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Abstract

The problem of approximating a given set of data points bineplcomposed of Pythagorean Hodograph
(PH) curves is addressed. We discuss this problem in a franketlvat is not only restricted to PH spline
curves, but can be applied to more general representatfosisapes. In order to solve the highly non-
linear curve fitting problem, we formulate an evolution mss within the family of PH spline curves.
This process generates a family of curves which depends iomealtke variablet. The best approximant
is shown to be a stationary point of this evolution procedsiclvis described by a differential equation.
Solving it numerically by Euler's method is shown to be rethto Gauss—Newton iterations. Different ways
of constructing suitable initial positions for the evobriare suggested.
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1. Introduction

Curves with simple closed form descriptions of their pariimespeed and arc—length are
useful for various applications, such as NC machining. Tdreatly facilitate the control of the
tool along a curved trajectory with constant (or user—deffirspeed. In addition, these curves
admit a simple exact representation of their offset curves.

This motivated the investigation of the interesting clagPgthagorean Hodograph (PH)
curves, see (Farouki, 2002) and the references cited thelrbis class consists of (piecewise)
polynomial curves with a (piecewise) polynomial parantespeed, see Fig. 1 for an example.
Various constructions for PH curves were developed. Duedmbn-linear nature of PH curves,
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Fig. 1. Examples of piecewise polynomial Pythagorean hoafigcurves (black) and their piece-
wise rational offsets (grey). Each character is composé¢ldreé PH quintics.

which rely on quadratic representation formulas for Pytragn triplets and quadruplets in the
ring of polynomials, these constructions are mainly baselboal techniques, such as the inter-
polation of Hermite boundary data (Meek and Walton, 1997pNet al., 2001; Farouki et al.,
1998a;Sir and Juttler, 200%3ir et al., 2006} . These local constructions lead to small non-linear
systems of equations, which can be dealt with efficiently.

In many situations, it is more appropriate to use global apipration techniques, such as
least—squares fitting, since this generally reduces thee wt@time and produces a more com-
pact representation. In the case of PH curves, very few glolethods are available, dealing
with interpolation and least—squares fitting (Farouki etE398b, 2001). In the latter paper, the
authors use non-linear optimization to generate a PH quivitich interpolates two boundary
points and approximates additional points, where the patamvalues assigned to them (i.e., the
parameterization of the given points) are kept constant.

Even for simple curve representations, such as polynomlaiescurves, curve fitting is a
non-linear problem, due to the influence of the paramet@izeDifferent approaches for deal-
ing with the effects of this non—linearity have been devetbfAlhanaty and Bercovier, 2001;
Hoschek and Lasser, 1993; Rogers and Fog, 1989; Pottmarireapdldseder, 2003; Pottmann
et al., 2005; Speer et al., 1998; Wang et al., 2006), suchaarpeter correction’ or the use of
guasi—Newton methods. Clearly the choice of a good initialtson is of outmost importance for
the success of the optimization. Geometrically motivatetihoization strategies (Pottmann and
Leopoldseder, 2003; Pottmann et al., 2002, 2005; Wang,&2G@06), where the initial solution
is replaced by an initial curve and the formulation of thelppeon uses some geometric insights,
may lead to more robust techniques. Due to the iterativeraeatithe techniques for non-linear
optimization, one may view the intermediate results as &-tependent curve which tries to
adapt itself to the target shape defined by he unorganized pgata (Pottmann et al., 2002;
Wang et al., 2006). This is related to the idea of ‘active eshwused for image segmentation in
Computer Vision (Kass et al., 1987).

Recently we formulated a general framework for evoluticasdal fitting of general objects
(Aigner and Jittler, 2006). It can be shown that the evoiuprocess defines a flow on the
manifold of objects (Aigner and Juttler, 2007); consedlyethe resulting path is independent
on the choice of the shape parameters describing the obljedtee present paper we apply this
framework to the case of PH curves. In addition we analyzeeltstion to the Gauss—Newton
method.

The remainder of this paper is organized as follows. In the tveo sections we recall some
basics about PH curves, and we introduce a general framdwmoabstract curve fitting. Then,

1 Similar techniques for space curves exist also, see (Far2002).
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this framework will be applied to the special case of Pytlmragn hodograph curves, and its
relation to Gauss—Newton iteration will be analyzed. Rinadke conclude the paper.

2. Pythagorean hodograph curves

The hodographof a planar polynomial curve(u) = [z(u),y(u)]" of degreen is the vec-
tor h(u) = [2/(u),y'(u)] " of degreen — 1, where’ denotes the first derivative. Recall that a
polynomial curve is calledPythagorean Hodograph (PHj the length of its tangent vector is
a (piecewise) polynomial of the parameterMore preciselyc(u) = [z(u),y(u)] " is called a
planar PH curveif there exists a polynomial(u) such that

o' (w)? +y (u)* = o*(u). €y
Three polynomials’, 3’ ando satisfy equation (1¥ if and only if there exist three polynomials
«, B,w such that
o' =w(e® = 7), ¥ =waf), o=w(®+5), )

see Kubota (1972). As a major advantage of PH curves, compgar®rdinary’ polynomial
curves, they possess a (piecewise) polynomial arc lengittifun

U

s(u)= [ lo(v)[dv 3)
and (piecewise) rational offset curves (parallel curves)
0(w) = elu) + sy (), ~o' ()] @

whered is the (oriented) offset distance.
Throughout the remainder of this paper we will assume ¢hat 1, restricting ourselves to
curves with hodographs of the form

o'(u) = o(u) = F(u), ¥ (u) = 20(u)B(w). )

As to be justified by Proposition 1, these PH curves will béecategular PH curvesThey form
a subset of all PH curves distinguished by the property ghdfz’'(u), v’ (u)) is a square of a
polynomial
Regular PH curves can be constructed as follows: First weosdhdwo polynomials
[a(u), B(w)]" which define the so—callegreimagecurve. We generate the hodograph using
(5) and integrate the two components. This gives the paramepresentation of the PH curve.
Since two curveg(u), ¢(u) have the same hodograph if and only if they differ only by ¢ran
lation, a regular planar PH curyg) is fully determined by the preimade (u), 3(u)] " and by
the location of its starting poinrt(0) (which is specified by choosing the integration constant).
While the ‘ordinary’ PH curves may have cusps (namely fopallameter values af which
are roots ofv), regular PH curves are always tangent continuous.
Proposition 1 Any regular (i.e., generated usiitg)) Pythagorean hodograph curegu), where
the two polynomialsx(u) and B(u) defining the preimage are not both identically to zero,
(a(u), B(u)) # (0,0), has a smooth field of unit tangent vectors for all values R of the

2 They are said to form a Pythagorean triplet in the ring of polyials.
3 This includes the generic caged (= (u), v’ (u)) = 1.



curve parameter. Moreover its parametric speed and arglerare polynomial functions, and
its offsets are rational curves.

PROOF. Clearly,o(u) = a(u)? + B(u)? is a non-negative polynomial representing the speed
function ofc(u). The absolute value can be omitted in (3) and the arc-lengtttion is a poly-

nomial. Consider
-

Ta(w)?— Bu)?  20(wu)
) = | SR T e alu)? + B ©)
+ t

Except for the real roots af(u)? + 5(u)?, the vectorq(u) is a unit vector tangent to at c(u)
and it has the same orientation[@§u), s’ (u)] . Moreover, any real roaty of a(u)? + B(u)?
has an even multiplicit@k, sincea(u)? + 3(u)? is non-negative. Alsdu — ug)* must divide
botha(u) andB(u) and thereforéu — u()2* divides the numerators and the denominator of (6).
After eliminating all common factors of numerators and daim@tors, we can therefore extend
q(u) smoothly tou € R and we obtain a smooth unit vector field alat(g).

Finally we note that the offset formula (4) simplifies to

04(u) = c(u) + da(u)*, ()

and it defines a rational curve D

The observation formulated in Proposition 1 can be seen athanadvantage of PH curves,
compared to the more general class of standard polynoméi€éB curves. The more general
curves are not necessarily tangent continuous, since cuap$e present.

3. An abstract framework for curve fitting via evolution

We describe a general framework for the evolution-basedoepation of a given data set by
a curve. Later we will apply it to the special case of PH sptineses.

3.1. Families of parametric curves and evolution of shape patanse

We consider a parameterized family of planar parametrieas(s, u) — cs(u). Two different
kinds of parameters appear in the representation of theective curve parameterand a vector
of shape parametess= (s1, ..., s,).

For instance, one may consider a family of spline curvesyatiee shape parameters are both
the control points and the knots. Later, in the case of PHhemurves, the shape parameters will
be the control points defining the preimage curve and thgiaten constants.

We assume that the curve parameter varies within a fixedvaitér= [a, b] (the parameter
domain of the curve), and that the vector of shape parametisrsontained in some domain
Q) C R™. Forall(s,u) € Q x I the curvecs(u) shall depend continuously on the parameters.
We assume that the curve has a well-defined normal vector @iats. Due to Proposition 1,
this assumption is satisfied in the case of regular PH curves.

Among the curves of this family, we identify a curve that appmates a given set of (un-
ordered) data point§p, } ,=1..n in the least—squares sense. More precisely, we are looking f
the vector of shape parameters that defines this curve.
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Fig. 2. Closest points and derived (normal) velocities.

We let the shape parametessdepend smoothly on an evolution parametes(t) =
(s1(t),...,sn(t)). The parametet can be identified with the time. Starting with certain ini-
tial values, these parameters are modified continuousliyria such that a given initial curve
moves closer to the data points.

This movement will be governed by a system of differentiabapns of the form
$(t) = F(s(t)). By numerically solving this system and (approximately)nguiting the limit
lim; . s(), we obtain a curveg (u) which has minimal distance from the data points.

During the evolution of a curvey, (u), each point travels with the velocity

Ocs(
Vs(t)( = Cs(t) Z 8581

The dot denotes the derivative with respect to the time bbaia Since the tangential component
of the velocity (8) can be seen as a reparameterization afuhes, we consider for points that
do not lie on the boundary solely the normal velocity

Vs(t) (1) = V(e (1) "ng(y (u) = Z (3(385§7)

i=1

5i(t). (8)

s=s(t)

-
B ()&(ﬂ) ng (s (u), )

whereng ;) (1) denotes the unit normal of the curve in the paigt (u). Note that the normal
velocity depends linearly on the derivative$t) of the shape parameters.

3.2. Evolution for approximation

We will derive the evolution equation by specifying suiabklocities for some points of the
curve. We assume that a set of data po{mts} ,—1,.. v is given. For each point, we consider the
associated closest poifjt= c ;) (u;) of the curve,

uj = axg min |[p; — exo (4] (10)
During the evolution, these points are expected to trawghtds their associated data points.
Consequently, the normal velocityu; ), see (9), of a curve pointy (u;) = f;,u; € {a,b},
should be
d = (pj f; ) ns(t)(uj) (11)
If a closest point is one of the two boundary points € {a,b}), then we consider the velocity,
see (8), which should then kbl = p; — £}, cf. Fig. 2.

Following (8) and (9) we can compute for each pdinthe velocity or normal velocity on the
one hand and the expected velocity (11) on the other haneriargl, the number of data points
to be fitted exceeds the degrees of freedom of the curve to teetfiese data/{ > n). Hence
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the conditions for the velocities in the closest points cdaroe fulfilled exactly. We choose the
time derivatives of the shape parameters such that the tiamsifor the velocities are satisfied
in the least—squares sense,

N N
§ = argminw z; (vs(e () — dj)* + wy 2 Vs (us) — (P — £)II° + wrR, (12)
j= j=
u;j&{a,b} uj€{a,b}

see (8), (9), (10) and (11). The non—negative weights# 0, w, andwp are used to control the
influence of the three different terms. In order to ensuré @ahanique minimizer for the least—
squares problem (12) exists, a regularization tétms added in (12). As a possibility one may
use Tikhonov regularization, where = ||s(t)||2.

As a necessary condition for a minimum, the derivatives efight—hand side in (12) with re-
spect to the; (¢) vanish. Since these factors enter linearly in (8) and () pibtimality condition
yields a system of linear equations

M(s(t)) s(t) = r(s(t)), (13)
whereM is the coefficient matrix and denotes the right—hand side. In general, this ODE cannot

be solved exactly. Nevertheless, the veétoan easily be computed for each given veetby
solving the linear system,

8(t) = F(s(t)) = M~ (s(t)) r(s(t))- (14)

Using explicit Euler-steps; (¢t + h) = s;(t) + hs;(t), with a suitable step-sizi, one can trace
the evolving curves. This method for the numerical soluttbthe ODE corresponds to a dis-
cretization of the evolution in time. Using this simple madhs sufficient, since the stationary
point of the evolution is more important than the path legdmit.

In order to reduce the computational effort needed for cdinguhe closest points on the
curve (especially when the curve is still relatively farrfréhe data), one can proceed as follows.
As a preprocessing step, the distance field of the targetesisapomputed. This can be done
efficiently using the graphics hardware, see Hoff et al. @98tarting with some equally spaced
sensor points on some initial shape, the velocities (or abrmlocities in the case of vertex
points) can be defined with the help of the distance field.IFirthe sensor points are replaced
by the closest points, if the distance to the data pointsdbefow a certain threshold. Similarly,
one may use velocities derived from other data, such as ispagerder to deal with applications
such as image segmentation.

3.3. Stationary points of the evolution

The solutions of the least—squares problem
N
arg min ) min, [Ip; — eso (uy)[|® (15)
j:l Uj a,

are closely related to the evolution process defined by (@4)der to establish this connection,
we need some technical assumptions. We assume, that tfeismwn—singularcg(t) (uj) #0)

at the closest points, ;) (u;) to the data points. In addition, we exclude certain singcdeses,
e.g., when the number of degrees of freedom exceeds the maihtdata points when the data
points lie in some degenerate position. This is made pracithe following definition.
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Definition 2 For a given curvecy;(u), consider a selV = {u;};=1.~ C [a,b] of parameter
values such that’s(t)(u) # 0 and{a,b} N U = (). The corresponding unit normal vectors are
n; = ngy)(u;). The set of parameters is said to beregular if the N x n matrix

Ay =ny 2t (16)
Sk s=s(t)
wheresy, is thek—th component of the vectsiof shape parameters, has maximal rank.
Lemma 3 In a regular case and if all closest points are neither sirgguior boundary points,
then any solution of the usual least-squares fit(ihg) of a curvec, ;) (u) is a stationary point
of the differential equation derived from the evolutiongass.

PROOF. As a necessary condition, the first derivativegofith respect to the curve parameters
{u;};=1..~ and the shape parametgrs};—1_ ,, vanish, where" is the sum of squared errors in
(15),

oF T Ocs(ry(uj)
a—uj =2 (PJ — Cs(t) (Ug)) Tuj =0, (17)
and v
oF T Jcg(uy)
75 =23 (P —es(w)) —5=| e (18)
s=s j=1 s=s(t)

On the other hand, the ODE defining the curve evolution is dduywcomputing the first deriva-

tives of

N . 2

> ((Vj —(p; — 1)) nj)

j=1
with respect to the derivatives of the shape parameigrasherev; = vy (u;), see (9). This
yields

N
dcs(u;
VE: 2Y (v;—(p; —£)) nyn] 9es () =0 (19)
=1 Osk Js=s()
Due to (17), the error vectogs; — f; are perpendicular to the tangent vectors, hence
(P — fj)TnJ =(pj — f; ) (20)

Taking (18) into account, (19) simplifies to

-
Ocs(uy) Ocs (u; ) Ocs(u;)
T S J s J T S\™J
R $:(t) ] nyn; =0.
Z J J 8Sk s=s(t) ng (Z 881 s=s(t) ) 17 8Sk s=s(t)
Rewntmg this equation we get
-
Ocs(u;) T Ocg (uj) .
vk : ZZ ( 5s, ) njn] =2 = $:(t) = 0. (21)
=0 j=1 s=s(t) s=s(t)

Using matrix notation this can be rewritten as
ATAs(t) =0, (22)
where the components df are defined as in (16). This system has only the trivial sofuifithe

matrix A" A is regular which corresponds to ranR& n + 1. In a regular case this condition
holds. O



We will continue this discussion in Section 6, where we pritag the evolution is equivalent
to a Gauss—Newton step for the least—squares problem (15).

4. Evolution of PH splines

In this section we apply the general framework of the prewisaction to the case of PH
splines. In order to simplify the notation, we will simply ie s instead ofs(¢), omitting the
dependency of the shape parameters on the time vatiable

In order to generate PH spline curves, we represent the ageif(u), 5(u)] as an open
integral B-spline curve (Hoschek and Lasser, 1993, p. 148).

(uo =UL = .o T Uk—1, Uk, U415 - - - s Um,y, Um41 = Um42 = .. = Um+k) (23)

be a given knot vector an®¥; ;. (u), (i = 0,...,m) the associated B-spline functions of order
k. ThenN; i (v) form a basis of the linear space of piecewise polynomialsegfreek — 1

on the intervaluy_1, u,,+1] which areC*~2 at the points{u;,i = k, ..., m}. We choose the
components(u), 3(u) of the preimage from this space of functions,

a(u) = Z a;N;kx(u) and Gu) = Z@N7k(u) (24)
=0 1=0
The resulting PH spline is obtained as
u 20~ 220~
="+ [ |" @ =5 @ | 4 _
Yo wier | 20(@) ()

where the piecewise polynomials; ;(u) of degree2k — 1 are defined as

xo] N ZZ [Oéiaj — ﬁzﬂj] Ko ()

Yo i=0 j=0 203,

As shape parameters — in the sense of the previous sectioranwmnsider the spline end point
coordinatescg, yo, the spline coefficients;, 3; and even the knots;. (Note that from now on
we suppress thedenoting the time dependency.) In our implementation wes apt the knot
vector fixed and considered only an evolution with respethéofollowingn = 2m + 4 shape
parameters

s = {20, Y0, 0y -+ s ¥m, B0y -+ -, B }- (26)
We compute the quantities occurring in (12). The partiaivd¢ives ofcs(u) with respect to the
shape parameters are

) o
8‘;5:" = 2i[o‘jvﬁj]TKﬂj(u) and acas—ﬂ(i“) - 22[—ﬁj,aj]TKm(u).
The velocity (8) ojf_any curve point(u) equals i
ve(u) = [Eo,90] " + 2 Em: Em:[ajai — BB, Bicvi + aj 3] T Ky (), (27)

i=0 j=0



which is linear in the derivatives, 7o, ¢, 3; of the shape parameters. The unit normals are

m m 2051']'
Sy ] Nop ()N ()

s(u)* _ iz0j=0 | Bifj — oy
ns(u) - oz(u)Q +6(u)2 - mJ ™ ! ! (28)
D0 (iay + BiB;) N (u)Nj i (w)
i=0 j=0

which makes it simple to evaluate the normal speed (9).
In each time step of the discretized evolution, we need totfiectlosest point. For instance,
this can be formulated as a polynomial root—finding problginge

cl(u) " (cs(u) — p;) =0 (29)

is piecewise polynomial in.. For eachp; we can find all solutions of (29) and compare the
distance of the closest one with the distanceofo the end-points. Due to Proposition 1, the
normal direction is well defined at all inner points of theair

The length of the PH spline has the particularly simple esgion

Ls = /“m+1 (a(w)® + B(u)?) du = "(a; + BiB) Ki j (1) (30)

th—1 i=0 j=0
Clearly, theK; ;(u.,+1) are constant numbers which have to be computed only oncd,and
is a quadratic function in the shape parameters with pattiavatives

m m

OLs BiKi j(u). (31)
0

80@‘

0Ls
=2 OéjK@j(U) and - = 2
Jj=0 J

Ipi

The simple expression of the length of the PH spline inspiletb use the regularization term

R:= (Le L LS)2 , (32)

which forces the curve lengths to converge to some constant vallle. We assume that a
suitable valud.. is specified by the user or can be estimated from the data @sigg the length
of the minimum spanning tree), if the level of noise is not lhigh.

5. Examples of PH splines evolution

We apply the procedure described in Section 4 to several gbesimin all cases we use piece-
wise PH cubics defined by piecewise lingzt preimages. The resulting PH spline consists of
polynomial pieces of degrekjoined withC'! continuity.

First, we present a simple example. In order to get a good Ritbapnation for more com-
plicated data sets, it is necessary to choose a suitabild pitsition of the evolving curve. Here
we suggest two strategies. The first one is based on sulmtiyishile the second one relies on
Hermite interpolation.

4 Note that the frequent closest point computation can bedadailuring the first part of the evolution, when the curve
is still relatively far from the data, see Remark 3.2.
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Fig. 3. Approximation of noisy data.

5.1. Simple example

In this example (see Figure 3), the input points were obthinem two circular arcs with
radiusl. We added additional random noise to the sample pointsmgrigpm —0.05 to 0.05 in
both z andy point coordinates. We evolved a PH spline composed of twacdabl segments
depending o8 shape parameter3:for each of the piecewise linear preimage components
andz integration constants determining the position of thet gtaint c o) (u) of the PH spline.
In the initial position, the spline degenerates into a gtrgline.

Since the target shape is quite simple, no special adjustaighe evolution control values
w1 ,wy,wgr andL. is necessary. The length of the spline was estimatdd. as = and the regu-
larization term (32) was kept unchanged during the wholéutam. Also, the weights occurring
in (12) were all set td and the maximal permitted change of the curvé.tbduring the whole
evolution?

Figure 3 shows the evolution of the spline from its initiabfin towards a stationary solution,
which is reached aftet steps. The maximum error is théro2 10~2 which corresponds to the
maghnitude of the noise.

5.2. Subdivision-based adaptation

Let us consider a point set (see Figure 4) taken from a ratimapticated free-form curve. In
this case the evolution had to be controlled in a more sdphtsd way.

The first strategy is as follows. We start with a PH spline Wwhig in a rather poor initial
position but, it consists only of a small number of cubic segta. Therefore, only few shape
parameters; are involved, and the danger of an evolution towards a logaimum is reduced.
After several evolution steps, we raise the number of sgi@gements (via knot insertion) without
modifying the shape of the curegu). Then we continue the evolution until some stable situation
is reached. This procedure can be repeated until the maxiantonis sufficiently low.

In our example we started with a PH spline composed of twdgsttdine segments. The
maximal permitted change was again kept equél.2ahrough the whole evolution. In order to
match the global shape of the curve we started with a smalb&mg curve lengtli.. = 8 and
with weightsw, = w, = wgr = 1. After step30 the global shape of the curve is already well
matched and the actual curve length is alre@y.

5 At each step the step-size< 1 was estimated so that no point of the curve changes moredtBelhen the curve
is sufficiently close to a stationary point, then= 1.
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Fig. 4. Approximation of points taken from a spline curve.

Through steps1 to 45 we gradually raised.. length up tol4, the real length being at this
moment only slightly greater. At this stage of the evoluiiomas necessary to fix the end points.
For this purpose we relaxed the curve length condition byimmthe weightwyr equal to0.1
(while keeping the required lengih, = 14) and we set the end-point weigh{ = 100. After
only three steps the end points were fixed (see Step 48). #trtbiment the length was$.5 and
the maximum erro0.328.

Then we started the knot insertion. For a spline composeddsefyments we reached a maxi-
mum error 0f0.227 at steps8. Then we inserted knots in the intervals where the error has been
large (at the left part of the curve). The non-uniform splwenposed ol 0 parts converged at a
stationary position in step3. The length equals5.3, and the maximum error 563 10~2.

5.3. Initial value by Hermite interpolation

The initial position of the evolving curve can be also ob¢aimirectly from the original curve
or from the given data points using Hermite interpolation.

First, we order the data and estimate tangent lines at edoh, po sample them from the
given curve. Since we want to use PH cubics, which cannobdepe inflections, we split the
data points into segments at estimated inflections. If reegseach of the data segments is then
split again until each segment has less than a predefinederurhpoints and the variation of

11
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Fig. 5. Evolution with initial position constructed vi@! Hermite interpolation.

the tangents is below a certain prescribed angle.

Now, for each segment we consider ifié boundary data (the end points and the estimated
tangent vectors) and construct the cubic PH interpolaritestee data following Meek and Walton
(1997). All segments are then collected int@'a continuous spline, which serves as the initial
position of the evolution. Note that the knot sequence withe interval0, 1] is determined by
the required”! continuity is achieved.

We applied this procedure to the data from Section 5.2 - sgebkin the preprocessing step,
the data points were split int® segments. For each segment, one PH cubic interpolating the
end-pointG! data was constructed, see Fig. 5, left. Alkkubics were then represented by one
PH spline defined over the knot sequeri@e.23,0.43,0.61,0.68,0.73,0.78,0.85,1). This is
a “high quality” initial position, which leads to a fast cargence to a stationary position, after
only 5 steps. The final error equalst5 1072,

Clearly, other Hermite interpolation techniques Moon e{2001); Farouki et al. (19988$;ir
and Jittler (2005)Sir et al. (2006); Juttler (2001) can be used in order talpce higher order
PH splines. In the case of a given curve, the boundary infoom&an be sampled from it. For
(possibly noisy) point sets, however, the estimation ofrteeded quantities (beyond first order
of differentiation) may become more difficult, due to potalmiumerical instabilities.

6. Speed of convergence

We analyze the convergence speed of the PH spline evoliiore precisely, via comparing
the evolution method with the Gauss-Newton method we shewjtiadratic convergence in the
zero-residual case.

Lemma 4 The Euler update of the shape parametefer the curve evolutiorf14) with step
sizeh is equivalent to a Gauss-Newton with the same stephsideéhe problem

N
> " llps — es(uy)||> — min where u; = arg m[inb] p; — cs(u)ll, (33)
s ue|a,
Jj=1 '
provided that{a,b} N {u; | i =1,...,N} =0 ¢ andwg = 0.

PROOF. Recall thatd; := (p; — cs(u;)) "ns(u; ), see (11). In order to solve

6 This technical assumption ensures that none of the closéstspappears at the boundary. It could be avoided by
considering closed curves instead of open ones.
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N N
f =3 =3 lIp; — cs(uy)|* — min where u; = arg min [[p; — cs(u)].
j=1 j=1 ’

one may use a Gauss-Newton iteration. The new iterate s + hAs is found by solving

N
> ld; + (Vd;) " As]* — min. (34)

. As
J=1

In our case, the componerit®f the gradients/d; are found from

2d;[Vd;]; = [V(d5)]i = [VIp; — cs(uy)[I’]i =

— 9 (8C5$j) c(u, g:j)T (P — cs(uy)) = —2 <8Cg$j))T (p; — cs(uy)),

+ 5 (uy)

where we exploited the orthogonality of the tangent veatg(s;) at the closest points and the
error vectorp; — cs(u;). Hence,

[Vd;]i = — (%Cs(uj))T ns(u;), (35)

and Gauss-Newton reads as

N n
> [(pj —co(uy)) Tmg(uy) = > (%CS(UJ‘)THS(UJ‘)A81>

j=1 =1

2
— min. (36)

Due to (9) and (11), the time derivativésobtained from the optimization problem (12), which
defines the evolution of the curve, are equal to the Gausstadempdates\s; obtained from
(36)®. Hence, for stepsizé = 1, the Euler method for the evolution and the Gauss—Newton
iteration for (33) are equivalent.O

Gauss—Newton methods exhibit quadratic convergenceidedthat the residuum vanishes
(i.e., all errors vanish for the final solution). Indeed,ande seen as a Newton iteration, where
the second part of the expansion

N N
V2= Vd;(Vd)" +> d;Vd; (37)
Jj=1 J=1
of the Hessian has been omittedd}f= 0, then this part vanishes.
Example 5 In order to demonstrate the speed of convergence, we caorsidexample where
the input points were taken from a PH spline, see Figure 6.ifikial position of the evolution
has been obtained by only slightly perturbing the coeffigefthe input curve. Through the first
five steps of the evolution, the curve evolved to a good apprant - see Table 1 for approxi-
mation errors at different evolution steps. For all remairsteps, the approximation error at any
step is essentially a square of the error at the previous stejgch demonstrates the quadratic
convergence of the method.

7 Here,[v]; denotes thé-th component of a vectar = (vy,....vn)
8 The second and third term in (12) are not present, since reesiqoints at the curve boundaries were assumed to
exist, andvg = 0.
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Table 1
Approximation errors during the evolution.

Step Error Step Error Step Error Step Error Step Error

1 1.02107' 3 3.481072| 5 5.521073 7 6.5010~° | 9 1.1010730

2 6501072 4 1.671072| 6 4951075 8 1.3710~16| 10 2.78 10-6°

0.7+ 0.7
0.6 0.6
0.5 0.5
0.3 0.3
0.2 0.2+

0.19 0.1

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Initial position Step 1
0.74 0.7
0.6 0.6
0.5 0.5
0.4+ 0.44
0.37 0.3
0.2 0.2
0.14 0.1
0 0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Step 3 Step 7

Fig. 6. Approximation of points taken from a PH spline.
7. Concluding remarks

We developed and analyzed an evolution—based fitting puweddr Pythagorean hodograph
spline curves. It was shown that this problem can efficiebdydealt with, provided that a good
initial solution is available. In this sense, least—sgaditting by PH spline curves is not neces-
sarily more complicated than the same problem for standangeaepresentations. Indeed, the
special properties of PH curves make it even easier to usaicgeometrically motivated reg-
ularization terms, such as the length of the curve. Futusearch will be devoted to using the
approximation procedure in order to obtain more compactsgmtation of NC tool paths (cur-
rently often specified as G-code), where we will cooperaté wne of our industrial partners,
and on least—squares approximation by surfaces with itadfsets.
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