated in Proposition 1 can be seen as another advantage of PH curves,
compared to the more general class of standard polynomial (Bézier) curves. The more general
curves are not necessarily tangent continuous, since cuspsmay be present.

3. An abstract framework for curve fitting via evolution

We describe a general framework for the evolution-based approximation of a given data set by
a curve. Later we will apply it to the special case of PH splinecurves.

3.1. Families of parametric curves and evolution of shape parameters

We consider a parameterized family of planar parametric curves(s, u) 7→ cs(u). Two different
kinds of parameters appear in the representation of the curve; the curve parameteru and a vector
of shape parameterss = (s1, . . . , sn).

For instance, one may consider a family of spline curves, where the shape parameters are both
the control points and the knots. Later, in the case of PH spline curves, the shape parameters will
be the control points defining the preimage curve and the integration constants.

We assume that the curve parameter varies within a fixed interval I = [a, b] (the parameter
domain of the curve), and that the vector of shape parameterss is contained in some domain
Ω ⊂ R

n. For all (s, u) ∈ Ω × I the curvecs(u) shall depend continuously on the parameters.
We assume that the curve has a well–defined normal vector at all points. Due to Proposition 1,
this assumption is satisfied in the case of regular PH curves.

Among the curves of this family, we identify a curve that approximates a given set of (un-
ordered) data points{pj}j=1..N in the least–squares sense. More precisely, we are looking for
the vector of shape parameters that defines this curve.
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Fig. 2. Closest points and derived (normal) velocities.

We let the shape parameterss depend smoothly on an evolution parametert, s(t) =
(s1(t), . . . , sn(t)). The parametert can be identified with the time. Starting with certain ini-
tial values, these parameters are modified continuously in time such that a given initial curve
moves closer to the data points.

This movement will be governed by a system of differential equations of the form
ṡ(t) = F (s(t)). By numerically solving this system and (approximately) computing the limit
limt→∞ s(t), we obtain a curvecs(t)(u) which has minimal distance from the data points.

During the evolution of a curvecs(t)(u), each point travels with the velocity

vs(t)(u) = ċs(t)(u) =

n
∑

i=1

∂cs(u)

∂si

∣

∣

∣

∣

s=s(t)

ṡi(t). (8)

The dot denotes the derivative with respect to the time variablet. Since the tangential component
of the velocity (8) can be seen as a reparameterization of thecurve, we consider for points that
do not lie on the boundary solely the normal velocity

vs(t)(u) = vs(t)(u)⊤ns(t)(u) =

n
∑

i=1

(

∂cs(u)

∂si

∣

∣

∣

∣

s=s(t)

ṡi(t)

)⊤

ns(t)(u), (9)

wherens(t)(u) denotes the unit normal of the curve in the pointcs(t)(u). Note that the normal
velocity depends linearly on the derivativesṡi(t) of the shape parameters.

3.2. Evolution for approximation

We will derive the evolution equation by specifying suitable velocities for some points of the
curve. We assume that a set of data points{pj}j=1,...,N is given. For each point, we consider the
associated closest pointfj = cs(t)(uj) of the curve,

uj = arg min
u∈[a,b]

‖pj − cs(t)(u)‖. (10)

During the evolution, these points are expected to travel towards their associated data points.
Consequently, the normal velocityv(uj), see (9), of a curve pointcs(t)(uj) = fj , uj 6∈ {a, b},
should be

dj = (pj − fj)
⊤ns(t)(uj). (11)

If a closest point is one of the two boundary points (uj ∈ {a, b}), then we consider the velocity,
see (8), which should then bedj = pj − fj , cf. Fig. 2.

Following (8) and (9) we can compute for each pointfj the velocity or normal velocity on the
one hand and the expected velocity (11) on the other hand. In general, the number of data points
to be fitted exceeds the degrees of freedom of the curve to be fitto these data (N ≫ n). Hence
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the conditions for the velocities in the closest points cannot be fulfilled exactly. We choose the
time derivatives of the shape parameters such that the conditions for the velocities are satisfied
in the least–squares sense,

ṡ = arg min
ṡ

ω⊥

N
∑

j=1
uj 6∈{a,b}

(vs(t)(uj) − dj)
2 + ωv

N
∑

j=1
uj∈{a,b}

‖vs(t)(uj) − (pj − fj)‖
2 + ωRR, (12)

see (8), (9), (10) and (11). The non–negative weightsω⊥ 6= 0, ωv andωR are used to control the
influence of the three different terms. In order to ensure that a unique minimizer for the least–
squares problem (12) exists, a regularization termR is added in (12). As a possibility one may
use Tikhonov regularization, whereR = ‖ṡ(t)‖2.

As a necessary condition for a minimum, the derivatives of the right–hand side in (12) with re-
spect to thėsi(t) vanish. Since these factors enter linearly in (8) and (9), the optimality condition
yields a system of linear equations

M(s(t)) ṡ(t) = r(s(t)), (13)

whereM is the coefficient matrix andr denotes the right–hand side. In general, this ODE cannot
be solved exactly. Nevertheless, the vectorṡ can easily be computed for each given vectors by
solving the linear system,

ṡ(t) = F (s(t)) = M−1(s(t)) r(s(t)). (14)

Using explicit Euler-stepssi(t + h) = si(t) + hṡi(t), with a suitable step-sizeh, one can trace
the evolving curves. This method for the numerical solutionof the ODE corresponds to a dis-
cretization of the evolution in time. Using this simple method is sufficient, since the stationary
point of the evolution is more important than the path leading to it.

In order to reduce the computational effort needed for computing the closest points on the
curve (especially when the curve is still relatively far from the data), one can proceed as follows.
As a preprocessing step, the distance field of the target shape is computed. This can be done
efficiently using the graphics hardware, see Hoff et al. (1999). Starting with some equally spaced
sensor points on some initial shape, the velocities (or normal velocities in the case of vertex
points) can be defined with the help of the distance field. Finally, the sensor points are replaced
by the closest points, if the distance to the data points drops below a certain threshold. Similarly,
one may use velocities derived from other data, such as images, in order to deal with applications
such as image segmentation.

3.3. Stationary points of the evolution

The solutions of the least–squares problem

arg min
s

N
∑

j=1

min
uj∈[a,b]

‖pj − cs(t)(uj)‖
2 (15)

are closely related to the evolution process defined by (14).In order to establish this connection,
we need some technical assumptions. We assume, that the curve is non–singular (c′

s(t)(uj) 6= 0)
at the closest pointscs(t)(uj) to the data points. In addition, we exclude certain singularcases,
e.g., when the number of degrees of freedom exceeds the number of data points when the data
points lie in some degenerate position. This is made precisein the following definition.
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Definition 2 For a given curvecs(t)(u), consider a setU = {uj}j=1..N ⊂ [a, b] of parameter
values such thatc′

s(t)(u) 6= 0 and{a, b} ∩ U = ∅. The corresponding unit normal vectors are
nj = ns(t)(uj). The set of parametersU is said to beregular if theN × n matrix

Aj,k = n⊤
j

∂cs(uj)

∂sk

∣

∣

∣

∣

s=s(t)

, (16)

wheresk is thek–th component of the vectors of shape parameters, has maximal rank.
Lemma 3 In a regular case and if all closest points are neither singular nor boundary points,
then any solution of the usual least–squares fitting(15) of a curvecs(t)(u) is a stationary point
of the differential equation derived from the evolution process.

PROOF. As a necessary condition, the first derivatives ofF with respect to the curve parameters
{uj}j=1..N and the shape parameters{si}i=1..n vanish, whereF is the sum of squared errors in
(15),

∂F

∂uj

= 2
(

pj − cs(t)(uj)
)⊤ ∂cs(t)(uj)

∂uj

= 0, (17)

and
∂F

∂si

∣

∣

∣

∣

s=s(t)

= 2

N
∑

j=1

(

pj − cs(t)(uj)
)⊤ ∂cs(uj)

∂si

∣

∣

∣

∣

s=s(t)

= 0. (18)

On the other hand, the ODE defining the curve evolution is found by computing the first deriva-
tives of

N
∑

j=1

(

(vj − (pj − fj))
⊤

nj

)2

with respect to the derivatives of the shape parametersṡk, wherevj = vs(t)(uj), see (9). This
yields

∀k : 2

N
∑

j=1

(vj − (pj − fj))
⊤

njn
⊤
j

∂cs(uj)

∂sk

∣

∣

∣

∣

s=s(t)

= 0 (19)

Due to (17), the error vectorspj − fj are perpendicular to the tangent vectors, hence

(pj − fj)
⊤njn

⊤
j = (pj − fj)

⊤. (20)

Taking (18) into account, (19) simplifies to

N
∑

j=1

v⊤
j njn

⊤
j

∂cs(uj)

∂sk

∣

∣

∣

∣

s=s(t)

=
N
∑

j=1

(

n
∑

i=0

∂cs(uj)

∂si

∣

∣

∣

∣

s=s(t)

ṡi(t)

)⊤

njn
⊤
j

∂cs(uj)

∂sk

∣

∣

∣

∣

s=s(t)

= 0.

Rewriting this equation we get

∀k :

n
∑

i=0

N
∑

j=1





(

∂cs(uj)

∂si

∣

∣

∣

∣

s=s(t)

)⊤

njn
⊤
j

∂cs(t)(uj)

∂sk

∣

∣

∣

∣

s=s(t)



 ṡi(t) = 0. (21)

Using matrix notation this can be rewritten as

A⊤A ṡ(t) = 0, (22)

where the components ofA are defined as in (16). This system has only the trivial solution if the
matrix A⊤A is regular which corresponds to rank(A)= n + 1. In a regular case this condition
holds. 2
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We will continue this discussion in Section 6, where we provethat the evolution is equivalent
to a Gauss–Newton step for the least–squares problem (15).

4. Evolution of PH splines

In this section we apply the general framework of the previous section to the case of PH
splines. In order to simplify the notation, we will simply write s instead ofs(t), omitting the
dependency of the shape parameters on the time variablet.

In order to generate PH spline curves, we represent the preimage[α(u), β(u)] as an open
integral B-spline curve (Hoschek and Lasser, 1993, p. 176).Let

(u0 = u1 = . . . = uk−1, uk, uk+1, . . . , um, um+1 = um+2 = . . . = um+k) (23)

be a given knot vector andNi,k(u), (i = 0, . . . , m) the associated B-spline functions of order
k. ThenNi,k(u) form a basis of the linear space of piecewise polynomials of degreek − 1
on the interval[uk−1, um+1] which areCk−2 at the points{ui, i = k, . . . , m}. We choose the
componentsα(u), β(u) of the preimage from this space of functions,

α(u) =
m
∑

i=0

αiNi,k(u) and β(u) =
m
∑

i=0

βiNi,k(u). (24)

The resulting PH spline is obtained as

cs(u) =





x0

y0



+

∫ u

uk−1





α2(ũ) − β2(ũ)

2α(ũ)β(ũ)



dũ =





x0

y0



+

m
∑

i=0

m
∑

j=0





αiαj − βiβj

2αiβj



Ki,j(u)

where the piecewise polynomialsKi,j(u) of degree2k − 1 are defined as

Ki,j(u) :=

∫ u

uk−1

Ni,k(ũ)Nj,k(ũ)dũ. (25)

As shape parameters – in the sense of the previous section – wecan consider the spline end point
coordinatesx0, y0, the spline coefficientsαi, βi and even the knotsui. (Note that from now on
we suppress thet denoting the time dependency.) In our implementation we have kept the knot
vector fixed and considered only an evolution with respect tothe followingn = 2m + 4 shape
parameters

s = {x0, y0, α0, . . . , αm, β0, . . . , βm}. (26)

We compute the quantities occurring in (12). The partial derivatives ofcs(u) with respect to the
shape parameters are

∂cs(u)

∂x0
= [1, 0]⊤,

∂cs(u)

∂y0
= [0, 1]⊤,

∂cs(u)

∂αi

= 2
m
∑

j=0

[αj , βj ]
⊤Ki,j(u) and

∂cs(u)

∂βi

= 2
m
∑

j=0

[−βj, αj ]
⊤Ki,j(u).

The velocity (8) of any curve pointc(u) equals

vs(u) = [ẋ0, ẏ0]
⊤ + 2

m
∑

i=0

m
∑

j=0

[αjα̇i − βj β̇i, βjα̇i + αj β̇i]
⊤Ki,j(u), (27)
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which is linear in the derivativeṡx0, ẏ0, α̇i, β̇i of the shape parameters. The unit normals are

ns(u) =
c′s(u)⊥

α(u)2 + β(u)2
=

m
∑

i=0

m
∑

j=0





2αiβj

βiβj − αiαj



Ni,k(u)Nj,k(u)

m
∑

i=0

m
∑

j=0

(αiαj + βiβj)Ni,k(u)Nj,k(u)

(28)

which makes it simple to evaluate the normal speed (9).
In each time step of the discretized evolution, we need to findthe closest point. For instance,

this can be formulated as a polynomial root–finding problem,since

c′s(u)⊤(cs(u) − pj) = 0 (29)

is piecewise polynomial inu. For eachpj we can find all solutions of (29) and compare the
distance of the closest one with the distance ofpi to the end-points.4 Due to Proposition 1, the
normal direction is well defined at all inner points of the curve.

The length of the PH spline has the particularly simple expression

Ls =

∫ um+1

uk−1

(

α(u)2 + β(u)2
)

du =

m
∑

i=0

m
∑

j=0

(αiαj + βiβj)Ki,j(um+1). (30)

Clearly, theKi,j(um+1) are constant numbers which have to be computed only once, andLs(t)

is a quadratic function in the shape parameters with partialderivatives

∂Ls

∂αi

= 2

m
∑

j=0

αjKi,j(u) and
∂Ls

∂βi

= 2

m
∑

j=0

βjKi,j(u). (31)

The simple expression of the length of the PH spline inspiredus to use the regularization term

R :=
(

Le − Ls − L̇s

)2

, (32)

which forces the curve lengthLs to converge to some constant valueLe. We assume that a
suitable valueLe is specified by the user or can be estimated from the data (e.g., using the length
of the minimum spanning tree), if the level of noise is not toohigh.

5. Examples of PH splines evolution

We apply the procedure described in Section 4 to several examples. In all cases we use piece-
wise PH cubics defined by piecewise linearC0 preimages. The resulting PH spline consists of
polynomial pieces of degree3 joined withC1 continuity.

First, we present a simple example. In order to get a good PH approximation for more com-
plicated data sets, it is necessary to choose a suitable initial position of the evolving curve. Here
we suggest two strategies. The first one is based on subdivision, while the second one relies on
Hermite interpolation.

4 Note that the frequent closest point computation can be avoided during the first part of the evolution, when the curve
is still relatively far from the data, see Remark 3.2.
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Fig. 3. Approximation of noisy data.

5.1. Simple example

In this example (see Figure 3), the input points were obtained from two circular arcs with
radius1. We added additional random noise to the sample points ranging from−0.05 to 0.05 in
bothx andy point coordinates. We evolved a PH spline composed of two cubic PH segments
depending on8 shape parameters:3 for each of the piecewise linear preimage componentsu, v

and2 integration constants determining the position of the start pointcs(0)(u) of the PH spline.
In the initial position, the spline degenerates into a straight line.

Since the target shape is quite simple, no special adjustment of the evolution control values
ω⊥, ωv, ωR andLe is necessary. The length of the spline was estimated asLe = π and the regu-
larization term (32) was kept unchanged during the whole evolution. Also, the weights occurring
in (12) were all set to1 and the maximal permitted change of the curve to0.2 during the whole
evolution.5

Figure 3 shows the evolution of the spline from its initial position towards a stationary solution,
which is reached after8 steps. The maximum error is then6.02 10−2 which corresponds to the
magnitude of the noise.

5.2. Subdivision-based adaptation

Let us consider a point set (see Figure 4) taken from a rather complicated free-form curve. In
this case the evolution had to be controlled in a more sophisticated way.

The first strategy is as follows. We start with a PH spline which is in a rather poor initial
position but, it consists only of a small number of cubic segments. Therefore, only few shape
parameterssi are involved, and the danger of an evolution towards a local minimum is reduced.
After several evolution steps, we raise the number of splinesegments (via knot insertion) without
modifying the shape of the curvec(u). Then we continue the evolution until some stable situation
is reached. This procedure can be repeated until the maximumerror is sufficiently low.

In our example we started with a PH spline composed of two straight line segments. The
maximal permitted change was again kept equal to0.2 through the whole evolution. In order to
match the global shape of the curve we started with a small imposed curve lengthLe = 8 and
with weightsω⊥ = ωv = ωR = 1. After step30 the global shape of the curve is already well
matched and the actual curve length is already9.89.

5 At each step the step-sizeh ≤ 1 was estimated so that no point of the curve changes more then0.2. When the curve
is sufficiently close to a stationary point, thenh = 1.
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Fig. 4. Approximation of points taken from a spline curve.

Through steps31 to 45 we gradually raisedLe length up to14, the real length being at this
moment only slightly greater. At this stage of the evolutionit was necessary to fix the end points.
For this purpose we relaxed the curve length condition by putting the weightwR equal to0.1
(while keeping the required lengthLe = 14) and we set the end-point weightωv = 100. After
only three steps the end points were fixed (see Step 48). At this moment the length was15.5 and
the maximum error0.328.

Then we started the knot insertion. For a spline composed of4 segments we reached a maxi-
mum error of0.227 at step58. Then we inserted6 knots in the intervals where the error has been
large (at the left part of the curve). The non-uniform splinecomposed of10 parts converged at a
stationary position in step73. The length equals15.3, and the maximum error is1.63 10−2.

5.3. Initial value by Hermite interpolation

The initial position of the evolving curve can be also obtained directly from the original curve
or from the given data points using Hermite interpolation.

First, we order the data and estimate tangent lines at each point, or sample them from the
given curve. Since we want to use PH cubics, which cannot reproduce inflections, we split the
data points into segments at estimated inflections. If necessary, each of the data segments is then
split again until each segment has less than a predefined number of points and the variation of
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Fig. 5. Evolution with initial position constructed viaG1 Hermite interpolation.

the tangents is below a certain prescribed angle.
Now, for each segment we consider theG1 boundary data (the end points and the estimated

tangent vectors) and construct the cubic PH interpolants tothese data following Meek and Walton
(1997). All segments are then collected into aC1 continuous spline, which serves as the initial
position of the evolution. Note that the knot sequence within the interval[0, 1] is determined by
the requiredC1 continuity is achieved.

We applied this procedure to the data from Section 5.2 - see Fig. 5. In the preprocessing step,
the data points were split into8 segments. For each segment, one PH cubic interpolating the
end-pointG1 data was constructed, see Fig. 5, left. All8 cubics were then represented by one
PH spline defined over the knot sequence(0, 0.23, 0.43, 0.61, 0.68, 0.73, 0.78, 0.85, 1). This is
a “high quality” initial position, which leads to a fast convergence to a stationary position, after
only 5 steps. The final error equals2.45 10−2.

Clearly, other Hermite interpolation techniques Moon et al. (2001); Farouki et al. (1998a);Šı́r
and Jüttler (2005);̌Sı́r et al. (2006); Jüttler (2001) can be used in order to produce higher order
PH splines. In the case of a given curve, the boundary information can be sampled from it. For
(possibly noisy) point sets, however, the estimation of theneeded quantities (beyond first order
of differentiation) may become more difficult, due to potential numerical instabilities.

6. Speed of convergence

We analyze the convergence speed of the PH spline evolution.More precisely, via comparing
the evolution method with the Gauss-Newton method we show the quadratic convergence in the
zero-residual case.
Lemma 4 The Euler update of the shape parameterss for the curve evolution(14) with step
sizeh is equivalent to a Gauss-Newton with the same step sizeh of the problem

N
∑

j=1

‖pj − cs(uj)‖
2 → min

s
where uj = arg min

u∈[a,b]
‖pj − cs(u)‖, (33)

provided that{a, b} ∩ {uj | j = 1, . . . , N} = ∅ 6 andωR = 0.

PROOF. Recall thatdj := (pj − cs(uj))
⊤ns(uj), see (11). In order to solve

6 This technical assumption ensures that none of the closest points appears at the boundary. It could be avoided by
considering closed curves instead of open ones.
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f =

N
∑

j=1

d2
j =

N
∑

j=1

‖pj − cs(uj)‖
2 → min

s
where uj = arg min

u∈[a,b]
‖pj − cs(u)‖,

one may use a Gauss-Newton iteration. The new iterates+ = s + h∆s is found by solving

N
∑

j=1

[dj + (∇dj)
⊤∆s]2 → min

∆s
. (34)

In our case, the components7 of the gradients∇dj are found from

2dj[∇dj ]i = [∇(d2
j )]i = [∇‖pj − cs(uj)‖

2]i =

= −2

(

∂cs(uj)

∂si

+ c′s(uj)
∂uj

∂si

)⊤

(pj − cs(uj)) = −2

(

∂cs(uj)

∂si

)⊤

(pj − cs(uj)),

where we exploited the orthogonality of the tangent vectorsc′s(uj) at the closest points and the
error vectorspj − cs(uj). Hence,

[∇dj ]i = −

(

∂

∂si

cs(uj)

)⊤

ns(uj), (35)

and Gauss-Newton reads as

N
∑

j=1

[

(pj − cs(uj))
⊤ns(uj) −

n
∑

i=1

(

∂

∂si

cs(uj)
⊤ns(uj)∆si

)

]2

→ min
∆s

. (36)

Due to (9) and (11), the time derivativesṡi obtained from the optimization problem (12), which
defines the evolution of the curve, are equal to the Gauss–Newton updates∆si obtained from
(36)8 . Hence, for stepsizeh = 1, the Euler method for the evolution and the Gauss–Newton
iteration for (33) are equivalent.2

Gauss–Newton methods exhibit quadratic convergence, provided that the residuum vanishes
(i.e., all errors vanish for the final solution). Indeed, it can be seen as a Newton iteration, where
the second part of the expansion

∇2f =

N
∑

j=1

∇dj(∇dj)
⊤ +

N
∑

j=1

dj∇
2dj (37)

of the Hessian has been omitted. Ifdj = 0, then this part vanishes.
Example 5 In order to demonstrate the speed of convergence, we consider an example where
the input points were taken from a PH spline, see Figure 6. Theinitial position of the evolution
has been obtained by only slightly perturbing the coefficients of the input curve. Through the first
five steps of the evolution, the curve evolved to a good approximant - see Table 1 for approxi-
mation errors at different evolution steps. For all remaining steps, the approximation error at any
step is essentially a square of the error at the previous step, which demonstrates the quadratic
convergence of the method.

7 Here,[v]i denotes thei–th component of a vectorv = (v1, . . . .vn)⊤
8 The second and third term in (12) are not present, since no closest points at the curve boundaries were assumed to
exist, andωR = 0.
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Table 1
Approximation errors during the evolution.

Step Error Step Error Step Error Step Error Step Error

1 1.02 10−1 3 3.48 10−2 5 5.52 10−3 7 6.50 10−9 9 1.10 10−30

2 6.50 10−2 4 1.67 10−2 6 4.95 10−5 8 1.37 10−16 10 2.78 10−60
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Fig. 6. Approximation of points taken from a PH spline.

7. Concluding remarks

We developed and analyzed an evolution–based fitting procedure for Pythagorean hodograph
spline curves. It was shown that this problem can efficientlybe dealt with, provided that a good
initial solution is available. In this sense, least–squares fitting by PH spline curves is not neces-
sarily more complicated than the same problem for standard curve representations. Indeed, the
special properties of PH curves make it even easier to use certain geometrically motivated reg-
ularization terms, such as the length of the curve. Future research will be devoted to using the
approximation procedure in order to obtain more compact representation of NC tool paths (cur-
rently often specified as G-code), where we will cooperate with one of our industrial partners,
and on least–squares approximation by surfaces with rational offsets.
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