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Abstract

The extraction of curvature information for surfaces is a basic problem of Geometry
Processing. Recently an integral invariant solution of this problem was presented,
which is based on principal component analysis of local neighbourhoods defined by
kernel balls of various sizes. It is not only robust to noise, but also adjusts to the
level of detail required. In the present paper we show an asymptotic analysis of the
moments of inertia and the principal directions which are used in this approach. We
also address implementation and, briefly, robustness issues and applications.
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1 Introduction

The role of differential geometry in the investigation of curves and surfaces
is a very important one, and geometry processing tasks frequently require
information about properties which for smooth surfaces are obtained by dif-
ferentiation – normal vectors, curvatures, principal directions. Also the global
understanding of shapes benefits from differential entities, as exemplified by
the network of principal curvature lines, and by the crest lines of a surface.
References on these topics include Alliez et al. (2003), Cazals and Pouget
(2005), Hildebrandt et al. (2005), Ohtake et al. (2004), and Yoshizawa et al.
(2005).
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Fig. 1. Feature extraction on multiple scales using principal component analysis on
ball neighbourhoods of different radii. Darker regions are classified as features on
all scales, lighter shaded regions correspond to features extracted at only one or two
scales. The images from left: Ravines – Original data — Ridges.

Real-world data, which are e.g. obtained by laser scanning, frequently exhibit
too much noise for straightforward numerical differentiation to make sense.
Thus, the use of differential invariants requires data smoothing and de-noising
prior to computation. This may be done in a global way via appropriate geo-
metric flows (cf. the work by Bajaj and Xu (2003), Clarenz et al. (2004b), and
Osher and Fedkiw (2002)). Local methods, using smooth approximations of
the data in an appropriate neighbourhood, are presented by Cazals and Pouget
(2003), Goldfeather and Interrante (2004), Ohtake et al. (2004), Taubin (1995),
and Tong and Tang (2005). In either case, the preservation of features which
may not be considered as noise is not an easy task and requires especially
adapted algorithms.

Classical differential geometry cannot be used directly for frequently occur-
ring data types like triangle meshes. This led to the development of discrete
differential geometry. This is a highly interesting and practically useful area
which gained increasing attention over the past years. It offers both precise
statements on the given geometry and elegant extensions of the classical the-
ory. For an introduction with a focus on Computer Graphics, see Desbrun
et al. (2005). As to the topic of the present paper, it is possible to employ dis-
crete differential geometry concepts to extract curvatures at multiple scales: It
can be done by a multiresolution mesh representation. This method requires

2



certain changes of the underlying geometry, but there are others which do
not need this complication. Handling noisy data is possible (cf. Hildebrandt
and Polthier (2004)), but is neither the main intent nor strength of discrete
differential geometry.

Recently Yang et al. (2006) have presented a solution of the problem of robust
and multiscale computation of principal curvatures via integral invariants ob-
tained by integration over local neighbourhoods. This is an approach initiated
by Manay et al. (2004) and Clarenz et al. (2004b,a). The present paper serves
as a theoretical foundation for the work by Yang et al. (2006), which presents
numerical and experimental results.

Our method is based on principal component analysis (PCA) of local neigh-
bourhoods defined via kernels of variable size. It leads in a natural way to
families of geometry descriptors dependent on a kernel radius r (the ‘scale’),
and which for smooth surfaces converge to the curvatures of the surface in
question, as r → 0. The kernel radius serves as an approximate threshold size
which distinguishes noise from features. The use of integration rather than
differentiation has a smoothing effect.

The aim of the present paper is not to present yet another method for cur-
vature estimation, but rather to investigate a new tool which takes a more
global view. It computes integrated curvature-like quantities over the chosen
neighbourhoods. Only for very small kernel radii the invariants computed in
this way are closely related to curvatures. Their behavior on larger scales is
different, but consistent and useful for applications.

1.1 Prior work on integral invariants, principal curves and feature extraction

While PCA has been used to obtain shape characteristics for a very long time
(see e.g. Taubin and Cooper (1992) for applications in Computer Vision),
local integral invariants are a rather new topic in geometric computing. Manay
et al. (2004) investigate integral invariants for curves in the plane and show
their superior performance on noisy data, especially for the reliable retrieval
of shapes from geometric databases. A special case of an integral invariant,
defined for 2D curves or 3D surfaces, has been used by Connolly (1986) for
molecular shape analysis. In the case of a smooth surface Φ which has the
property that it occurs as the boundary of a suitable domain D, Connolly
considers the surface area As(r,p) of the spherical patch neighbourhood

Ns(r,p) := D ∩ S(r,p)

(see Fig. 2); here p is a point of Φ and S(r,p) = {x | ‖x−p‖ = r} denotes the
sphere of radius r centered at p. Equation (2), which describes the relation of
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Φ B(r,p) Nb Ns Np cs

Fig. 2. From left to right: Kernel ball B(r,p) and surface Φ; ball neighbourhood
Nb(r,p); sphere neighbourhood Ns(r,p); surface patch neighbourhood Np(r,p);
spherical intersection curve cs(r,p).

the function As(r,p) to mean curvature in a precise way, has been derived by
Cazals et al. (2003). Gelfand et al. (2005) use the volume Vb(r,p) of the ball
neighbourhood

Nb(r,p) := D ∩B(r,p)

to obtain a geometry descriptor useful for finding correspondences in matching
problems. Here B(r,p) = {x | ‖x−p‖ ≤ r} is the ball with radius r and center
p. Both functions As and Vb turn out to be related to mean curvature (cf. Hulin
and Troyanov (2003); Cazals et al. (2003); Gelfand et al. (2005)):

Vb(r,p) =
2π

3
r3 − π

4
H(p)r4 + O(r5), (1)

As(r,p) = 2πr2 − πH(p)r3 + O(r4). (2)

Here H(p) is the mean curvature in the point p. Most closely related to
the present work are the papers of Clarenz et al. (2004a,b), where integral
invariants are employed for feature detection. The authors consider the surface
patch neighbourhood

Np(r,p) = Φ ∩B(r,p)

and perform PCA on this patch. They show that the distance between p and
the barycenter of Np(r,p) is related to mean curvature, and discuss some scal-
ing properties of the eigenvalues coming up in PCA. The eigenvalues resulting
from PCA on the set Np(r,p) have also been used by Pauly et al. (2003) for
multi-scale feature extraction on point-sampled surfaces.

Globally defined features computable from principal directions are the prin-
cipal curvature lines. These curves proved to be useful for the detection of
special shapes, and also for such diverse applications as the work on non-
isotropic remeshing by Alliez et al. (2003), and on line-art rendering of smooth
surfaces by Hertzmann and Zorin (2000). Global features whose definition re-
lies on even higher order differential invariants (like derivatives of principal
curvatures) also carry important shape information: For instance, the curves
known as feature lines and crest lines received a lot of attention in the ge-
ometry processing community (see Cazals and Pouget (2005), Clarenz et al.
(2004b), Hildebrandt et al. (2005), Ohtake et al. (2004), Pauly et al. (2003),
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and Yoshizawa et al. (2005)).

1.2 Contributions and overview

The methods analyzed in this paper were presented for the first time in a
short paper by Yang et al. (2006), which also contains numerical results and
comparison with other methods. The present paper is an extension of that
work, and provides proofs and theoretical background.

The main idea of our analysis is to compute quantities like volumes and co-
variance matrices of small sets associated with points on a smooth surface
Φ by way of Taylor expansion; and to express the coefficients of these expan-
sions in terms of Taylor coefficients of Φ. As the latter Taylor coefficients carry
curvature information, it is possible to give asymptotic relations between the
geometry descriptors computed here and the curvatures of Φ.

The geometry descriptors computed by our methods make sense for noisy sur-
faces as well, even if the analysis is based on smooth surfaces. This is because
they are computed by integration (i.e., averaging), and therefore the values
we obtain for a noisy surface Φ′ agree with the values of some hypothetical
smooth surface Φ which approximates Φ′. When we compute a ‘curvature at
scale r’ for Φ′, we actually compute that curvature for the surface Φ; and it is
the surface Φ which the analysis in the present paper applies to. A thorough
robustness analysis of geometry descriptors obtained in this way is given in
the forthcoming paper by Pottmann et al. (2006), while the experimental val-
idation of our claims regarding robustness is presented by Yang et al. (2006).
Our paper is organized as follows:

• Section 2 presents a thorough study of PCA of four types of neighbourhoods
(see Fig. 2) which can be defined by means of a kernel ball or kernel sphere.
The precise relation of the quantities obtained by PCA to the curvatures of
the underlying surface is obtained by an asymptotic analysis as the kernel
radius tends to zero.

• Integral invariants lead to the definition of principal curvatures at a given
resolution level r which are consistent with the classical theory (r → 0). This
is discussed in Sec. 3. The multiscale behaviour of these modified principal
curvatures and comparison of this method with others is the topic of the
short paper by Yang et al. (2006), as is the computation of principal curves
at a given scale and multi-scale feature extraction. We only briefly discuss
these applications here.

• Section 4 discusses implementation issues. We use FFT and hierarchical
refinement of sphere triangulations.
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2 Principal component analysis of local neighbourhoods

Principal component analysis of a point set A requires the computation of its
volume VA =

∫
A dx, its barycenter sA = 1

VA

∫
A x dx, and its covariance matrix

JA =
∫

A
(x− sA) · (x− sA)T dx =

∫
A
xxT dx− VAsAsT

A. (3)

We use column vector notation, so xxT is a 3 by 3 matrix of rank 1. If A
is considered as a subset of Euclidean space, then dx is the usual volume
element. If A is contained in a smooth (rectifiable) surface, then dx means the
surface area element. If A is contained in a smooth (rectifiable) curve, then
dx is the arc length element. When we use an orthonormal coordinate system
of eigenvectors, JA takes the form JA = diag(Jxx, Jyy, Jzz), where Jxx, Jyy and
Jzz are the eigenvalues of JA. The principal moments of inertia of the set A
then have the form J1 = Jyy + Jzz, J2 = Jzz + Jxx, J3 = Jxx + Jyy. In the
following text we don’t refer to principal moments, but only to eigenvalues of
the covariance matrix.

In the cases studied by the present paper, the set A is a small set near a
certain point p. The point p is contained in the surface under consideration
and signifies the location where we want to extract geometry descriptors. The
size of A is defined by a certain kernel radius. We will usually write A(r,p) to
indicate the dependence on the point and the radius, and we will give the first
terms in the Taylor expansions of the functions r 7→ VA(r,p), r 7→ sA(r,p),
and r 7→ JA(r,p).

2.1 The principal frame and the simplification of volume integrals

For theoretical investigations it is convenient to work in a coordinate system
associated with a point on the surface. We repeat well known results here
– they can be found e.g. in do Carmo (1976). For any given point of a C2

surface there is the so-called principal frame, with respect to which the surface
is realized as the graph of the function

z(x, y) =
1

2
(κ1x

2 + κ2y
2) + O(ρ3) (ρ2 = x2 + y2). (4)

Here κ1 and κ2 denote the principal curvatures of the surface in the point
of interest, which is located at the origin of the principal frame. The vector
(0, 0, 1) is a normal vector of the surface, and we use the convention that
whenever the surface occurs as boundary of a domain D, it points towards the
inside of D.
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We use the notation ρ =
√

x2 + y2 also later in the text. Further, we let
x = (x, y, z). Consider now the general volume integral

I(r, f) =
∫
‖x‖≤r, z≥z(x,y)

f(x) dx, where f : R3 → Rk. (5)

The value of I(r, f) then is contained in Rk, depending on the function f . The
next theorem shows how to approximately compute such expressions. We use
the notation B(r)+ for the half ball x2 + y2 + z2 = ρ2 + z2 ≤ r2, z ≥ 0.

Theorem 1 If the function f is of magnitude O(ρkzl), then its integral I(r, f)
over the domain x2 + y2 + z2 ≤ r2, z ≥ z(x, y) can be expressed as

I(r, f) = Ĩ(r, f) + O(rk+2l+5),where

Ĩ(r, f) =
∫

B(r)+
f(x) dx−

∫
x2+y2≤r2

( ∫ 1
2
(κ1x2+κ2y2)

z=0
f(x) dz

)
dxdy. (6)

Proof. First, the integral I(r, f) is approximated by

I(r, f) ≈
∫

B(r)+
f(x) dx−

∫
x2+y2≤r2

( ∫ z=z(x,y)

z=0
f(x) dz

)
dxdy. (7)

The error we make is the volume integral of f over that part Ã of the original
domain which lies outside the sphere x2 + y2 + z2 = r2, but still inside the
cylinder x2 + y2 = r2. The integral

∫
Ã

f is bounded by Vol(Ã) ·max
Ã
|f |. The

set Ã has circumference ≈ 2πr and in view of (4) its extent in the z direction
is O(r2). It has been shown by Hulin and Troyanov (2003) that the radial
thickness of Ã is of magnitude O(r3), so Vol(Ã) ∼ r · r2 · r3 = r6. Equation
(4) implies that within the domain Ã, z is of magnitude r2. With f ∼ ρk · zl,
we now have an upper bound of the form |

∫
Ã

f | ≤ O(r6 · rk(r2)l).

We further approximate the integral by neglecting the term O(r3) in the ex-
pression z(x, y), i.e., by replacing the surface by its osculating paraboloid.
The error we make here is given by the integral of f over the layer which
is bounded by the graph of the function z(x, y) given by (4) and the graph
of the same function without the O(r3) term. I.e., the layer has a thickness
of magnitude O(r3). With z(x, y) = O(ρ2) we make an error of magnitude∫ 2π
φ=0

∫ r
ρ=0 O(ρ3) ·O(ρk(ρ2)l) · ρ dρdφ = O(rk+2l+5).

To sum up, the two modifications of the integral I(r, f) lead to errors of mag-
nitudes r2k+l+6 and r2k+l+5, respectively. This implies that I(r, f)− Ĩ(r, f) =
O(r2k+l+5). �
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2.2 Principal component analysis of the ball neighbourhood

We consider the surface Φ as the boundary of the domain D and perform
PCA on the ball neighbourhood Nb(r,p) := B(r,p) ∩D. The volume V (r,p)
of Nb(r,p) is the integral of the constant function 1, which is of magnitude
O(ρ0z0). We use (6) to approximate the volume and get precisely the known
result of Equation (1), with H = (κ1 + κ2)/2. For the barycenter sb, we have
to compute

∫
x dx,

∫
y dx, and

∫
z dx. The functions x, y are of magnitude

O(ρ1z0), whereas the z coordinate function is of magnitude O(ρ0z1). Conse-
quently,

sb(r,p) =
1

Vb(r,p)
(Ĩ(r,x) + O(r6))

=
(2π

3
r3 − π

4
H(p)r4 + O(r5)

)−1
( 0

0
πr4/4

 + O(r6)
)
. (8)

(in this computation, many terms evaluate to zero because of symmetry).
Division of power series yields

sb(r,p) =
[
0, 0,

3

8
r +

9

64
H(p)r2

]T

+ O(r3). (9)

Now we consider the covariance matrix. The following table shows the order
O(ρkzl) of magnitude of the functions we are going to integrate:

f x2 y2 z2 xy xz yz

(k, l) (2, 0) (2, 0) (0, 2) (2, 0) (1, 1) (1, 1)
.

We approximate the integrals over those functions according to (6): In any case
the error is at most O(r7), while Ĩ(r, xy) = Ĩ(r, xz) = Ĩ(r, yz) = 0 because of
symmetry. Thus, the covariance matrix reads

J(r,p) =
∫

xxT dx− Vbsbs
T
b = diag

(
Ĩ(r, x2), Ĩ(r, y2), Ĩ(r, z2)

)
+ O(r7)

− diag
(
0, 0,

π

4
r4(

3

8
r +

9

64
H(p)r2)

)
+ O(r9). (10)

For this formula we have used that the product Vbsb is already known from
Equation (8). This leads to the following result:

Theorem 2 The eigenvalues Mb,i(r,p) of the covariance matrix of the set
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Nb(r,p) have the following Taylor expansion

Mb,i(r,p) = M̃b,i(r,p) + O(r7) (i = 1, 2, 3), where

M̃b,1(r,p) =
2π

15
r5 − π

48
(3κ1(p) + κ2(p))r6, (11)

M̃b,2(r,p) =
2π

15
r5 − π

48
(κ1(p) + 3κ2(p))r6, (12)

M̃b,3(r,p) =
19π

480
r5 − 9π

512
(κ1(p) + κ2(p))r6. (13)

Here κ1(p) and κ2(p) are the principal curvatures of the surface which is used
in the definition of the ball neighbourhood.

Proof. For symmetric matrices J and J̃ in general, the difference of eigenvalues
is bounded by ‖J−J̃‖, where ‖·‖ is any matrix norm. When computed with re-
spect to the principal frame associated with the point p, the covariance matrix
J(r,p) differs from a diagonal matrix J̃(r,p) only by an error of magnitude
O(r7), as shown by (10). It follows that the eigenvalues Mb,i coincide with the
diagonal elements of J̃(r,p), up to O(r7). The precise values of these diagonal
elements are found by computing the integrals Ĩ(r, x2), . . . according to (6),
which is elementary but tedious. From (10) we see that Mb,1 = Ĩ(r, x2)+O(r7)
and Mb,2 = Ĩ(r, y2) + O(r7). Interestingly

Ĩ(r, z2) =
2

15
πr5 (14)

does not contain any curvature information. In combination with the other
terms in (10), we get Mb,3. �

Theorem 3 We consider the situation of Theorem 2. As r → 0, the eigen-
vectors eb,1(r,p) and eb,2(r,p) of the covariance matrix which correspond to
the eigenvalues Mb,1(r,p) and Mb,2(r,p) converge to the principal directions
e1, e2 associated with κ1 and κ2, provided κ1 6= κ2. The eigenvector eb,3(r,p)
converges towards the surface normal vector n. For eb,1(r,p) and eb,2(r,p),
this convergence is linear, whereas for eb,3 it is quadratic:

^(eb,1(r,p), e1(p)), ^(eb,2(r,p), e2(p)) ∼ r

κ1(p)− κ2(p)
, (15)

^(eb,3(r,p),n(p)) ∼ r2. (16)

Proof. The statement about convergence of eigenvectors follows from the “sine
theta” theorems for perturbation of eigenvectors of Hermitean matrices due
to Davis and Kahan (1970). If λi is an eigenvalue of the matrix J , and ε is the
minimum distance from the remaining eigenvalues, then a perturbation of size
h causes a change in the eigenvector ei of magnitude h/ε, provided h � ε.
We apply this result to J = diag(M̃b,1, M̃b,2, M̃b,3), with M̃b,i from Equations
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(11)–(13). Then h = O(r7). In the case i = 1, 2, we have ε ∼ r6(κ1 − κ2), and
in the case i = 3, we have ε ∼ r5. �

The eigenvalues Mb,1(r,p) Mb,2(r,p) do not feature the principal curvatures
in their dominant terms, but their difference does:

Mb,2(r,p)−Mb,1(r,p) =
π

24
(κ1(p)− κ2(p))r6 + O(r7). (17)

2.3 Principal component analysis of the sphere neighbourhood

In this section we consider PCA of the sphere neighbourhood Ns(r,p) =
S(r,p) ∩ D in a way analogous to the previous section which dealt with the
ball neighbourhood. As to notation, see Section 1.1 and Figure 2.

Theorem 4 The barycenter ss(r,p) of the sphere neighbourhood Ns(r,p) is
expressed in the principal frame as

ss(r,p) =
[
0, 0,

1

2
r +

κ1(p) + κ2(p)

8
r2

]T
+ O(r3). (18)

For the sphere neighbourhood, the eigenvalues Ms,i of the covariance matrix

have the form Ms,i = M̃s,i(r,p) + O(r6), where

M̃s,1(r,p) =
2π

3
r4 − π

8
(3κ1(p) + κ2(p))r5, (19)

M̃s,2(r,p) =
2π

3
r4 − π

8
(κ1(p) + 3κ2(p))r5, (20)

M̃s,3(r,p) =
π

6
r4 − π

8
(κ1(p) + κ2(p))r5. (21)

Proof. Any integral I(r, f) over the ball neighbourhood can be written as an
iterated integral:

I(r, f) =
∫

D∩B(r,p)

f(x) dx, I ′(ρ, f) =
∫

D∩S(ρ,p)

f(x) dx =⇒ I(r, f) =

r∫
ρ=0

I ′(ρ, f)dρ.

This implies the differential relation

I ′(r, f) =
d

dr
I(r, f). (22)

Thus we can compute the surface area As(r,p), the integral I ′(x) used for the
barycenter, and the matrix I ′(xxT ) used for the covariance matrix, simply by
differentiating Vb(r,p), I(r,x), and I(r,xxT ), respectively. We get the known
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expression for the surface area As given by (2), and further

Asss =

 0
0

πr3

+O(r5),
∫

D∩S(r,p)

xxT dx =

 dM̃b,1/dr 0 0
0 dM̃b,2/dr 0
0 0 2

3
πr4

+O(r6).

For the lower right corner of the matrix I ′(xxT ), we have differentiated (14).
By dividing I ′(x) by the Taylor series of the surface area As, we get (18). Now
that the barycenter is known, we are able to compute the covariance matrix:
J ′(r,p) = I ′(xxT )− Assss

T
s = diag(M̃s,1, M̃s,2, M̃s,3) + O(r6). This completes

the proof. �

2.4 Principal component analysis of the spherical intersection curve

We now consider the intersection curve cs(r,p) = S(r,p)∩Φ, which is defined
as the intersection of a kernel sphere of radius r, centered in the point p,
with the smooth surface Φ. Principal component analysis of the spherical
intersection curve is included here for the sake of completeness. It is not as
robust against perturbations as PCA of the ball or sphere neighbourhoods
Nb(r,p) and Ns(r,p). The analysis consists mainly of computations not all
of which are repeated here. We first give a cylinder coordinate representation
(φ, ρ(φ), z(φ)) of the intersection curve, where x = ρ cos φ and y = ρ sin φ.

The intersection of the plane x : y = cos φ : sin φ with the surface of (4) results
in the curve z(ρ, φ) = 1

2
κn(φ)2ρ2 + O(ρ3), where the expression

κn(φ) = κ1 cos2 φ + κ2 sin2 φ (23)

has an interpretation as the normal curvature of the surface Φ associated with
the direction x : y = cos φ : sin φ (cf. do Carmo (1976)). Intersection of that
curve z = z(ρ, φ), φ = const, with the sphere ρ2 + z2 = r2 requires some
elementary computations and leads to the following parameterization of the
intersection curve:

cs : ρ(φ) = r − 1

8
κn(φ)2r3 + O(r4), z(φ) = κn(φ)2r2 + O(r3). (24)

The arc length differential in cylinder coordinates reads (ds/dφ)2 = ρ2+ρ2
φ+z2

φ.
Here the subscript φ indicates differentiation. We get s2

φ = r2 + 1
4
(κ2

n,φ−κ2
n)+

O(r5). Taking the square root via the binomial series yields sφ = r + 1
8
(κ2

n,φ−
κ2

n)r3+O(r4). When we expand this expression and integrate, we can compute
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the arc length Lc(r,p) of the spherical intersection curve cs(r,p):

Lc(r,p) =
∮

ds =
∫ 2π

φ=0

ds

dφ
dφ

= 2πr +
π

32
(κ1(p)2 − 10κ1(p)κ2(p) + κ2(p)2)r3 + O(r4). (25)

Barycenter sc and covariance matrix Jc of the curve cs are subsequently found
by integration:

sc =
1

Lc

∫
x(φ)

ds

dφ
dφ, Jc =

1

Lc

∫
x(φ)x(φ)T ds

dφ
dφ.

After the substitution x(φ) = ρ(φ) cos φ and y(φ) = ρ(φ) sin φ, these inte-
grations are elementary and will not be carried out in detail. The results are
similar to the ball and sphere neighbourhood case:

Theorem 5 The barycenter sc(r,p) of the spherical intersection curve cs(r,p)
is expressed in the principal frame as sc(r,p) = [0, 0, 1

4
(κ1(p) + κ2(p))r2]T +

O(r3). The covariance matrix of the curve cs(r,p) has the eigenvalues Mc,i(r,
p) (i = 1, 2, 3) with

Mc,1 = πr3 +
π

64
((κ1(p)− κ2(p))2 − 12κ2(p)(κ1(p) + κ2(p)))r5 + O(r6),

Mc,3 =
π

16
(κ1(p)− κ2(p))2r5 + O(r6).

The formula for Mc,2 is the one for Mc,1 with indices 1 and 2 exchanged.

2.5 PCA of the surface patch neighbourhood

We now discuss principal component analysis of the surface patch neighbour-
hood Np(r,p), thereby providing more precise estimates than those given by
Clarenz et al. (2004b). While the surface patch neighbourhood is of equal ge-
ometric interest as the ball and sphere neighbourhoods, it has been shown by
the numerical experiments of Yang et al. (2006) that it is not as robust against
noise. This is only to be expected, since a variation of the surface causes a
variation in the surface area which can be bounded only if we know bounds
on the derivatives of the surface.

Like in the case of the spherical intersection curve cs, the mathematics con-
sists almost entirely of computations, which are not repeated here. We again
refer to the cylinder coordinate representation x = ρ cos φ, y = ρ sin φ, z =
z(ρ cos φ, ρ sin φ), of the surface (4). The surface area element is given by dA =
(1+(dz/dx)2+(dz/dy)2)1/2dxdy = (ρ+ 1

2
ρ3(κ2

1 cos2 φ+κ2
2 sin2 φ)+O(ρ5))dρdφ.

The surface area is computed as the integral
∫ 2π
φ=0

∫ ρ(φ)
ρ=0 dA, where ρ(φ) is taken
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from (24). The result is

Ap(r,p) = πr2 +
π

32
(κ1(p)− κ2(p))2r4 + O(r5). (26)

The remaining computations of barycenter and principal components are sim-
ilar to the curve case:

Theorem 6 The barycenter sp(r,p) of the spherical path neighbourhood Np(r,
p) = B(r,p) ∩ Φ is expressed in the principal frame as sp(r,p) = [0, 0,
1
8
(κ1(p) + κ2(p))r2]T + O(r3). The covariance matrix of the spherical patch

neighbourhood has the eigenvalues Mp,i (i = 1, 2, 3), with

Mp,1(r,p) =
π

4
r4 +

π

192

(
κ2(p)2 − 3κ1(p)2 − 6κ1(p)κ2(p)

)
r6 + O(r7),

Mp,3(r,p) =
π

192

(
3κ1(p)2 + 3κ2(p)2 − 2κ1(p)κ2(p)

)
r6 + O(r7).

The formula for Mp,2 is the one for Mp,1 with indices 1 and 2 exchanged.

3 Geometry descriptors from integral invariants

For many geometry processing tasks it is important to compute numerical
geometry descriptors which act as a low pass filter, i.e., ignore details which
are smaller than a certain threshold size. One way to define such descriptors
is described below.

3.1 Principal curvatures at a given scale

The relationship between covariance matrices and principal curvatures leads
to the definition of principal curvatures at scale r, where r is the kernel ball
radius. This is done by ignoring the O(r7)-terms in (11), (12) and solving for
κ1, κ2. They are estimators for the actual values of the principal curvatures,
and are denoted by κb,1, κb,2, where the index b stands for ‘ball neighbourhood’:

κb,1(r,p) :=
6

πr6
(Mb,2(r,p)− 3Mb,1(r,p)) +

8

5r
, (27)

κb,2(r,p) :=
6

πr6
(Mb1(r,p)− 3Mb,2(r,p)) +

8

5r
.

Theorem 4 likewise makes it possible to define principal curvature estimators
κs,1 and κs,2, using the eigenvalues Ms,1 and Ms,2. And of course also the
eigenvalues computed from the curve cs or the surface patch Np can be used
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as well. A comparison of this method to define curvatures with the method of
normal cycles is furnished by Figure 5.

The arithmetic mean (κb,1(r,p) + κb,2(r,p))/2 is a possible definition of the
mean curvature estimator at scale r, but also other formulae (e.g., the ones in-
volving barycenters, volumes, or areas) can be used to define a mean curvature
at scale r: We may, for instance, let

Hball(r,p) =
4

πr4
(
2π

3
r3−Vb(r,p)), Hsphere (r,p) =

1

πr3
(2πr2−As(r,p)). (28)

These definitions are based on Equations (1) and (2), and illustrated by Fig. 6.
Any of these different definitions of principal curvatures or mean curvature at
scale r yields a family of geometry descriptors which approximates curvatures
as the kernel radius tends to zero.

An important property of principal curvatures at a given scale is that features
of the surface under investigation which are smaller than the kernel radius are
considered as noise and are in general smoothed away. When we use principal
curvatures at various different scales r1, r2, . . . in order to recognize features
on a surface, it may happen that some features are detected only for one ri,
whereas others (the persistent ones) are detected for several radii rj. This
helps to distinguish between unimportant and important features of given
data. Examples are given by Yang et al. (2006). Figure 5 which computes one
principal curvature at two different scales also illustrates this fact. An example
of a computation where various kernel sizes are employed in order to detect
ridges and ravines is shown by Fig. 1.

3.2 Principal curves on multiple scales

Similar to curvature estimators, we can also get estimators for principal di-
rections. PCA of a local neighbourhoods defined by a kernel of size r yields
principal directions at scale r. These directions are in general not tangential
to the given surface, since they are computed in a global way from the chosen
neighbourhood. In fact, they should not follow details which are small com-
pared to the kernel size. In order to obtain vector fields which are tangent
to the given surface, such directions have to be projected onto the surface,
but then they are no longer orthogonal. This loss of a prominent geometric
property is actually not important and rather an advantage when we now in-
tegrate these two vector fields to obtain principal curves at the chosen scale r
(see Figures 3 and 4 for an illustration).

Applications of principal curves at a given resolution r include remeshing for
the purpose of constructing a quad-dominant mesh with planar faces approx-
imating a given surface, as presented by Liu et al. (2006).
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Due to the robustness of these principal curves, it seems natural to use such
curves for detecting special shapes such as pipe surfaces, rotational surfaces,
canal surfaces and developable surfaces (see Fig. 3). Non-planar developable
surfaces can be characterized by the fact that exactly one principal curvature
vanishes; they have one family of straight principal curvature lines. Recog-
nizing and especially reconstructing developable surfaces from measurement
data is not an easy task, as discussed by Peternell (2004). Classical principal
curvature lines can hardly be employed for computations where robustness is
essential. However it turns out that principal curvatures at a larger scale r are
useful for such purposes. This is illustrated by Fig. 3: Apart from smoothing
effects near sharp edges, we can nicely observe one family of nearly straight
principal curves. They are good candidates for rulings in an approximating
surface. The ‘D-form’ model of Fig. 3, right, is a triangle mesh generated
from a laser scan of a paper model. For more facts on D-forms, the interested
reader is referred to pp. 317, 401, and 418 of the monograph by Pottmann and
Wallner (2001), and also to Bobenko and Izmestiev (2005).

3.3 Comparison with other methods, robustness, and multiscale behaviour

This paper provides theoretical background and proofs for the material pre-
sented by Yang et al. (2006). For this reason, Section 3.3 is rather short, as
numerical results have already been presented in that paper. They compare
the principal curvatures obtained via the ball and sphere neighbourhoods with
other methods:
— Principal components of the patch neighbourhood according to Clarenz
et al. (2004b) and Pauly et al. (2003);
— The method of normal cycles of Cohen-Steiner and Morvan (2003);
— A fitting method (osculating jets by Cazals and Pouget (2003)).

Yang et al. (2006) report that PCA of the patch neighbourhood is quite sensi-
tive to noise, normal cycles less so. PCA of the ball and sphere neighbourhoods
compare favourably with these three methods. The multiscale behaviour of
these different methods is good for low noise levels, while local fitting meth-
ods apparently have defects at coarse scales.

The present paper shows a comparison with the method of normal cycles in
Figure 5, by marking in dark regions of high principal curvatures – this is a
simple way of defining features. For this particular data set it is obvious that
the PCA methods of the present paper detect more features than the method
of normal cycles.

The multiscale behaviour of integral invariants defined via the ball and sphere
neighbourhoods is illustrated in Figures 6 and 5. The latter illustrates the
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maximum principal curvature at scale r via grey values, the former shows
level curves of a mean curvature at scale r. Figure 4 shows how principal
curves defined at a coarser scale exhibit much more stable behaviour than
curves defined at a finer scale – features smaller than the kernel balls tend to
be considered as noise.

4 Implementation

4.1 Ball neighbourhood computations via FFT

Integral invariants defined via the ball neighbourhood can easily be computed
by convolution, which means that FFT can be employed. In more detail, this
is done as follows: Using the terminology from above, D is the domain whose
boundary is the surface under investigation. In order to do PCA on the ball
neighbourhood Nb(r,p) = B(r,p) ∩ D, we compute the integrals I(r,p, 1),
I(r,p,x), I(r,p,xxT ) defined by

I(r,p, f) =
∫

Nb(r,p)
f(x) dx. (29)

So the first argument of the function I is the kernel radius, the second argu-
ment is the point p under investigation, and the third argument is the function
we integrate. The definition of the same quantities by Equation (5) uses a co-
ordinate system where the point p under investigation is the origin, and the
z axis is orthogonal to the surface. However, it does not matter which coordi-
nate system we use for computing the eigenvalues of the covariance matrix of
Nb(r,p), as long as we consistently use the same coordinate system while we
work with the point p.

We use the notation 1D(x) for the indicator function of the domain D, which
is defined by 1D(x) = 1 if x ∈ D and 1D(x) = 0 otherwise. Likewise, we
define 1B(x) to be the indicator function of the ball with center o and radius
r. Apparently, the definitions of I(r,p, 1), . . . can be rewritten as

I(r,p, 1) =
∫

R3
1D(x)1B(p− x)dx,

I(r,p,x) =
∫

R3
1D(x)(−(p− x))1B(p− x)dx,

I(r,p,xxT ) =
∫

R3
1D(x)(p− x)(p− x)T 1B(p− x) dx.

Note that we write p−x instead of x−p, which is justified by the symmetries
present. We use convolution notation, i.e., (f ∗g)(p) =

∫
f(x)g(p−x)dx. Then
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the formulas above are converted into

I(r,p, 1) = (1D ∗ 1B)(p)

I(r,p,x) = (1D ∗ (1B · f)(p), where f(x) = −x,

I(r,p,xxT ) = (1D ∗ (1B · g)(p), where g(x) = xxT .

This means that we may compute all necessary information by convolving the
indicator function 1D with the 10 different functions 1B(x, y, z),−x·1B(x, y, z),
−y · 1B(x, y, z), −z · 1B(x, y, z), x2 · 1B(x, y, z), y2 · 1B(x, y, z), z2 · 1B(x, y, z),
xy · 1B(x, y, z), xz · 1B(x, y, z), yz · 1B(x, y, z).

For the actual numerical computation, the indicator function 1D is represented
as an occupancy voxel grid, as discussed by Gelfand et al. (2005). Computing
convolutions via FFT means that we compute the result of convolution for
all points in a cube-shaped domain at once. In order to optimize computation
time, we need to cover the boundary of D (i.e., the surface Φ to be analyzed) by
a suitable collection of cubes, so as not to compute too many values irrelevant
for curvature information at the boundary of the domain D.

Model Number of
triangles

time for
PCA ball

time for
PCA sphere

Figure
number

pillow 24576 23.3 s 8.1 s *2 and *3

dragon 209227 83.9 s 39.1 s 5 and *4, *5

bunny 69451 50.1 s 15.1 s 6

Table 1
Computation times for PCA. A star before a figure number refers to figures in the
paper Yang et al. (2006).

Model No. of
triangles

type
of PCA

time
for PCA

time for
curves

Figure
number

horse 114560 ball 46.7s 56.6s 4 and *6, left

pipe 30560 ball 39.7s 5.5s 3, left

D-form 16384 sphere 4.8s 2.8s 3, right

Table 2
Computation times for principal curves. A star before a figure number refers to
figures in the paper Yang et al. (2006).
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4.2 Sphere neighbourhood computations

Here we use a more geometric method, which is based on an almost uniform
multilevel discretization of the sphere S(r,p). By discrete integration over the
mesh faces, we can compute any integral invariant which is defined via the
sphere neighbourhood.

To accelerate the computation of the sphere neighbourhood D ∩ S(r,p), we
use a 4-level hierarchical representation of the sphere. It has a highly regu-
lar triangulation with 218 faces at the coarsest level. The next finer level is
obtained by splitting each triangle into 4 sub-triangles, where new vertices
get projected onto the sphere. During refinement, we maintain a list of points
inside D. A specified face F at a given level is put into this list, if all 3 vertices
are in D. Otherwise, we split the face into 4 sub-faces and judge them one
by one in the next level. If we reach the finest discretization level, we use the
barycenter of the face to judge inside-outside information. After a hierarchical
traversal, we get a list of inside faces which may belong to different discretized
sphere levels. PCA is based on the union of these inside faces.

Table 1 gives some computation times of PCA on ball and sphere neighbour-
hood, respectively. We have done the experiments on a 2.8 GHz PC with 2GB
RAM. Table 2 shows the computation times for principal curves.

5 Conclusion

Principal component analysis of local neighbourhoods defined by a ball kernel
or spherical kernel allows us to define principal directions and principal curva-
tures on a given scale. We have shown an asymptotic analysis of the principal
moments and directions of inertia, and their relation to principal curvatures.
Geometry descriptors derived in this way are robust against noise and ex-
hibit multiscale behaviour suitable for applications like feature extraction and
computation of principal curves.
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Fig. 3. Surface interrogation with principal curves at a certain scale r, computed for
models which contain developable surfaces. Left: pipe surfaces which contain cylin-
drical parts. Right: D-form. The figures show also one of the kernel balls employed
in the computation of principal curves.

Fig. 4. Principal curves at different scales, computed by PCA of the ball neighbour-
hood. The different kernel sizes are shown by one kernel ball each.
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(a)

(b)

(c)

Fig. 5. Grey coded values of the maximal principal curvature computed (a) by the
method of normal cycles by Cohen-Steiner and Morvan (2003); (b) as the value κb,1

according to Equation (27), by PCA of the ball neighbourhood; (c) as the value
κs,1, by PCA of the sphere neighbourhood. In each the kernel size is shown.
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(a) (b)

(c) (d)

Fig. 6. Level sets of various ‘mean curvatures at scale r’, computed for the Stanford
bunny dataset. Figures (a) and (b) show the quantity Hsphere, which is defined in
Equation 28. Figures (c) and (d) show Hball. The kernel radius is visualized by one
kernel ball per image.
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