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Abstract

In the present paper we investigate rational two-parameter families of spheres and
their envelope surfaces in Euclidean R3. The four dimensional cyclographic model
of the set of spheres in R3 is an appropriate framework to show that a quadratic
triangular Bézier patch in R4 corresponds to a two-parameter family of spheres with
rational envelope surface. The construction shows also that the envelope has rational
offsets. Further we outline how to generalize the construction to obtain a much larger
class of surfaces with similar properties.

Keywords: Quadratic triangular Bézier surface; space of spheres; envelope of spheres,
cyclographic image, linear congruence of lines, fibration; chordal variety.

1 Introduction

The rationality of envelopes of one- and two-parameter families of spheres has attracted
the interest of several researchers, see [19, 20, 21, 22, 23, 24, 26, 33]. Unfortunately, the
direct computation does in general not lead to rational parameterizations in case of rational
envelopes and thus it is necessary to study these objects in more detail in order to gain
insight to their geometric properties. The rationality of surfaces is determined by vanishing
genus and second pluri-genus. Since the computation of these invariants is quite complex
for envelopes given by parametric representations, the ascertainment of the rationality for
the considered surfaces is difficult.

It has been proved in [26] that the non developable envelope of a rational one-parameter
family of cones of revolution possesses rational parameterizations. Since any cone of revo-
lution is the envelope of a one-parameter family of spheres as well as planes, the envelope
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is also generated by a two-parameter family of spheres. Using the affine space R4 as cyclo-
graphic model of the four-dimensional manifold of spheres in Euclidean R3, the mentioned
result reads as: Any rational ruled surface in the model space R4 defines an envelope of
a two-parameter system of spheres which possesses rational parameterizations and these
parameterizations can be constructed explicitly. This result is a general statement about
a class of surfaces in R4 and their corresponding envelopes in R3.

The question of rationality of envelopes is closely related to PH-curves and surface classes
with similar properties. PH-curves have been introduced by Farouki, see the survey [10],
and can be defined as planar polynomial curves possessing rational offset curves. The
relation between offsets and envelopes is made obvious by the fact that the offset Cd of a
curve C is the envelope of a one-parameter family of circles of constant radius d centered at
the curve C. Polynomial PH-curves possess rational arc length as an additional property.
The rationality of the offset is equivalent to the existence of a rational unit normal vector
field along the curve.

The large amount of contributions to PH-curves, see for instance [5, 6, 7, 8, 9, 10, 11, 12,
16, 17, 25, 29, 30, 37, 38], which is being far from a complete list, already indicates that
the curve case is quite well understood and applies even to practical design problems in
NC-machining, see e.g. [40, 41]. The concept of PH-curves is also generalized to space
curves, see e.g. [7, 10, 11, 38].

Rational surfaces with rational offsets are more involved, since the techniques for the curve
case cannot be applied directly to surfaces. Although an explicit representation of all
rational surfaces with rational offsets has been given already in [29], it is not obvious how
to decide the rationality for particular surface classes. It has been proved that rational
pipe surfaces [21], rational ruled surfaces [32] and all regular quadrics [24] possess rational
offsets. These statements can also be found in [26] as specializations of a more general
result concerning envelopes of one-parameter families of cones of revolution. Later it has
been proved in [14, 15] that rational surfaces with linear normal vector fields, so called
LN-surfaces, possess rational offset surfaces.

Using the cyclographic model R4 as framework, the main contribution of this article is to
show that any quadratic triangular Bézier surface Φ in R4 corresponds to a two-parameter
family of spheres with rational envelope. An immediate consequence is the rationality of
the offset surfaces of the envelope. The proof is based on the study of the configuration
of tangent planes and normal planes of surfaces Φ. Quadratic triangular Bézier surfaces
are thus examples for so called MOS-surfaces which have been introduced in [18]. The
quadratic parameterization does not show this property immediately but it can be verified
by applying the reparameterization proposed in Section 3. Further we outline a possible
generalization to obtain a much larger family of surfaces in R4 which possesses similar
properties concerning the rationality of the envelope of the corresponding family of spheres.

The paper is organized as follows: Section 2 explains some geometric properties of the
space of spheres, in particular the cyclographic model and the computation of envelopes.
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Additionally we introduce to some concepts of line geometry which are used for the repa-
rameterization technique. Further this section provides some basic properties of quadratic
triangular Bézier surfaces in R4 and the structure of their tangent planes. Section 3
tells about the rational construction of the envelope surfaces of two-parameter families
of spheres corresponding to quadratic triangular Bézier surfaces. Some examples illustrate
the method. Further in Section 4 we report on a possible generalization of the obtained
results concerning rationality of the envelope. Finally we conclude in Section 5 with some
outlook to future research.

2 Geometric background

Points in Rn are represented by their coordinate vectors x = (x1, . . . , xn). The projective
closure of Rn is denoted by Pn and points X in Pn are identified with their homogeneous
coordinate vectors

yR = (y0, y1, . . . , yn)R = (y0 : y1 : . . . : yn), with y 6= o.

Choosing the plane at infinity ω as x0 = 0, the interchange between homogeneous and
Cartesian coordinates for points in Rn is realized by

x1 =
y1

y0

, x2 =
y2

y0

, . . . , xn =
yn

y0

. (1)

Moreover, we consider the dual projective space Pn?, whose points are identified with
the hyperplanes in Pn. Let e0 + e1x1 + . . . + enxn = 0 be the equation of a hyperplane
E ∈ Rn. The homogeneous coordinate vector Re = R(e0, . . . , en) is identified with E.
Using homogeneous coordinates yi, the equation of E reads e0y0 + e1y1 + . . .+ enyn = 0.

Later on we use some facts on line geometry in P3. For that reason we recall the notation of
Plücker coordinates and mention some facts about special two-parameter families of lines.
For more details we refer to [34]. In order to introduce coordinates in the set L of lines in
P3 we assume that a line L is spanned by two different points P = pR and Q = qR. The
Plücker coordinates (L1, . . . , L6) of L are defined by

(p0q1 − p1q0, p0q2 − p2q0, p0q3 − p3q0, p2q3 − p3q2, p3q1 − p1q3, p1q2 − p2q1). (2)

The coordinates Li of L are homogeneous and independent on the choice of the points X
and Y on L. Thus, they can be interpreted as the coordinates of points LR = (L1, . . . , L6)R
in a projective space P5. In addition the Li’s satisfy the Plücker relation

L1L4 + L2L5 + L3L6 = 0. (3)

The reparameterization technique in section 3 uses two-parameter families of lines H which
send a unique line H ∈ H through any generic point X ∈ P3. Families of lines sharing this
property are called a fibration of P3. Besides the star of lines the following fibrations of P3

are known. For illustrations we refer to Figures 4, 5 and 6.
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Hyperbolic linear line congruence: This family of lines in P3 consists of those lines
intersecting two real skew lines A and B which are called the axes of the congruence.

Elliptic linear line congruence: This family of lines in P3 consists of those lines inter-
secting a pair of skew and conjugate complex lines A and A. Some authors use the
notation spread for this family.

Parabolic linear line congruence: It consists of a one-parameter family of pencils of
lines in planes through the axis A and with vertices on A. The correspondence of
the carrier planes of the pencils and the vertices is a projective mapping.

Chordal variety: It consists of the chords of a spatial cubic C in P3. This family contains
also tangent lines of C and lines connecting two conjugate complex points of C.

Special congruence of lines of type (1,n): Consider an algebraic curve C of degree n
and a line L intersecting C in n− 1 points. The family of lines intersecting both C
and L form a fibration of P3. For any generic point X /∈ C,L there exists a plane
X ∨ L intersecting C in a further point Y and XY is the unique line of the family
passing through X. The notation (1,n) denotes the number of lines passing through
a generic point and the number of lines lying in a generic plane, see e.g. [42].

A low degree example of the last family is given by the lines meeting a conic C and a line
L, where L intersects C at one point, see Fig. 5. A further example is obtained by all
lines meeting a spatial cubic C and a chord L of C. Any fibration has an exceptional set,
i.e. there exists at most a one-parameter family of points where the line is not unique.

2.1 The cyclographic model of the space of spheres

A sphere S : (x −m)2 = r2 in Euclidean 3-space R3 is uniquely determined by its center
m and its radius r. Spheres can be oriented by using signed radii. The family of oriented
spheres in R3 will be denoted by S.

The coordinate vector m of the center of a sphere S together with the signed radius r
comprises the coordinates of a point s = (m, r) in the affine space R4. On the other
hand any point s = (m, r) ∈ R4 corresponds to a sphere in R3 with center (m1,m2,m3)
and radius r. We call R4 the cyclographic model of the family S of spheres in R3. The
cyclographic mapping γ establishes the correspondence between points s in R4 and spheres
S in R3,

γ : R4 → S, s = (m, r) 7→ S : (x−m)2 = r2. (4)

Since the study of the mapping γ gives a lot of insight to the construction of envelopes of
spheres, we present some fundamental properties.
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Figure 1: Left: Cyclographic mapping γ : R3 → R2. Right: Cyclographic image γ(O) ∈ R2

of curve O ∈ R3.

Let π : R4 → R3 be the orthogonal projection (top view) of points y ∈ R4 to points
π(y) = (y1, y2, y3)T in R3 : x4 = 0. The sphere γ(y) has center π(y) and is given by the
equation γ(y) : (x− π(y))2 = y2

4.

We consider a geometric object O in R4 and let γ(O) be the corresponding family of spheres
centered at the points of π(O). If γ(O) possesses a real envelope, we will use the notation
γ(O) as well for the envelope. The projection π(O) is also called medial axis of the envelope
γ(O). Given π(O) and the radius function of points ∈ π(O), the envelope γ(O) can be
reconstructed from this information. The geometric object O itself is also called medial
axis transform.

2.1.1 The cyclographic image of a line

Considering a straight line G : y(t) = a + tg in R4, its points correspond to spheres whose
centers m(t) trace the line π(G). In general, the envelope is a cone of revolution with axis
π(G), see Fig 2. Considering a line G with horizontal direction vector g = (g1, g2, g3, 0)T ,
the envelope γ(G) is a cylinder of revolution, with axis π(G) and radius a4. If we choose
G : y(t) = a + t(0, 0, 0, 1)T , the image γ(y(t)) is the family of concentric spheres centered
at m = (a1, a2, a3)T , which does not possess a real envelope. The lines G with direction
vector g = (g1, g2, g3, g4) satisfying 〈g,g〉 ≥ 0 are related to real envelopes γ(G), where the
scalar product 〈, 〉 is defined by

〈x,x〉 := xTDx, with D = diag(1, 1, 1,−1). (5)

Equipping R4 with the scalar product 〈, 〉 yields a pseudo-Euclidean or Minkowski space.
Some authors use the notion R3,1 to emphasize the signature of D. Lines G are called
Euclidean, isotropic or pseudo-Euclidean depending on whether the direction vector g sat-
isfies 〈g,g〉 > 0, 〈g,g〉 = 0, or 〈g,g〉 < 0. The respective notations space-like, light-like or
time-like are also commonly used.
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Figure 2: Left and middle: Cone and cylinder of revolution as cyclographic image of a line
∈ R4. Right: Three types of planes and their isotropic directions.

2.1.2 The cyclographic image of a surface

We briefly discuss the cyclographic image γ(Φ) of a plane Φ ∈ R4 first, since it follows
similar rules as the cyclographic image of a line. Let f(u, v) = a+ug+vh be a linear param-
eterization of Φ. If Φ is parallel to R3 : x4 = 0, the direction vectors g = (g1, g2, g3, 0) and
h = (h1, h2, h3, 0) are horizontal. The envelope γ(Φ) consists of two parallel oriented planes
having distance ±a4 from π(Φ). For planes Φ not parallel to R3 we have to distinguish the
following cases, see Fig. 2.

A plane Φ ∈ R4 is called Euclidean if all direction vectors r(u, v) = ug + vh are space-like.
This means that 〈r, r〉 = 0 has no real zeros and γ(Φ) consists of two real planes Φ1,Φ2.
A plane Φ is called isotropic if 〈r, r〉 = 0 has a double zero. The corresponding direction
is the only isotropic direction in Φ. A plane Φ is called pseudo-Euclidean if 〈r, r〉 = 0 has
a two real zeros corresponding to two isotropic directions in Φ. There is no real envelope
but γ(Φ) consists of a pair of conjugate complex planes.

The cyclographic image γ(Φ) of a two-dimensional surface Φ with parameterization f : U ⊂
R2 → R4 is the envelope of the two-parameter family of spheres S centered at the projection
π(Φ) = π(f(U)) with radius function r(u, v) = f4(u, v). A Euclidean tangent plane T at F
of Φ is mapped to a pair of planes touching the envelope γ(Φ) (and also the sphere γ(f))
at two points F1, F2.

As an important example we note that the cyclographic image γ(Φ) of a ruled surface
Φ ∈ R4 is the envelope of a one-parameter family of cones of revolution γ(G) corresponding
to the generating lines G ∈ Φ.

We continue the discussion of the cyclographic image γ(Φ) of a surface Φ later in Sec-
tion 2.1.4 where we take a projective viewpoint. Now we briefly study the envelope con-
struction of a two parameter family of spheres in R3.
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2.1.3 Envelope construction in the surface case

Let us consider a surface Φ ∈ R4, parameterized by f(u, v) and let us denote the top view
π(f) by m(u, v) and r(u, v) = f4(u, v). The envelope of the two-parameter family of spheres
S(u, v) : (x−m)2 = r2 can be obtained as solution of

S : (x−m)2 − r2 = 0,

Su : (x−m)T ·mu + rru = 0,

Sv : (x−m)T ·mv + rrv = 0.

(6)

Since the partial derivatives Su := ∂S/∂u, Sv := ∂S/∂v are planes, the envelope contains
the intersection points of the lines g(u, v) = Su ∩ Sv and the spheres S(u, v). In general
g ∩ S consists of two points and thus the parameterization of the envelope is obtained by
solving a quadratic equation. This direct approach leads to parameterizations containing
square roots even if the cyclographic image admits rational parameterizations.

2.1.4 Envelope construction using the projective extension in R4

H1
H2

ω

γ(F )

Ω

F
Fu

Fv

F2

F1

i2 i1
Φ

R3

g = T ∩ ω

h = N ∩ ω

Figure 3: Construction of the cyclographic image from the projective point of view.

Embedding the Minkowski space R4 into projective 4-space P4, we use homogeneous co-
ordinates (y0, y1, . . . , y4)R = yR for points Y ∈ P4. The projective 3-space at infinity is
given by ω : y0 = 0. The polar system of the quadric

Ω : y2
1 + y2

2 + y2
3 − y2

4 = 0, y0 = 0 (7)
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in ω defines the scalar product (5) whose coefficient matrix D equals the coefficient matrix
of the quadric Ω. Orthogonality in R4 can also be defined with help of the polar system
of Ω: Consider two lines g and h in R4. Their ideal points G = g ∩ ω and H = h ∩ ω are
represented by G = (0,g)R and H = (0,h)R where g = (g1, . . . , g4) and h = (h1, . . . , h4)
are some direction vectors of g and h. If 〈g,h〉 = 0 holds, the lines g and h are orthogonal
with respect to (5). This is equivalent to the polar position of G and H with respect to Ω.
Depending on whether the ideal point of a line is outside, or inside or contained in Ω, the
line is called space-like, or time-like or light-like.

The light-like lines i through a point P ∈ R4 form the light-cone ΓP with vertex P ,

ΓP : 〈x− p,x− p〉 = 0, (8)

where x = (x1, . . . , x4) and p = (p1, . . . , p4) are affine coordinates in R4. The intersection of
the light-cone ΓP with R3 : y4 = 0 is exactly the non-oriented sphere Sp : (x−π(p))2−p2

4 =
0. Thus the cyclographic mapping can be defined also via

γ : R4 → S, P 7→ Sp = ΓP ∩ R3. (9)

This definition of γ is not fully equivalent to (4) from section 2.1 since Sp = ΓP ∩ R3 are
not oriented spheres. When considering envelopes γ(O) of families of spheres as oriented
surfaces in R3, the orientation of the involved spheres can be added.

Let a surface Φ : f(u, v) in R4 be given. The construction of the cyclographic image γ(Φ)
is illustrated in Fig. 3 and can be performed as follows.

• The tangent planes T (u, v) of points f(u, v) = F ∈ Φ are intersected with ω : y0 = 0
and yield the two-parameter family of ideal lines g(u, v) = T (u, v) ∩ ω.

• The polarity λ : P3 → P3? with respect to the quadric Ω maps g(u, v) to lines
h(u, v) = λ(g(u, v)) ∈ ω. Since Ω induces the orthogonality in R4, the lines h(u, v)
are the ideal lines of the normal planes N of f(u, v) = F ∈ Φ. Generically, any line
h(u, v) intersects Ω in two points H1(u, v) and H2(u, v).

• By joining H1 and H2 with the corresponding point F ∈ Φ one obtains the isotropic
projection lines i1 = H1F and i2 = H2F . The intersection points F1 = i1 ∩ R3

and F2 = i2 ∩ R3 of these projections lines i1 and i2 with R3 : y4 = 0 lead to a
parameterization of the envelope γ(Φ).

The isotropic projection lines i1 and i2 are the intersections of the light-cone ΓF with
the normal plane N of Φ passing through F . These two-parameter family of lines i1, i2
form the isotropic hyper-surface Γ(Φ) passing through Φ. This method of computing the
cyclographic image has already been proposed in [20].
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Analytically the isotropic hyper-surface Γ(Φ) is determined by the equations

Γf : 〈x− f,x− f〉 = 0,

∂Γf

∂u
: 〈x− f, fu〉 = 0, (10)

∂Γf

∂v
: 〈x− f, fv〉 = 0,

where fu and fv denote the partial derivatives of f(u, v). The first equation describes the
light-cone through f, the second and third equation describes the normal plane N . This
system expresses also the envelope condition for the two-parameter family of light-cones
ΓF (u, v). Comparing the system (10) with (6) we recognize that the envelope of the two-
parameter system of spheres Sf : (x − π(f))2 − f 2

4 = 0 is the intersection Γ ∩ R3 : x4 = 0
of the isotropic hyper-surface Γ(Φ) with x4 = 0. The offset surface of γ(Φ) at distance d
is obtained by intersecting Γ(Φ) with x4 = d.

2.2 Quadratic triangular Bézier surfaces

Quadratic triangular Bézier surfaces in R4 can be represented with respect to barycentric
coordinates u, v, w = 1− u− v by the parameterization

s(u, v, w) =
∑

i+j+k=2

B2
ijk(u, v, w)bijk,

with basis functions B2
ijk = 2!

i!j!k!
uivjwk and control points bijk, see [13]. For our purposes

it is more convenient to use a parameterization in monomial form with affine parameters
u, v,

s(u, v) =
1

2
a1u

2 + a2uv +
1

2
a3v

2 + a4u+ a5v + a6, with ai ∈ R4. (11)

Quadratic triangular Bézier surfaces Φ have attracted much interest in the past [39] and
more recently [1, 2, 3, 4, 28, 36]. From the parameterization (11) it follows that S is
obtained as projection of the Veronese surface V 2

2 ∈ R5 with affine parameterization
v(u, v) = (u2, uv, v2, u, v).

It will turn out that the structure of the tangent planes T of a quadratic triangular Bézier
surface Φ and the structure of their ideal lines g = T ∩ω is responsible for the rationality of
the isotropic hyper-surface Γ(Φ) and therefore for the rationality of the cyclographic image
γ(Φ). This compares to a similar result in R3 where the structure of the set of tangent
planes of quadratic triangular Bézier surfaces is responsible for their LN-property, see [27].
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2.3 The tangent planes and normal planes of quadratic triangu-
lar Bézier surfaces in R4

We embed the quadratic triangular Bézier surface Φ ⊂ R4 from (11) into P4. This is done
by representing Φ by the homogeneous coordinates f(u, v)R = (1, s(u, v))R corresponding
to (11). The tangent planes T of the points F = fR of Φ are spanned by F and the
derivative points

Fu = fuR = (0, su)R = (0, a1u+ a2v + a4)R,
Fv = fvR = (0, sv)R = (0, a2u+ a3v + a5)R.

(12)

The ideal points Fu = fuR as well as Fv = fvR represent linear parameterizations of linear
subspaces Eu, Ev ⊂ ω. In case rk (a1, a2, a4) = rk (Mu) = 3 and rk (a2, a3, a5) = rk (Mv) =
3 both Eu and Ev are planes and the linear parameterizations of Fu and Fv induce a
projective mapping α : Fu ∈ Eu 7→ Fv ∈ Ev between Eu and Ev.

Assuming that Φ spans P4 it follows that the family of lines G spans ω. This implies that
we can exclude cases where G is a ruled plane. Thus rk (Mu) ≥ 2 and rk Mv ≥ 2 holds.
The case where Φ is contained in a 3-space ⊂ P4 does not cause any problems and will be
discussed at the end of this section.

According to the classification in [28] there exist five relevant cases of quadratic triangular
Bézier surfaces in affine space R4 ⊂ P4. Each class of surfaces is represented by a surface
Φ parameterized in an affine normal form. The respective families G and H of ideal lines
of tangent planes and normal planes are illustrated in figures 4, 5 and 6. Additionally we
give the algebraic equations of the families of lines G in terms of their Plücker coordinates
G = (G1, . . . , G6). The ideal points (0, ai)R corresponding to the vectors ai in (12) are
denoted by Ai.

Case 1: The parameterization of Φ is assumed to be f(u, v) = (1
2
u2, 1

2
v2, u, v). Since

a2 = (0, 0, 0, 0) one obtains rk (a1, a2, a4) = 2 and rk (a2, a3, a5) = 2. Thus Eu and
Ev degenerate to a pair of skew lines. It follows that the family of ideal lines G forms
a hyperbolic linear line congruence, see Fig. 4, joining the points Fu = (ua1 +a4) and
Fv = (va3 + a5). The Plücker coordinates of lines g are G = (uv, 0, u, 1, 0,−v)R and
satisfy the two linear relations G2 = 0, G5 = 0.

The family H = λ(G) of polar lines h(u, v) is a hyperbolic linear line congruence,
too. This follows from the fact that the polar images λ(Eu) and λ(Ev) are two skew
lines, not considered as range of points but as pencils of planes. The lines h ∈ H are
obtained by intersecting two arbitrary planes of these pencils.

Case 2: The parameterization of Φ is assumed to be f(u, v) = (1
2
u2, uv, u, v). Therefore

rk (a1, a2, a4) = 3 and rk (a2, a3, a5) = 2 which says that Eu is a linearly parameter-
ized plane and Ev degenerates to a line. The family G consists of lines joining points

10



Fv(u) = (0, ua2 + a5)R and Fu = (0, ua1 + va2 + a4)R. These lines form a parabolic
linear line congruence with axis joining A2 = (0, a2)R and A5 = (0, a5)R. It decom-
poses into pencils of lines, contained in planes ε(u) = Fv ∨ A2 ∨ (ua1 + a4)R with
vertices Fv. The Plücker coordinates of the lines g of the linear line congruence are
G = (u2, 0, u, 1,−v,−u)R and satisfy the two linear relations G2 = 0, G3 + G6 = 0.
The family H = λ(G) of polar lines is again a parabolic linear line congruence.

A2

A5

Fv

A1

A4

A5A3

Figure 4: Three types of linear line congruences in P3. Left: the elliptic type. Middle: the
parabolic type. Right: the hyperbolic type.

Case 3: The parameterization of Φ is assumed to be f(u, v) = (1
2
u2− 1

2
v2, uv, u, v). There-

fore rk (a1, a2, a4) = 3 and rk (a2, a3, a5) = 3 and both Eu and Ev are linearly
parameterized planes. The projective mapping α : Eu → Ev maps the line of in-
tersection s = Eu ∩ Ev onto itself. Since α restricted to s = α(s) has two con-
jugate complex fixed points, G is an elliptic linear line congruence joining points
Fu = (ua1 + va2 + a4) and Fv = (ua2 − va1 + a5). The Plücker coordinates
of lines g are G = (u2 + v2, v, u, 1,−v,−u)R and satisfy the two linear relations
G2 +G5 = 0, G3 +G6 = 0.

The Plücker coordinates of the axes are (0, 1, i, 0, 1, i)R and (0, 1,−i, 0, 1,−i). The
family H = λ(G) of polar lines is again an elliptic linear line congruence.

Case 4: The parameterization of Φ is assumed to be f(u, v) = (1
2
u2, 1

2
v2, uv, u). Therefore

rk (a1, a2, a4) = 3 and rk (a2, a3, a5) = 2. The lines g join points Fu = (ua1+va2+a4)
and Fv = (ua2 + va3). The family G decomposes into pencils of lines with vertices
Fv lying in planes spanned by Fv, A4 = (0, a4)R and (0, u, 0, v, 0)R. These planes
envelope a quadratic cone with equation Q : y1y2 − y2

3 = 0, y0 = 0 and vertex A4.
The plane Eu is a tangent plane of Q, the line Ev is a tangent line of Q.

The Plücker coordinates of the lines g are G = (uv, u2, 0,−u, v,−v2)R and satisfy
the algebraic equations G3 = 0, G1G5 − G4G6 = 0. The family of lines consists of
those tangent lines of Q which intersect the tangent line Ev. Applying the polarity
λ with respect to Ω, the quadratic cone is mapped to a conic C and the tangent line
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Q

Eu

Ev

Fv

g(u, v)

C

D

h(u, v)

Figure 5: Left: Family of lines G from case 4. Right: Family of lines H from case 4.

is mapped to a line D, intersecting C at one point. Thus the family of polar lines
H = λ(G) consists of the lines h(u, v) meeting C and D, see Fig. 5.

Case 5: The parameterization of Φ is assumed to be f(u, v) = (1
2
u2 +v, 1

2
v2, uv, u). There-

fore rk (a1, a2, a4) = 3 and rk (a2, a3, a5) = 3 and both Eu and Ev are linearly param-
eterized planes. The family G consists of lines joining the points Fu = (ua1+va2+a4)
and Fv = (ua2 + va3 + a5) which are related by the projective mapping α : Eu → Ev.
The Plücker coordinates of the lines g are G = (uv, u2 − v,−1,−u, v,−v2)R and
satisfy the relations G1G5 −G4G6 = 0 and G1G3 −G4G5 = 0 .

The family H = λ(G) of polar lines h is known to be the chordal variety of a spatial
cubic C, see Fig. 6. This can be verified by applying the polarity λ : P3 → P3?

which maps planes Eu, Ev to points S = λ(Eu), T = λ(Ev). Points and lines in Eu

and Ev are mapped to planes and lines passing through S and T . Let α? be the
transformed projective mapping between points (stars) S and T . As G consists of
lines joining corresponding points Fu and Fv, the family of polar lines H consists of
the intersection lines h = ϕu ∩ ϕv, where ϕu = λ(Fu) and ϕv = λ(Fv).

• The singular set of H is the spatial cubic C and through any point of C passes
a quadratic cone ∆ of chords of H. Dual to that the singular set of G is a
developable surface D = λ(C) of class three.

• As the chords of the chordal variety H join two, not necessarily real points of a
spatial cubic C, the lines g ∈ G are obtained as intersection lines of two tangent
planes ε(u) and ϕ(v) of the developable surface D = λ(C). The family G will
be called axes variety.

• Besides the singular set, any point X 6∈ C lies on exactly one chord of H. Dual
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Eu

Ev

Fu

Fu

g ∈ G

ε(u)

ϕ(v)

h ∈ H

C

∆

Figure 6: Left: Axis variety G. Right: Chordal variety H of a spatial cubic C.

to that property, any plane ε ∈ ω not being tangent to developable surface D
carries exactly one line g ∈ G.

Lemma 1 Let H be family of ideal lines of the normal planes N of a quadratic triangular
Bézier surface Φ in R4. Then H is either a linear line congruence (cases 1,2,3), or the
lines meeting a conic C and a line D which intersects C in a single point (case 4) or H is
the chordal variety of a spatial cubic (case 5). In any of these cases H is a fibration of the
3-space ω at infinity.

Remark: Consider a quadratic triangular Bézier surface Φ which is contained in a 3-
dimensional subspace of R4. The family G of ideal lines g of Φ’s tangent planes forms a
ruled plane E. The polarity λ maps g ∈ E to lines h passing through the point λ(E) and
obviously H is a star of lines. Even in this case the ideal lines h of Φ’s normal planes are
a fibration of ω.

3 The cyclographic image of quadratic triangular Bézier

surfaces

Let Φ be a quadratic triangular Bézier surface in R4, represented by the homogeneous
coordinates f(u, v)R = (1, s(u, v)), and let g = Fu ∨ Fv be the ideal lines of Φ’s tangent
planes T . The polarity λ : P3 → P3? with respect to Ω maps lines g ∈ ω to the ideal
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lines h = λ(g) ∈ ω of Φ’s normal planes N . According to Lemma 1 the family H forms a
fibration of ω. The construction of the cyclographic image γ(Φ) is performed as follows:

• We consider an arbitrary rational parameterization w(s, t) of the quadric Ω ∈ ω.
Since Ω defines the scalar product (5) it follows 〈w,w〉 = 0. For practical reasons we
may use the quadratic parameterization

w(s, t) = (2s, 2t, 1− s2 − t2, 1 + s2 + t2) ∈ R4. (13)

• According to Lemma 1 there exists a unique line h ∈ H passing through any point
W = wR ∈ Ω but W 6∈ C. Let H(u, v) = (H1, . . . , H6)(u, v) be the Plücker coordi-
nates of the lines h ∈ H. The incidence relation of the lines h and the points W ∈ Ω
reads 

0 H4 H5 H6

−H4 0 H3 −H2

−H5 −H3 0 H1

−H6 H2 −H1 0

 ·w(s, t) =


0

0

0

0

 . (14)

Since the coordinates Hi of lines h satisfy the Plücker relation (3), the coefficient
matrix has rank 2 and only two of four equations are relevant.

• According to Lemma 1 this polynomial system (14) has a unique solution

u = a(s, t), v = b(s, t), (15)

with rational functions a and b, representing the reparameterization of the surface Φ
in order to construct the cyclographic image linearly.

• Performing the reparameterization (15) results in f(s, t). Joining points F = f(s, t)R
with W ∈ Ω, we obtain a system of isotropic projection lines

i(s, t) : f(s, t) + λw(s, t), with λ ∈ R. (16)

The intersection points P (s, t) = i(s, t) ∩R3 of i(s, t) with R3 : x4 = 0 are contained
in the cyclographic image γ(Φ) and P (s, t) is a rational parameterization of γ(Φ) =
γ(f(s, t)).

• The offset of the envelope surface γ(Φ) at distance d is a rational surface since it is
obtained by intersecting the projection lines (16) with the 3-space x4 = d.

This construction proves the following important result:
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Theorem 2 Let Φ be a quadratic triangular Bézier surface in R4 and let SΦ be the cor-
responding two-parameter family of spheres in R3. The cyclographic image γ(Φ), which is
the envelope of SΦ is rational and the reparameterization (15) leads to a rational parame-
terization of γ(Φ). Moreover all offset surfaces of the envelope γ(Φ) are also rational.

Remark: The reparameterization (15) can also be obtained by replacing equation (14) by
the equations

〈w, fu〉 = 0, 〈w, fv〉 = 0, (17)

which are linear in u and v because f(u, v) is quadratic. Since 〈w,w〉 = 0 holds, we are
looking for those isotropic vectors w which are orthogonal to fu and fv, and thus span the
normal plane N . This is also equivalent to solve (10).

We give two examples to demonstrate the computation of rational parameterizations of
the cyclographic image γ(Φ) of a quadratic triangular Bézier surface Φ.

1. Let Φ be parameterized by f(u, v) = (1
2
(u2− v2), uv, u, v), corresponding to case 3 in

section 2.3. The partial derivatives are fu = (u, v, 1, 0) and fv = (−v, u, 0, 1). The
families G and H of ideal lines g(u, v) and h(u, v) are represented by

G(u, v) = (u2 + v2, v, u, 1,−v,−u), H(u, v) = (−1, v,−u, u2 + v2, v,−u).

We use (13) as parameterization of Ω. Solving the system (14) leads to the reparam-
eterization (15),

u =
(s2 + t2)(t+ s)− s+ t

2(s2 + t2)
, v =

(s2 + t2)(t− s) + s+ t

2(s2 + t2)
.

By intersecting the system of isotropic projection lines i(s, t) : f(s, t) + λw(s, t) with
x4 = 0 we obtain a rational parameterization p(s, t) of the envelope γ(Φ). Offset
surfaces of γ(Φ) at distance d are obtained by intersecting the isotropic lines with
x4 = d. The projection π(Φ) as well as the cyclographic image γ(Φ) are illustrated
in Fig. 7.

2. Let Φ be parameterized by f(u, v) = (1
2
u2 − v, 1

2
v2, uv, u), corresponding to case 5

in section 2.3. The partial derivatives are fu = (u, 0, v, 1) and fv = (1, v, u, 0). The
families G and H of ideal lines g(u, v) and h(u, v) are represented by

G(u, v) = (uv, u2 − v,−1,−u, v,−v2), H(u, v) = (u,−v,−v2, uv, u2 − v, 1).

We use (13) as parameterization of Ω. Solving the system (14) leads to the reparam-
eterization (15),

u = 2
(s2 + t2)(s− t)− s− t

(1− s2 − t2)2 − 4st
, v =

1 + 4s2 − (s2 + t2)2

(1− s2 − t2)2 − 4st
.

By intersecting the system of isotropic projection lines i(s, t) : f(s, t) + λw(s, t) with
x4 = 0 we obtain a rational parameterization p(s, t) of the envelope γ(Φ). The
projection π(Φ) as well as the cyclographic image γ(Φ) are illustrated in Fig. 7.
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π(F ) π(Φ)

F1

F2

γ(Φ)

γ(Φ)

π(F )

π(Φ)

F1

F2

γ(Φ)

γ(Φ)

Figure 7: Cyclographic images γ(Φ) and orthogonal projection π(Φ) of quadratic triangular
Bézier surfaces ⊂ R4. Left: Example 1. Right: Example 2.

4 Generalizations of quadratic triangular Bézier sur-

faces

The rationality of the cyclographic image γ(Φ) of a quadratic triangular Bézier surface Φ
with parameterization (11) depends only on the property that the family H of the ideal
lines h(u, v) of Φ’s normal planes N is a fibration of the 3-space ω at infinity.

A possible generalization interprets a surface Ψ ⊂ R4 as envelope of its two-parameter
family of tangent planes T (u, v). We require that the family H of ideal lines h = N ∩ ω of
Ψ’s normal planes N(u, v) is a fibration of ω.

The ideal lines g(u, v) = T ∩ω of Ψ’s tangent planes form the family G and are represented
as lines of intersection of two planes

ε(u, v) : e1(u, v)y1 + e2(u, v)y2 + e3(u, v)y3 + e4(u, v)y4 = 0,

ϕ(u, v) : f1(u, v)y1 + f2(u, v)y2 + f3(u, v)y3 + f4(u, v)y4 = 0,
(18)

where yi denote homogeneous coordinates in ω. The tangent planes T of Ψ are represented
as intersection of 3-spaces E(u, v) and F (u, v) satisfying E ∩ ω = ε and F ∩ ω = ϕ.
Prescribing two rational functions a(u, v) and b(u, v), E and F are determined by

E(u, v) : e1(u, v)x1 + e2(u, v)x2 + e3(u, v)x3 + e4(u, v)x4 = e(u, v)T · x = a(u, v),

F (u, v) : f1(u, v)x1 + f2(u, v)x2 + f3(u, v)x3 + f4(u, v)x4 = f(u, v)T · x = b(u, v),
(19)

where e = (e1, . . . , e4), f = (f1, . . . , f4) and x = (x1, . . . , x4). We assume that the system
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of linear equations

E : eT · x = a, F : fT · x = b,

Eu : eT
u · x = au, Fu : fTu · x = bu,

Ev : eT
v · x = av, Fv : fTv · x = bv,

(20)

has a (unique) solution p(u, v). To guarantee that the family of ideal lines T ∩ ω of Ψ’s
tangent planes T coincides with G, we prove that the points at infinity Pu = (0,pu)R and
Pv = (0,pv)R satisfy Pu ∨ Pv = ε ∩ ϕ = g(u, v).

Differentiating eT · p = a with respect to u and v and taking eT
u · p = au and eT

v · p = av

into account, leads to
eT · pu = 0, and eT · pv = 0.

This expresses g = Pu ∨ Pv ∈ ε. Analogously by differentiating fT · p = b it follows that
g = Pu∨Pv ∈ ϕ. This proves that the tangent planes T (u, v) of the surface Ψ pass through
the intersection g = ε ∩ ϕ = T ∩ ω.

The question arises, which conditions have to be fulfilled by the functions e(u, v), f(u, v)
and a(u, v), b(u, v) such that the family of planes T (u, v) = E(u, v) ∩ F (u, v) envelope a
surface Ψ? It can be proved that if H is a fibration of ω, then the coefficient matrix of
(20) has rank 4. We list the possible cases and describe how to choose planes ε(u, v) and
ϕ(u, v) to generate g = ε ∩ ϕ.

• If H is a star of lines, G is a ruled plane and g(u, v) is obtained by intersecting the
planes of a star ε(u, v) with the fixed carrier plane ϕ of G.

• If H is a hyperbolic linear line congruence with axes A and B, the lines g(u, v) are
the intersection lines of two pencils of planes ε(u) and ϕ(v) passing through λ(A)
and λ(B), respectively.

• If H is a parabolic linear line congruence with axes A, the lines g(u, v) are the
intersection lines of the pencil of planes ε(u) through λ(A) and an appropriate pencil
of planes ϕ(u, v) passing through a point v(u) ∈ λ(A). The correspondence ε(u) 7→
v(u) is a projective mapping.

• If H is an elliptic linear line congruence, the lines g(u, v) are the intersection lines
of two stars of planes ε(u, v) and ϕ(u, v) with vertices E and F , respectively. The
mapping ε 7→ ϕ keeps the pencil of planes through E ∨ F fixed as a whole.

• If H is the chordal variety of a spatial cubic C, G is the axes variety of a developable
surface D of class 3 whose tangent planes are ε(t). The axis variety G consists of
lines g(u, v) = ε(u) ∩ ϕ(v) with ϕ(v) = ε(v), just by substituting t = u and t = v in
ε(t).
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• If H consists of all lines meeting a degree n-curve C and a line L which meets C in
n−1 points, G consists of those tangent lines of D = λ(C) which meet the line λ(L).
We can represent g(u, v) as intersection lines of the tangent planes ε(u) of D and the
pencil of planes ϕ(v) passing through the line λ(L).

For each of the discussed cases functions a(u, v) and b(u, v) can be chosen such that this
system has a unique solution. For particular cases, like the hyperbolic linear line congruence
or the chordal variety, e and f are univariate rational vector functions and a and b can
be chosen as arbitrary univariate rational functions. Only in the cases where H is a
parabolic or an elliptic linear line congruence a and b have to satisfy certain conditions.
We summarize the obtained results.

Theorem 3 Let a two-parameter family H of lines h be a fibration of the 3-space at infinity
ω ⊂ P4 and let G be the family of polar lines g with respect to Ω. The families G and H
are interpreted as ideal lines of tangent planes T and normal planes N of a surface Ψ.
Considering Ψ as envelope of its tangent planes T , one has to choose appropriate rational
functions a(u, v) and b(u, v) in order to determine 3-spaces E and F with T = E ∩ F . A
rational parameterization p(u, v) of Ψ is obtained as solution of the system (20), or any
algebraically equivalent one.

Remark: The parameterization p(u, v) as solution of the system (20) is a general rational
representation of Ψ. In order to construct rational parameterizations of the cyclographic
image γ(Ψ) one has to perform a reparameterization based on the system (14) analogously
as in the case of quadratic triangular Bézier surfaces in Section 3.

An example shall illustrate the method. The ideal lines g of the tangent planes of a surface
Ψ to be determined are the lines of intersection of tangent planes ε(u) : x1 + ux2 + u2x3 +
u3x4 = 0 of a developable surface D of class 3 and a pencil of planes ϕ(v) : x1 + vx4 = 0
passing through a line of L’ axes variety. The polar lines h form the family H of lines
meeting the cubic C = λ(D) and the chord λ(L) of C. The parameterization of C is
c(u) = (1, u, u2,−u3). The univariate support functions are chosen as a(u) = 1 + u2 and
b(v) = 1 + v2.

The families G and H of ideal lines g(u, v) and h(u, v) are represented by

G(u, v) = (u2v,−uv, 0,−u,−u2, v − u3), H(u, v) = (−u,−u2,−v + u3,−u2v, uv, 0).

Solving (20) gives the parameterization f(u, v) of Ψ,

f(u, v) =

(
v2 − 1,

−2(u3 + v)

uv
,
v2 + 4u3v − u2

u2
,−2v

)
.

Using (13) as parameterization of Ω, the solution of the system (14) leads to the rational
reparameterization

u =
−1

2t(−1 + s2 + t2)
, v =

(t4 + 2t3 + 2(s2 − 1)t2 + 2(1 + s2)t+ (s2 − 1)2)(1− s2 − t2)

4t(−s+ s3 + t2s+ 2t2)
.
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The reparameterized surface f(s, t) is used to form the the system of isotropic projection
lines i(s, t) : f(s, t) + λw(s, t). The intersection points p(s, t) of i(s, t) with x4 = 0 is a
rational parameterization p(s, t) of the cyclographic image γ(Ψ). Rational parameteriza-
tions of the offsets of γ(Ψ) at distance d are obtained by intersecting i(s, t) with x4 = d.
The projection π(Ψ) as well as the cyclographic image γ(Ψ) are illustrated in Fig. 8.

γ(Ψ)

π(Ψ)

γ(Ψ)

Figure 8: Rational envelope γ(Ψ) and top view π(Ψ) of a surface Ψ ∈ R4.

5 Conclusion

We have proved that the envelopes γ(Φ) of two-parameter families of spheres in R3 cor-
responding to quadratic triangular Bézier surfaces Φ in R4 are rational. Explicit parame-
terizations of γ(Φ) are given. The rationality of the offsets of γ(Φ) is a direct consequence
of the construction. Further we have pointed to a possible generalization of this result
and have outlined the strategy to construct surfaces with similar properties. A detailed
discussion is postponed to another contribution.
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[14] Jüttler, B., 1998. Triangular Bézier surface patches with a linear normal vector field,
in: The Mathematics of Surfaces VIII, Information Geometers, 431–446.
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[37] Š́ır, Z., Feichtinger, R. and Jüttler, B., 2006. Approximating Curves and their Offsets
using Baircs and Pythagorean hodograph Quintics, Computer Aided Design 38, 608–
618.
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