
Generalized Penetration Depth Computation

based on Kinematical Geometry

Georg Nawratil a Helmut Pottmann a Bahram Ravani b

aInstitute of Discrete Mathematics and Geometry, Vienna University of
Technology, Wiedner Hauptstrasse 8-10/104, Vienna, A-1040, Austria

bDepartment of Mechanical and Aeronautical Engineering, University of
California, Davis, CA 95616, USA

Abstract

The generalized penetration depth PD of two overlapping bodies X and Y is the
distance between the given colliding position of X and the closest collision-free Eu-
clidean copy Xε to X according to a distance metric. We present geometric opti-
mization algorithms for the computation of PD with respect to an object-oriented
metric S which takes the mass distribution of the moving body X into considera-
tion. We use a kinematic mapping which maps rigid body displacements to points
of a 6-dimensional manifold M6 in the 12-dimensional space R12 of affine mappings
equipped with S. We formulate PD as the solution of the constrained minimiza-
tion problem of finding the closest point on the boundary of the set of all points
of M6 which correspond to colliding configurations. Based on the theory of gliding
motions, the closest point with respect to the metric S (⇒ PDS) can be computed
with an adapted projected gradient algorithm. We also present an algorithm for
the computation of the closest point with respect to the geodesic metric G of M6

induced by S (⇒ PDG). Moreover we introduce two methods for the computation
of a collision-free initial guess and give a physical interpretation of PDS and PDG.

Key words: Penetration Depth, Geometric Optimization, Gliding Motions,
Kinematics, Distance Function

1 Introduction

Assume two rigid objects X and Y of R3 are interpenetrating each other. One
way to characterize the extent of overlap is the distance between the given

Email address: nawratil@geometrie.tuwien.ac.at (Georg Nawratil).
URL: http://www.geometrie.tuwien.ac.at/nawratil (Georg Nawratil).

Technical Report

colliding position of X and the closest collision-free pose Xε to X according to
a distance metric, where ε is a Euclidean map (rigid body motion). Such a
measure is called penetration depth. If ε is restricted to the group of spatial
translations ST (3) then we speak of translational penetration depth PDt,
where the distance between X and Xε is defined as the Euclidean distance
between any corresponding point pair x and xε of X. Most of the prior work
deals with translational penetration depth computation. A detailed review of
this topic is given in Zhang et al. (2006).

Zhang et al. (2006) pointed out that PDt computation is not sufficient for
many applications (these include rigid body dynamics simulation, motion
planning for dexterous manipulation, workspace analysis and 6-dof haptic ren-
dering) because it does not take the rotational motion into account. Therefore
they introduced the nomenclature of generalized penetration depth PD for
the case that ε is allowed to be any Euclidean displacement of SE(3).

1.1 Prior work

To the best of our knowledge, the papers of Zhang et al. (2006,2007) are
the only works on PD computation. A key issue for the definition of PD is
the choice of the distance metric on SE(3), because there exists no naturally
introduced metric as in the case of PDt.

Zhang et al. (2006) used a model dependent distance metric L(Xα, Xβ) for
their computation of generalized penetration depth. This metric is defined as
follows: Assume Lβ

α denotes the set of all rigid body transformations ct with
t ∈ [0, 1], c0(X) = Xα and c1(X) = Xβ. If Lβ

α(c(x)) is the trajectory length of a
point x ∈ X under c ∈ Lβ

α, the distance metric of Zhang et al. can be written
as:

L(Xα, Xβ) := min
({

max
({

Lβ
α(c(x)) |x ∈ X

}) ∣∣∣ c ∈ Lβ
α

})
. (1)

The generalized penetration depth with respect to the above distance metric
on SE(3) is denoted by PDL. Therefore PDL(X, Y) equals the minimum of
the longest trajectories of X under all possible rigid transformations which
separate the overlapping bodies X and Y. The advantage of the used metric is
that for convex objects PDL equals PDt. Therefore the PDL computation of
two convex bodies can be put down to the computation of PDt, where many
good algorithms are already known (e.g. Cameron (1997), Kim et al. (2002)
and Van den Bergen (2001)). These algorithms compute PDt by calculating
the minimum distance from the origin to the surface of the Minkowski sum of
the two convex polyhedra.

The L metric is indeed nice in theory but it is not very suitable for prac-
tical computation. Due to this fact, Zhang et al. were only able to present

2

algorithms for the computation of the upper and lower bounds of PDL for
non-convex objects. The algorithm for the lower bound of PDL is based on
the convex decomposition of both input models. The maximum value of PDt

between all pairwise combinations of the resulting convex pieces of X and Y
gives the lower bound of PDL. The computation of the upper bound equals a
variant of a 3D convex containment problem, which is solved by using linear
programming.

Recently, Zhang et al. (2007) also presented an optimization-based algorithm
for PD computation with respect to the so called DIST-metric, which is more
suitable for computation than the above mentioned one.

1.2 Overview

In section 2 we repeat the kinematic mapping of Hofer et al. (2004), which
maps rigid body displacements to points of a 6-dimensional manifold M6 in
the 12-dimensional space R12 of affine mappings equipped with the distance
metric S.

In section 3 we define the generalized penetration depth with respect to S,
because it allows for a very efficient computation. Therefore this metric was
already successfully used for the design of rigid body motions (see e.g. Hofer
(2004), Hofer and Pottmann (2004) and Hofer et al. (2004)) as well as for the
definition of new performance indices for 6R robots (see Nawratil (2007)).

We formulate generalized penetration depth PD as the solution of the con-
strained minimization problem of finding the closest point on the boundary of
the set of all points of M6 which correspond to colliding configurations. Based
on the theory of gliding motions (repeated in section 2), the closest point with
respect to the metric S (⇒ PDS) can be computed with an adapted pro-
jected gradient algorithm, which is outlined in subsection 3.1. The complexity
analysis is done in subsection 3.2.

In section 4 we also present an algorithm for the computation of the closest
point with respect to the geodesic metric G of M6 induced by S (⇒ PDG).
Moreover we introduce two methods for the computation of a collision-free
initial guess (see subsection 3.4) and give a physical interpretation of PDS

and PDG in subsection 3.3 and 4.3, respectively.

3

2 Fundamentals

Consider a rigid body moving in Euclidean three-space E3. We use Cartesian
coordinates and denote the coordinate vectors of points of the moving sys-
tem Σ0 by x0,y0, . . . , and points of the fixed system Σ by x,y, and so on.
A one-parameter motion Σ0/Σ is a smooth family of Euclidean congruence
transformations depending on a parameter t which can be thought of as time.
A point x0 of Σ0 is, at time t, mapped to the point x(t) = A(t)·x0 + a0(t) of
Σ. If we do not impose orthogonality on the matrix A, we get, for each t, an
affine map.

2.1 The kinematic image space

We use a kinematic mapping (see Hofer et al. (2004)) that views affine maps
as points in 12-dimensional space R12. For that, we consider the affine map
x = α(x0) = a0 + A·x0 with x0 = (x0

1, x
0
2, x

0
3). If we denote the three column

vectors of A as a1, a2, a3 we can rewrite x as α(x0) = a0 +x0
1a1 +x0

2a2 +x0
3a3.

Now we represent the affine map α by the point A := (a0, a1, a2, a3) in the
12-dimensional affine space R12. The image of the group of Euclidean maps
under this kinematic mapping is a 6-dimensional manifold M6.

Hofer et al. (2004) introduced a meaningful metric in R12, which is based on
the following idea. We represent the rigid body X by a finite number of points
x0

1, . . . ,x
0
N . In our case these are the vertices of a triangular mesh X , which

approximates the boundary surface of X. By means of this point cloud it is
possible to define the distance between any two affine copies Xα and Xβ as
follows:

S(Xα, Xβ)2 :=
N∑

i=1

‖α(x0
i)− β(x0

i)‖2. (2)

This object-oriented metric only depends on the barycenter bX and the co-
variance matrix DX with respect to bX given by:

bX := N−1
N∑

i=1

x0
i and DX :=

N∑
i=1

(x0
i − bX)·(x0

i − bX)T . (3)

Therefore we can replace the points x0
1, . . . ,x

0
N by the six special points si

with

si := bX +

√
λi

2
di, si+3 := bX −

√
λi

2
di, i = 1, 2, 3 (4)

where λi denotes an eigenvalue and di a corresponding unit eigenvector of DX.
This does not change the barycenter, the covariance matrix and the inertia
tensor TX := trace(DX)I3 −DX of X.

4

The distance between any two points A and B of R12 is defined as the distance
between the corresponding affine copies of the moving body X, i.e.,

‖α− β‖2 = ‖A−B‖2 := S(Xα, Xβ)2 =
6∑

i=1

‖α(si)− β(si)‖2. (5)

With D := A−B the squared distance can be rewritten as:

‖A−B‖2 = ‖D‖2 = DT ·M·D =: 〈D, D〉, (6)

where M is a positive definite 12× 12 matrix. R12 equipped with this metric
is a Euclidean space E12. If we choose the barycenter as origin in the moving
system and the eigenvectors of DX as coordinate axes then the six points (4)
are given by (±f1, 0, 0), (0,±f2, 0) and (0, 0,±f3). Therefore M of (6) can be
written as

M = diag(6I3, 2f
2
1 I3, 2f

2
2 I3, 2f

2
3 I3). (7)

In the following we consider tangent spaces of points E ∈ M6. A tangent
vector TE of M6 at a point E ∈ M6 corresponds in R3 to a velocity vector
field of a Euclidean motion. If we denote the instantaneous screw associated
with this velocity vector field by q = (q, q̂), the velocity vector of a point
x ∈ R3 equals v(x) = q̂+q×x. Therefore the coordinates of TE in E12 at the
point E = (e0, e1, e2, e3) ∈ M6 are given by:

TE = (q̂ + q× e0,q× e1,q× e2,q× e3). (8)

The normalized Plücker coordinates (p, p̂) of the axis, the angular velocity ω,
the translatory velocity ω̂ and the pitch p of the instantaneous screw q can be
reconstructed by

ω = ‖q‖, ω̂ =
q·q̂
ω

, p =
ω̂

ω
and (p, p̂) =

1

ω
(q, q̂− pq). (9)

We denote the 6-dimensional tangent space of E ∈ M6 by T 6
E . A basis of this

tangent space is spanned by the six vectors Ti
E ∈ R12

T 1
E = (0,−e03, e02, 0,−e13, e12, 0,−e23, e22, 0,−e33, e32)

T ,

T 2
E = (e03, 0,−e01, e13, 0,−e11, e23, 0,−e21, e33, 0,−e31)

T ,

T 3
E = (−e02, e01, 0,−e12, e11, 0,−e22, e21, 0,−e32, e31, 0)T ,

T 4
E = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

T 5
E = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

T 6
E = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(10)

with ei = (ei1, ei2, ei3)
T for i = 0, . . . , 3.

5

2.2 Instantaneous gliding motions

We assume Xε and Y are in contact, where ε is a Euclidean map which cor-
responds to the point E ∈ M6. Therefore the surface normals of both objects
coincide in the contact points p1, . . . ,pn. By a well known result from kinemat-
ics (see Pottmann and Wallner (2001)), the instantaneous screw q = (q, q̂) of
the motion such that Xε glides on Y has to meet the n linear gliding constraints

hi(q) : n̂i ·q + ni ·q̂ = 0 for i = 1, . . . , n, (11)

where (ni, n̂i) denote the Plücker coordinates of the common normal in the
contact point pi. Up to first order these are the only conditions on a gliding
surface pair, see Pottmann and Ravani (2000). These linear constraints mean
nothing else that the n lines (ni, n̂i) are contained in the path normal complex
of q. The velocity vector fields of all possible gliding motions q determined

by (11) correspond to the (6− g)-dimensional tangent space T 6−g
E of E ∈ M6

with
g = rank((n1, n̂1), . . . , (nn, n̂n)). (12)

3 PD computation with respect to the metric of the ambient space

The generalized penetration depth with respect to the metric (5) is denoted
by PDS(X, Y) and defined as follows:

Definition 1 PDS(X, Y) equals S(Xid, Xϕ) divided by
√

6, where ϕ is the Eu-
clidean map causing the minimal distance between Xid and all Euclidean copies
Xε of Xid which do not collide with Y.

PDS(X, Y) = min

({
S(Xid, Xε)√

6

∣∣∣∣ interior(Xε) ∩ Y = ∅ ∧ ε ∈ SE(3)

})

It should be noted that the metric S depends on the moving body which is
given by the first element in the bracket. Therefore the object-oriented metric
S of PDS(X, Y) depends on X in contrary to the metric S of PDS(Y, X) which
depends on the mass distribution of Y.

If ϕ is a translation, then PDS(X, Y) equals the translational penetration
depth PDt due to the division by

√
6. Generally we can say that Xϕ and

Y are in contact, otherwise Xϕ could be translated along the vector t(bX −
ϕ(bX)) with t ∈ R+ into the position Xϕ, where the two objects are touching
each other. Due to (5) the inequality S(Xid, Xϕ) > S(Xid, Xϕ) holds, which
contradicts the definition of ϕ.

6

Zhang et al. (2006) proved that PDL(X, Y) equals PDt if both given objects X
and Y are convex. This theorem does not hold for the generalized penetration
depth with respect to the metric S. The following counter example illustrates
this:

Counter example:

Assume the moving object X is an ellipsoidal
shell given by x2/a2 + y2/b2 + z2/c2 = 1. The
fixed body Y is the half-space z ≤ −b. With-
out loss of generality we assume c > b > 0.
The upright projection of the situation is
given in Fig. 1. The coordinates of the points
si can be computed from the well known co-
variance matrix

DX = diag

(
a2

3
,
b2

3
,
c2

3

)

X c

b

Y

Xρ bX

Fig. 1. Counter example

according to (4). If we apply a quarter rotation ρ on X about the x-axis, we
get a collision-free configuration Xρ. Due to the fact that S(Xid, Xρ) and PDt

only depend on b and c, we have to choose the right values for these variables
such that S(Xid, Xρ)/

√
6 < PDt = c − b holds. This inequality is fulfilled for

e.g. c = 2 and b = 1. �

We can also see that PDS(X, Y) is not necessarily equal to PDS(Y, X) in
this example. If Y is movable, then S(Yid, Yε) = ∞ for all ε ∈ SE(3) \ ST (3)
because Y is unbounded. Therefore PDS(Y, X) equals PDt(Y, X) = PDt(X, Y),
which is for c = 2 and b = 1 greater than PDS(X, Y).

In the following we translate the expression for PDS(X, Y) given in Def. 1
in terms of the kinematic image space. The kinematic image of Xid is the
point I = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1) on M6. I belongs to the set C of points
E ∈ M6 which correspond to colliding configurations; i.e.

C =
{
E | interior(Xε) ∩ Y 6= ∅ ∧ E ∈ M6

}
. (13)

The image point F of ϕ is located on the boundary ∂C of C, because ∂C
corresponds to all free configurations of X and Y with a surface to surface
contact. Therefore PDS(X, Y) can also be formulated as:

PDS(X, Y) = min

({
‖I− E‖√

6

∣∣∣∣E ∈ ∂C
})

. (14)

It follows immediately that the point F is the closest normal footpoint on ∂C
with respect to I. It should also be noted that the tangent space T 6−g

E of ∂C
at a point E ∈ ∂C is (6 − g)-dimensional with g from (12) and that T 6−g

E

7

is spanned by the velocity vector fields of all possible gliding motions (see
section 2.2). On basis of these preliminary considerations we can formulate
the following PDS(X, Y) algorithm for the computation of F.

3.1 Algorithm for the computation of PD with respect to the metric of the
ambient space

This PDS(X, Y) algorithm is based on the projected gradient algorithm of
Hofer and Pottmann (2004). This is an iterative method consisting of re-
peated application of the following three steps (see Fig. 2). When we discuss
one procedure of the iteration, we will denote the current iterate by Ec, the
next iterate by E+ and the prior one by E−. We assume that a collision-free
starting configuration Xς is known. In section 3.4 we present two methods for
calculating such an initial guess.

1. If Ec ∈ ∂C we compute the gc linearly independent gliding con-
straints according to (11). We project I orthogonally into the tan-
gent space T 6−gc

Ec of all possible gliding motions, which results in
the point I⊥.
If Ec /∈ ∂C we project I orthogonally into the tangent space T 6

Ec .

2. Compute an appropriate stepsize s and project Es := Ec+s(I⊥−Ec)
back onto M6, which yields E⊥.

3. If E⊥ is a collision-free configuration we set E+ := E⊥. Otherwise
we reduce the stepsize s until E⊥ ∈ ∂C.

Ec

Es

E
+

I

I⊥C

R12

F

∂C

M6

T
6−g

c

E
c

Fig. 2. PDS(X,Y) algorithm

8

3.1.1 Preprocessing steps and preliminary considerations

We assume that the two given objects X and Y have smooth boundary surfaces.
These boundary surfaces are approximated by triangular meshes X and Y
with uniformly distributed vertices x1, . . . ,xN and y1, . . . ,yM , respectively.
In preparation for the algorithm we compute the surface normal vectors nxi

in each vertex xi of X and nyi
in each vertex yi of Y . It is assumed that these

surface normal vectors are normalized and that they are oriented outward.

The last preparatory work which must be done is the computation of a signed
distance field to the boundary surface (triangular mesh Y) of the fixed object
Y, where all points inside of Y have a negative distance. We denote the signed
distance of a point z ∈ R3 and the object Y by d(z, Y). Because we approx-
imated the boundary surfaces of X and Y by triangular meshes, we have to
define when the moving mesh X and the fixed mesh Y are in contact.

Definition 2 The moving mesh X and the fixed mesh Y are in contact if

0 ≤ min ({d(x, Y) |x ∈ X}) ≤ w, (15)

where w ∈ R+ is an appropriate small value, called contact value.

Definition 3 The point m of X is a local minimum of the distance function
d(x, Y) if

d(m, Y) ≤ min ({d(s, Y) | s ∈ S}) (16)

where S denotes the star neighbourhood of m.

With this framework we are able to define the contact points and the contact
normals of the moving mesh X and the fixed mesh Y as follows:

Definition 4 Assume the moving mesh X and the fixed mesh Y are in con-
tact (Def. 2). If pi ∈ X is a local minimum of the distance function d(x, Y)
according to Def. 3 and d(pi, Y) ≤ w, where w is the contact value of Def. 2,
then pi is defined as a contact point of the moving mesh X and the fixed mesh
Y. The Plücker coordinates (ni, n̂i) of the corresponding contact normal are
given by:

ni := npi
and n̂i := pi× ni (17)

where npi
is the normalized surface normal vector of pi with respect to X .

3.1.2 Step 1

In the very first step we check via the signed distance field if the current pose
of the moving mesh X εc

and Y are in contact (⇐⇒ Ec ∈ ∂C) with respect
to the contact value wc := w−. If this is the case we compute the contact

9

points p1, . . . ,pn ∈ X εc
and the contact normals (n1, n̂1), . . . , (ni, n̂i) accord-

ing to Def. 4. Without loss of generality we assume d(p1, Y) ≤ d(p2, Y) . . . ≤
d(pn, Y). In the following two cases we redefine the current contact value wc:

Case A: gc = 6

If there exists no instantaneous gliding motion, i.e. gc of (12) is equal to 6,
then we redefine the contact value wc such that

d(pj+ , Y) < wc < d(pj, Y) with (18)

d(pj+ , Y) = max ({d(pk, Y) | d(pk, Y) < d(pj, Y) for k = 1, . . . , j − 1)} (19)

holds. Starting with j = n and iterating this procedure until a gliding motion
is possible, i.e. gc ≤ 5. The next iterate is given by j+.

Case B: ‖Ec − E−‖ < b and gc ≥ g− 6= 0

If both conditions are fulfilled we redefine the contact value wc as in case
A until gc < g−. The inequality ‖Ec − E−‖ < b is part of the algorithm’s
stopping condition, where b is a certain threshold. Due to ‖Ec−E−‖ < b there
was only a very small change in the last step. Therefore we give the objects
Xεc

additional degrees of freedom for the current iteration step by reducing
the contact value wc.

In all other cases wc remains unchanged. Without loss of generality we assume
that the Plücker coordinates of the first gc ≤ 5 contact normals are linearly
independent. If X εc

and Y are not in contact, then we set gc equal to zero.

Remark: There is one exceptional case where the iterative procedure of case
A and B fails. Assume d(p1, Y) = d(p2, Y) = . . . = d(pk, Y) = 0 with k > 5
and gc = 6. Then there exists no instantaneous motion such that Xεc

glides
on Y. Therefore we cannot bring Xεc

closer to Xid and so Ec is the searched
footpoint F on the boundary of C. In this case the local minimizer F is a
singular point of ∂C.

In the general case we project I orthogonally onto the tangent space T 6−gc

Ec .
This orthogonal projection is equivalent for searching the point X ∈ T 6−g

Ec

such that ‖I − X‖ is minimal. Therefore we have to minimize the quadratic
objective function

f(q) :
6∑

i=1

‖sεc

i + v(sεc

i)− sid
i ‖2 with v(sεc

i) = q̂ + (q× sεc

i) (20)

under the gc linear constraint equations h(q) of (11). We get the minimizer

10

q = (q, q̂) as the solution of the following system of linear equations:



∑
SiS

T
i

∑
Si∑

ST
i 6I3

n̂T
1 nT

1

...
...

n̂T
gc nT

gc



q

q̂

 =



∑
sεc

i × sid
i∑

sid
i − sεc

i

0
...

0


(21)

where I3 denotes the 3× 3 identity matrix and Si the following 3× 3 matrix:

Si :=


0 −s3

i s2
i

s3
i 0 −s1

i

−s2
i s1

i 0

 with sεc

i = (s1
i , s

2
i , s

3
i) for i = 1, . . . , 6. (22)

Therefore I⊥ is given by I⊥ = Ec + T with T of (8).

3.1.3 Step 2

The stepsize s for the computation of Es := Ec + s(I⊥ − Ec) = Ec + sT
is chosen as follows: In the general case we take a small stepsize s, whose
validity is tested with the Armijo rule. Only if gc equals g− we apply the step
size selection of Pottmann and Hofer (2004) (see also Hofer and Pottmann
(2004)), which is based on an approximate planar development of a part of
the footpoint cone. This can be done for the following reason:

If gc = g− = 0 we have exactly the same situation as in the cited papers and
the part of the footpoint cone ΛM6 is determined by the vertex I, the footpoints
Ec ∈ M6 and E− ∈ M6 and the direction T of the base curve’s tangent at
the point Ec. If gc = g− 6= 0 we can think of a (6 − g)-dimensional manifold
B6−g ∈ M6 which locally approximates the boundary of C such that T 6−g

Ec and
T 6−g

E− are the tangent spaces in Ec ∈ B6−g resp. E− ∈ B6−g with respect to
B6−g. Now the stepsize selection can be done by developing the footpoint cone
ΛB6−g into the plane. The validity of the resulting stepsize must be tested with
the Armijo rule, because large changes of the normal curvature of the surface
M6 resp. B6−g unbalance the supposed stepsize selection.

In the next step we project Es := Ec + sT orthogonally back onto M6, which
yields E⊥. In the algorithm this is done by using the helical motion σ which
is determined by the instantaneous screw sq = (sq, sq̂). More precisely, for

q 6= 0 we get Xε⊥ by applying a motion to Xεc
which is the superposition of a

11

rotation about the axis (p, p̂) through an angle of

λ = arctan(s‖q‖) ∈
]
0,

π

2

[
(or for small λ just λ = s‖q‖) (23)

and a translation λ pp with p := (p1, p2, p3)T parallel to the axis. Therefore
this helical motion σ can be parametrized as

σt(x
εc

) = R(xεc − p× p̂) + t pp + p× p̂ (24)

with

R =


r2
0 + r2

1 − r2
2 − r2

3 2(r1r2 + r0r3) 2(r1r3 − r0r2)

2(r1r2 − r0r3) r2
0 − r2

1 + r2
2 − r2

3 2(r2r3 + r0r1)

2(r1r3 + r0r2) 2(r2r3 − r0r1) r2
0 − r2

1 − r2
2 + r2

3


and

r0 := cos
(

t

2

)
, ri := pi sin

(
t

2

)
for i = 1, 2, 3. (25)

If we set t equal to λ the point xεc
is mapped onto σλ(x

εc
) = xε⊥ . For the

computation of the Plücker coordinates (p, p̂) of the axis and the pitch p from
q see (9).

In the special case of q = 0 there is no need of an orthogonal projection onto
M6 because Es is already located on M6 for any stepsize s (=⇒ Es = E⊥).
This is due to the fact that q is an instantaneous translation and therefore we

get Xε⊥ by translating Xεc
along the vector sq̂.

Remark: We project Es onto M6 by using the helical motion σ associated with
q instead of solving the registration problem with known correspondences (see
e.g. Belta and Kumar (2002) and Horn (1987)) as recommended by Botsch et
al. (2006). Therefore we can give a more efficient algorithm for the reduction
of the stepsize, if E⊥ corresponds to a colliding configuration. This algorithm
is outlined in the next section.

3.1.4 Step 3

For the collision test we also use the signed distance field to the boundary
surface of the fixed object Y. The two objects are interpenetrating each other
if min

({
d(xε⊥ , Y) |x ∈ X

})
< 0. If there is no intersection then we set E⊥

equal to E+, otherwise we apply the following algorithm for the reduction of
the stepsize such that E⊥ is located on the boundary of C.

Stepsize reduction algorithm for q 6= 0

Because the orthogonal projection is done via the uniform helical motion of
(24) associated with q, a reduction of the stepsize s is equal to the reduction

12

λ of (23). In the following we give an algorithm that would describe how a
parameter value λ∂C of the helical motion can be computed, such that σλ∂C(Xεc

)
and Y are in contact with respect to the contact value wc. The given iterative
procedure consists of repeated application of the following steps, where the
current iterate is denoted by λc and the next one by λ+ (see Fig. 3).

Due to the applied collision test the points dε⊥
i ∈ X ε⊥ with

d(dε⊥

i , Y) = min
({

d(xε⊥ , Y) |x ∈ X
})

. (26)

can be computed in linear time. These points are global minima of the distance
function d(z, Y) on the mesh X ε⊥ . Then we compute the distance ki of dε⊥

i to
the axis (p, p̂) of the helical motion σ according to

ki = ‖p̂ + (dε⊥

i ·p)p− dε⊥

i ‖. (27)

Without loss of generality we assume k1 ≤ k2 . . . ≤ kk. The basic idea of this
algorithm is the computation of the parameter λ+

i such that the chord length
between the local minimum dε⊥

i and the new iterate of this point σλ+
i
(dεc

i)

equals the absolute value of the distance d(dε⊥
i , Y) plus a constant ui, i.e.

‖σλ+
i
(dεc

i)− dε⊥

i ‖ = ui − d(dε⊥

i , Y). (28)

In order to guarantee that the solution of this iteration σλ∂C(Xεc
) and Y are

in contact with respect to the contact value wc, we choose ui as follows

• ui = wc for d(dεc

i , Y) > wc and

• ui = a·d(dεc

i , Y) with a ∈]0, 1[for d(dεc

i , Y) ≤ wc.
(29)

If we set λ+
i = λc − µi we obtain µi by solving the following equation

p2µ2
i + 2k2

i (1− cos(µi))− (ui − d(dε⊥

i , Y))2 = 0. (30)

Because of the validity of the trivial inequality

ui − d(dε⊥

i , Y) ≤ d(dεc

i , Y)− d(dε⊥

i , Y) ≤ ‖dεc

i − dε⊥

i ‖ (31)

and λc ∈]0, π/2[due to (23) the last equation has a unique solution for µi

within the interval]0, λc]. If we assume ui = c for all i = 1, . . . , k then from (30)
follows immediately µ1 ≥ µ2 ≥ . . . ≥ µk. In order to reduce computational
costs we suppose to solve (30) only for i = 1 if there is more than one global
minimum. It should be noted that in the border case k1 = 0 equation (30) can
be solved explicitly for µ1 which yields

µ1 =

∣∣∣∣∣u1 − d(dε⊥
1 , Y)

p

∣∣∣∣∣ . (32)

13

Now we set λ+ = λc − µ1 and run again the collision test for σλ+(Xεc
) and

Y. If there is no interpenetration, then the meshes must be in contact due to
the construction of the stepsize reduction algorithm. Otherwise we iterate the
procedure.

λc

λ+
i

µi

ki

ui

dε⊥
i

dεc

i

σλ+
i
(dεc

i)

Xε⊥

Xεc

σλ∂C(Xεc
)

Y

∂Yw
c

axis

Fig. 3. Stepsize reduction algorithm for q 6= 0. This algorithm describes how a
parameter value λ∂C of the helical motion σ can be computed, such that σλ∂C(Xεc

)
and Y are in contact with respect to the contact value wc.

Remark: Instead of using the stepsize reduction algorithm one can also
apply methods for continuous collision detection under screwing motions like
the one proposed by Kim and Rossignac (2003). It should be noted that such
methods are time consuming tasks, because the exact collision time (stepsize)
is computed by testing all vertex/face and edge/edge collision cases which
cannot be excluded by a series of rejection tests.

In contrast to the cited method the proposed one is based on an iterative algo-
rithm using the signed distance field of the fixed object. For the computation
of the generalized penetration depth it is advantageous to use such a distance
field because it only must be computed once. Moreover we are not interested
in the exact collision time but only in a stepsize such that the surfaces are in
contact with respect to the contact value w.

Stepsize reduction algorithm for q = 0

Due to the equation Xεs
= Xεc

+ τ q̂0 where q̂0 denotes the normalized trans-
lation vector and τ := s‖q̂‖, a reduction of the stepsize s corresponds to a

14

reduction of τ . We give again an iterative procedure, where the current iterate
is denoted by τ c and the next one by τ+. As in the case q 6= 0 we compute the
global minima dε⊥

i , . . . ,dε⊥
k according to (26). Without loss of generality we

assume d(dεc

1 , Y) ≥ d(dεc

2 , Y) ≥ . . . ≥ d(dεc

k , Y). Now we reduce τ c by νi ∈ R+

given by

νi := ui − d(dε⊥

k , Y) (33)

with ui of (29). Because of ν1 ≥ ν2 ≥ . . . ≥ νk we set τ+ := τ c − ν1 and run
again the collision test. If there is no intersection, then the meshes must be in
contact due to the applied stepsize reduction algorithm. Otherwise we iterate
the procedure.

If ‖E+ −Ec‖ < b and if the current contact value wc also falls below a certain
threshold v, then the PDS(X, Y) algorithm is stopped.

Remark: The presented algorithm can easily be adapted for the computation
of the translational penetration depth. We only have to solve the system of
linear equations given in (21) under the side condition that q = o. Furthermore
we have to consider that there exists no translational gliding motion if gc is
greater than 2 which affects the conditions in case A and case B of step 1.

3.2 Computational complexity

As preprocessing step we have to compute the distance field of Y. This can
for example be done with the fast sweeping algorithm of Zhao (2005) which
is of complexity O(N), where N denotes the number of grid points.

The collision test is based on this distance field. There are different possibilities
to compute d(x, Y) from the distances of the neighboring grid points of x, but
it can be done with a computational complexity depending linearly on the
number Nx of vertices of X . If these distances are known, the computation
of the minimal value dmin = min(d(x, Y)|x ∈ X), which already indicates
the collision, is of complexity O(Nx). Moreover the point which causes this
minimal value is also used for the stepsize reduction algorithm and so we need
no further computation for this part.

It can also be seen immediately from dmin whether the non-penetrating objects
are in contact with respect to the contact value w. If 0 ≤ dmin ≤ w holds we
must check if there are also other contact points. Now the time complexity for
computing the local minima depends linearly on the number of points x ∈ X
with d(x, Y) ≤ w. Computing this set of points is again of complexity O(Nx).

15

3.3 Physical interpretation of PDS

In the following we present a physical interpretation of PDS(X, Y). Assume the
pose Xϕ which cause PDS(X, Y) is known. This pose corresponds to the local
minimizer F ∈ ∂C with F = (f0, f1, f2, f3). It is well known that the eigenvector
of F = (f1, f2, f3) with respect to the eigenvalue 1 equals the direction of
the rotation axis a (unit vector) and that the rotation angle ρ is given by
2 cos ρ = trace(F)− 1. Under this considerations PDS(X, Y) can be rewritten
as follows:

PDS(X, Y)2 =
‖E− I‖2

6
= ‖f0‖2 +

dT ·TX ·d
6

with (34)

dT =
(
±
√

2f11 − 2 cos ρ,±
√

2f22 − 2 cos ρ,±
√

2f33 − 2 cos ρ
)

(35)

where TX denotes the inertia tensor of the moving body X. Two of the eight
possibilities of d are linearly dependent with the direction a of the rotation
axis. 1 Due to the well known formula of the total kinetic energy K

K =
mv2

2
+

Tω2

2
, (36)

where m denotes the mass of the body, v the body’s velocity, T the body’s mo-
ment of inertia and ω the body’s angular velocity, we can interpret PDS(X, Y)
as follows:

Theorem 1 PDS(X, Y) equals
√

K where K is the total kinetic energy of S
induced by the instantaneous screw q = (ωa, f0) with

ω =
√

2(1− cos ρ) =
√

3− trace(F). (37)

S denotes an ellipsoidal shell of mass 2, whose vertices are identical with the
six special points si (i = 1, . . . , 6) of the moving body X given in (4).

The angular velocity ω of (37) is the chord length approximation of the arc
length of ρ and not ρ itself. This is due to the used metric S of the ambient
space. Therefore PDS(X, Y) equals the square root of the minimal needed
kinetic energy of S such that Sid moves affinely into the pose Sϕ within one
time unit. It should be noted that this ellipsoidal shell S was also used to
define a new performance index for 6R robots (see Nawratil (2007)).

1 Due to the symmetry of the inertia ellipsoid there exist eight possibilities for
choosing d.

16

3.4 Algorithm for the computation of a collision-free starting configuration

In the following we present two methods for calculating an initial guess.

3.4.1 Method 1

We replace the moving body X by the smallest ellipsoidal shell E that encloses
X. E should be centered at the barycenter bX and its axis lengths ratio should
equal a1 : a2 : a3 = f1 : f2 : f3. Because E encloses X, E and Y are interpen-
etrating each other. Now we want to compute the closest collision-free pose
Eς to E according to the distance metric (2) where ς is a superposition of a
rotation ρi ∈ I and a translation t ∈ R3. I denotes the icosahedral group of ro-
tations which contains 60 elements. This group serve us as a fair discretization
of SO(3).

The map ς can be computed as follows: If Eρi is a collision-free configuration
we are done. Otherwise we have to compute the shortest translation vector
ti which separates Eρi and Y. This can easily done as follows: We apply to
Eρi and Y the affine mapping αi which maps Eρi onto a sphere of radius a1.
Assume Ai denotes the matrix of this linear mapping αi. Then the offset mesh
OYαi of distance a1 from Yαi is given by:

OYαi :=

{
zi := Ai ·yi +

A−T
i ·nyi

‖A−T
i ·nyi

‖
a1

∣∣∣∣yi ∈ Y
}

. (38)

If Y is not convex we have to trim OYαi which yields the trimmed offset mesh
T Yαi with

T Yαi := {zi | zi ∈ OYαi ∧ d(zi, Y
αi) ≥ a1} , (39)

where the distance function d(zi, Y
αi) can, for example, be computed by the

Approximate Nearest Neighbors (ANN) algorithm. Now we apply to T Yαi the
mapping α−1

i which yields the point cloud T Y . Trivially the position vector
of that point of T Y which is closest to the origin is the searched translation
vector ti. Now ς equals those of the 60 mappings ςi which causes the minimal
distance S(Xid, Xςi). Because E encloses X we can be sure that the starting
configuration Xς is collision-free.

Remark: One must not stick to the icosahedral group but could also take a
refined discretization of SO(3). Subdivision schemes for a fair discretization
of the spherical motion group are given in Nawratil and Pottmann (in press).

The limitations of this conservative method are illustrated in Fig. 6 of section
5. Moreover it should be noted that this method works in all cases in contrast
to the second method, presented next.

17

3.4.2 Method 2

The key idea of this more sophisticated method for generating an initial guess
is that we compute corresponding point pairs {xi, ci} where ci is the closest
point (footpoint) of Y with respect to xi ∈ X (see Fig. 4). Based on the result-
ing known correspondence it is possible to formulate the following algorithm
which tries to minimize the extent of overlap in each iteration step:

1. We choose a chord length cl > 0.

2. Compute the screw q
max

which maximizes the objective function

ζ(q) :
N∑

i=1

w(xi)v(xi)·nci
with d(xi, Y) ≤ cl (40)

and

w(xi) =
d(xi, Y) + cl

min(d(x, Y)|x ∈ X)− cl
∈ [0, 1] (41)

under the side condition

ν(q) :
∑

‖v(si)‖2 = 1. (42)

Hence, we maximize nothing else than the weighted sum of the
components of the velocity vectors v(xi) in direction of the surface
normal vector nci

in ci of Y . Moreover it should be noted that the
weighting function w(xi) preferring points with a deeper penetra-
tion, depends linearly on the distance d(xi, Y). The side condition
normalizes the screw according to the metric of the ambient space.
As ν(q) is a quadratic form and ζ(q) a linear equation in the un-
knowns of the screw, we get q

max
by solving a system of linear

equations.

Remark: In the unlucky case that xi is located on the cut locus of
the fixed object, we get several footpoints cj

i with j > 1. For those
points we replace v(xi)·nci

of the objective function by the mean
value

∑
j v(xi)·ncj

i
/j.

3. Compute the helical motion σ associated with q
max

and dis-
place the object X such that max(‖σ(xi) − xi‖) = cl. Note that
max(‖σ(xi)−xi‖) = ‖σ(xmax)−xmax‖ holds where xmax is the point
of X which has the biggest distance kmax from the helical axis or
axis of rotation, respectively. Then the corresponding stepsize can
be computed as in subsection 3.1.4 for the point xmax. If q

max
is a

translation the stepsize s can be computed from cl = s‖q̂max‖.
We end up with the new iterate X+.

18

It should be noted that the above given stepsize selection guarantees that
points xi ∈ X which have no influence on the objective function due to
d(xi, Y) > cl do not penetrate the fixed object in the next iterate. The reason
for the restriction of the objective function to this set of points is the following:

In most practical cases, the extent of penetration is small, and therefore the
set of non-penetrating points far away from the fixed object would affect the
objective function too much despite of the natural weighting function w(xi).
Therefore the input data reduction as well as the weighting function w(xi)
improves the quality of the screw q

max
which can be evaluated by the function

κ(q) : ζ(q)/
N∑

i=1

w(xi)‖v(xi)‖ ∈ [0, 1] with d(xi, Y) ≤ cl. (43)

A value of 1 indicates a velocity field q which exactly fits our requirements.

We suggest to set the only free parameter cl equal to w−min(d(x, Y)|x ∈ X)
where w is the contact value of Def 2 (see Fig. 4). Additionally we set cl = b if
cl exceeds a predefined upper bound b. This choice ensures that the obtained
initial guess and the fixed object are in contact with respect to the contract
value w, if the algorithm yields a solution. In section 5 we give examples which
show that this algorithm works very well for most practical cases where the
extent of penetration is small.

Y

∂Y
w

dmin

cl

X

xj xk

xi

cj ckci

xl

xm

xn

cl

cm

cn

Fig. 4. Method 2 for the computation of a collision-free starting configuration:
We compute for each point xi ∈ X with d(xi,Y) ≤ cl the corresponding clos-
est point (footpoint) ci ∈ Y. Moreover the selection of the chord length cl as
w −min(d(x,Y)|x ∈ X) is illustrated.

19

4 PD computation with respect to the geodesic metric of M6

In this section we want to compute the footpoint G on ∂C with respect to the
geodesic metric of M6 which is defined as follows:

Definition 5 The geodesic distance G(Xα, Xβ) = ‖A − B‖G between two
points A and B on M6 is defined as the length of the shortest (geodesic)
path g ∈ M6 with respect to the metric from the ambient space (5) connecting
A and B.

The following results about geodesics on M6 are known: Pottmann et al. (2004)
proved that motions ct which join two given positions Xα resp. Xβ and arise
from minimization of the functional

E1 =
∫ 1

0
‖ċt‖2dt with c0 = Xα and c1 = Xβ (44)

correspond to geodesics g on M6, parametrized by a constant multiple of arc
length. The meaning of minimizing E1 is that the total first energy of the fea-
ture point trajectories is minimized. Moreover they proved, that the trajectory
of the barycenter under the geodesic motion is a straight line traced with con-
stant speed. These motions are well-known in mechanics as free motions of a
body (see Arnol’d (1989)).

We can define the generalized penetration depth with respect to the geodesic
metric of M6 analogously to (14) as:

PDG(X, Y) = min

({
‖I− E‖G√

6

∣∣∣∣E ∈ ∂C
})

. (45)

It should be noted that PDG(X, Y) is not necessarily equal to PDt if both
given objects X and Y are convex, because the counter example also holds for
the geodesic metric. This can easily be verified by taking into account that the
geodesic motion between X and Xρ is the rotation about the x-axis (see Arnol’d
(1989)). It follows immediately that PDG(Y, X) is greater than PDG(X, Y) in
the given example, which shows that PDG(Y, X) and PDG(X, Y) are not equal
in the general case. Trivially PDG(X, Y) ≥ PDS(X, Y) where the equality only
holds if the Euclidean map ϕ which causes PDS(X, Y) is a pure translation. In
the following we want to give an algorithm for the computation of the closest
point G on ∂C with respect to the geodesic metric of Def. 5.

20

4.1 Preliminary considerations

It is well known that the computation of geodesics requires discretization. The
unknown curve g ∈ M6 must pass through the only fixed point I ∈ M6 and a
point EN on the boundary of C due to (45). The curve g itself is represented
by a point sequence I, E1, E2, . . . ,EN which contains the points EN and I (see
Fig. 5).

We can view the point sequence E1, . . . ,EN on M6 as a point P ∈ Φ in R12N ,
where Φ denotes the set of all points, such that each single Ei’s are contained
in M6. Therefore the dimension of Φ is equal to 6N . Due to the fact that the
tangent space T 6

Ei
of M6 for each point Ei of P is spanned by the six vectors

T1
i , . . . ,T

6
i of (10), the tangent space in P of Φ is given by the 6N vectors

Bj
i := (0, . . . , 0, Tj

i , 0, . . . , 0) with i = 1, . . . , N and j = 1, . . . , 6. (46)

In order to simplify the computation we apply to M6 a translation δ such that
δ(I) equals the origin O = (0, . . . , 0). If we denote the translated points δ(Ei)
by Ki ∈ δ(M6), the point sequence K1, . . . ,KN can be seen as a point K :=
∆(P) ∈ ∆(Φ) where ∆ is a translation along the vector −I := −(I, . . . , I).
It should be noted that due to the applied translation δ the tangent spaces
of Ei and Ki on M6 resp. δ(M6) are spanned by the same basis vectors and
therefore they are parallel.

If we use the difference of successive points as a discrete first derivative and
replace integration by summation, the functional E1 converts into

E1 = ‖K1‖2 +
N−1∑
i=1

‖Ki − Ki+1‖2. (47)

Because E1 of (47) is a quadratic function it can be written as

E1 : R12N 7→ R, E1(K) = K·Q·K + 2lT ·K + c (48)

where Q is a symmetric positive definite matrix. Now we want to minimize E1

under the constraint that K lies in the surface ∆(Φ) ∈ R12N . The geometric
approach to this minimization problem views the matrix Q as the matrix of
the inner product 〈K, K〉 := KT ·Q·K, of a Euclidean metric in R12N . Generally
E1 assumes its minimum in the point −Q−1·l. In our case this point is identical
with the origin O = (O, . . . ,O) because E1(O) = 0. As a consequence l = o

21

and c = 0, thus E1 is equal to the length of the vector K; i.e.

E1(K) = KT ·Q·K = ‖K‖2
Q with Q =



2M −M

−M 2M −M
.

−M 2M −M

−M M


(49)

and M of (7). O is the solution of our minimization problem because this point
belongs to ∆(Φ). But we have an additional constraint namely that the point
KN is located on the translated boundary δ(∂C). Therefore we have to compute
the closest point ∆(F) of ∆(Γ) to O with respect to the metric defined by Q,
where Γ denotes the set of all points P = (E1, . . . ,EN) ∈ Φ with EN ∈ ∂C.
Consequently, the point F ∈ Γ is the solution of our optimization problem,
which can be computed with the following projected gradient algorithm.

4.2 Algorithm for the computation of PD with respect to the geodesic metric
of M6

The given PDG(X, Y) algorithm is again based on the work done by Hofer
and Pottmann (2004). When we discuss one procedure of the iteration, we
will denote the current iterate by Pc = (Ec

1, . . . ,E
c
N), the next iterate by

P+ = (E+
1 , . . . ,E+

N) and the prior one by P−. We assume that the initial guess
is a discretized geodesic connecting I and the footpoint F, computed with the
PDS(X, Y) algorithm of the last section. The computation of this initial guess
can be done with the algorithm given in the above cited paper.

1. If Ec
N ∈ ∂C we compute the gc linearly independent gliding con-

straints according to (11). Otherwise gc = 0. Then we compute the
tangent space T6N−gc

Pc of Φ at the current iterate Pc and project the
point O orthogonally into the translated tangent space T6N−gc

Kc of
∆(Φ) at the point ∆(Pc) = Kc, which results in O⊥.

2. Compute an appropriate stepsize s and project Es
N of Ps := Pc +

s(O⊥ − Kc) onto M6, which yields the point E⊥
N .

3. If E⊥
N corresponds to a colliding configuration we reduce s until both

surfaces are in contact. Then we project the points Es
1, . . . ,E

s
N−1

onto M6 which yields our new iterate P+.

22

Ec
N Es

N
E

+

N

Ec
i Es

i

E
+

i

I

gc

g
+

C

R12

∂C

M6

Fig. 5. PDG(X,Y) algorithm

4.2.1 Step 1

First of all we want to give an elementary view of this step: We displace
each point Ec

i of the polygon Pc in the tangent space Ti of M6, such that
the generated polygon Es

1 = Ec
1 + T1, . . . ,E

s
N = Ec

N + TN with Ti of (8)
minimizes the objective function E1 under the gc constraints that Xεc

N glides
instantaneously on Y (see Fig. 5).

We compute the gc gliding constrains according to (11) with respect to the con-
tact value wc := w−. We redefine wc in the same two cases as in the PDS(X, Y)
algorithm, where we replace ‖Ec − E−‖ by ‖Ec

N − E−
N‖. Further we compute

the matrix Q of (48) and the basis vectors {B1
1, . . . , B

6
1, . . . , B

1
N , . . . , B6

N} of Φ’s
tangent space at the current iterate Pc, which are given by (46). Because these
vectors also span the tangent space of ∆(Φ) at the point Kc, we can compute

the Gramian matrix GKc :=
(
〈Bi

j, B
l
k〉Q

)
. Then O⊥ equals Kc + T with

T :=
N∑

i=1

3∑
j=1

qj
i B

j
i + q̂j

i B
j+3
i (50)

where Q := (q1, q̂1, . . . ,qN , q̂N)T is the solution of the following systems of
linear equations:

GKc

N

·Q =

r

o

 with N :=


0 . . . 0 n̂T

1 nT
1

0 . . . 0
...

...

0 . . . 0 n̂T
gc nT

gc

 (51)

where r := (r1
1, . . . , r

6
1, . . . , r

1
N , . . . , r6

N)T is given by rj
i :=

(
〈Kc, Bj

i 〉Q
)
.

23

4.2.2 Step 2

The stepsize s for the computation of Ps := Pc + s(O⊥ − Kc) = Pc + sT is
chosen as in the PDS(X, Y) algorithm. In the general case we take a small
stepsize s, whose validity is tested with the Armijo rule. Only if gc equals g−

we apply the step size selection of Pottmann and Hofer (2004) (see also Hofer
and Pottmann (2004)).

If gc = g− = 0 the part of the footpoint cone ΛΦ is determined by the vertex
I, the footpoints Pc ∈ Φ and P− ∈ Φ and the direction T of the tangent of the
base curve in Pc. If gc = g− 6= 0 we can think again of a (6N − g)-dimensional
manifold Ψ ∈ Φ which locally approximate Γ such that T 6N−g

Pc and T 6N−g
P− are

the tangent spaces in Pc ∈ Ψ resp. P− ∈ Ψ with respect to Ψ. Now the stepsize
selection can be done by developing the footpoint cone ΛΨ into the plane. The
validity of the resulting stepsize must again be tested with the Armijo rule.

In the next step we project Es
N orthogonally onto M6. This is done as in

the PDS(X, Y) algorithm by using the helical motion σ determined by the
instantaneous screw sqN = (sqN , sq̂N).

4.2.3 Step 3

If Xε⊥N and Y are colliding then we reduce the stepsize s with the stepsize re-
duction algorithm, which yields E+

N . In the next step we project the remaining
points Es

1, . . . ,E
s
N−1 orthogonally onto M6 by solving the registration problem

with known correspondences. This is a known algebraic problem of degree four,
which was explicitly solved by Horn (1987) using unit quaternions. For further
details see e.g. Belta and Kumar (2002). We denote the resulting points by
E⊥

1 , . . . ,E⊥
N−1.

We can improve our iterate by taking into account that the trajectory of the
barycenter under a geodesic motion has to be a straight line. In the general
case the barycenters ε⊥1 (bX), . . . , ε⊥N−1(bX) are not located on the line spanned
by bX and ε+

N(bX) due to the two different kinds of used back projections onto
M6. Therefore we translate each point E⊥

i for i = 1, . . . , N − 1 within the
surface M6 by Hi := (hi,o,o,o) such that the approximated first energy

E1 = ‖I−E⊥
1 −H1‖2 +

N−2∑
i=1

‖E⊥
i +Hi−E⊥

i+1−Hi+1‖2 + ‖E⊥
N−1 +HN−1−E+

N‖2

is minimized. This quadratic function in 3(N − 1) unknowns can be rewritten
as

E1(H) = HT ·W·H + kT ·H + c, (52)

with H := (h1, . . . ,hN−1). Because W is a symmetric positive definite matrix
the unique global minimizer equals −W−1 ·k. By setting E+

i := E⊥
i + Hi for

24

i = 1, . . . , N − 1 we get the new iterate P+ := (E+
1 , . . . ,E+

N).

If ‖E+
N −Ec

N‖ < b and if the current contact value wc also falls below a certain
threshold v, then the PDG(X, Y) algorithm is stopped.

4.3 Physical interpretation of PDG

The pose Xγ which cause PDG(X, Y) corresponds to the local minimizer G =
(g0,g1,g2,g3) ∈ ∂C. Due to considerations of section 3.3 and the well known
result (see Arnol’d (1989)), that geodesic motions are motions of a free rigid
body under its own inertia outside of any force field (⇒ kinetic energy is
conserved), we can give the following interpretation of PDG(X, Y):

Theorem 2 PDG(X, Y) equals
√

K where K is the minimal needed total ki-
netic energy of S such that the rigid body Sid moves under its own inertia into
the pose Sγ within one time unit. S denotes the ellipsoidal shell of Theorem 1.

Remark: Assume that G = (g1,g2,g3) describes a rotation about one of the
axis of the inertia ellipsoid of S through the angle ρ. Now the superposition
of this uniform rotation and the uniform translation g0 is a geodesic motion.
In such cases the only difference between PDS(X, Y) and PDG(X, Y) is that
the angular velocity ω of (37) (chord length approximation of ρ) is replaced
by the arc length of ρ.

5 Examples

The numerical experiments have been performed with Matlab implementa-
tions on a AMD 64 Athlon Processor with 1 GB RAM. The main focus in
implementing our algorithms was on the demonstration of the functionality
and not on the improvement of the computation time. We are aware of the
fact that our prototype implementations are not optimized and that there is
a very large potential for speedup, especially in performing the collision test.
Moreover some routines can be improved by additional preprocessing steps.

Xid denotes the given interpenetrating configuration and Xς
i the collision-free

inital guess, which was computed by method i (i = 1, 2) of section 3.4. As the
result of the PDS(X, Y) algorithm we obtain the pose Xϕ which corresponds
to the local minimizer F ∈ ∂C. With the adapted version of this algorithm,
we computed the pose Xτ which causes PDt. As the result of the PDG(X, Y)
algorithm we obtain the pose Xγ which corresponds to the local minimizer
G ∈ ∂C.

25

Here for simplicity and comparability of the results the PDG(X, Y) algorithm
was always performed with 10 intermediate positions. Clearly, an increase of
these positions improves the accuracy at the cost of computation time. As
the computation of the geodesic distance on M6 can be decomposed into a
translational and a rotational part (see Hofer and Pottmann (2004)) a more
sophisticated choice of the number of intermediate positions should be based
on the spherical distance of Xid and Xϕ.

The cup examples
This example can also be found in the paper of Zhang et al. (2006), where the
boundary surfaces of the fixed object (cup) Y and the moving body (spoon)
X were approximated by triangular meshes Y resp. X with about 4200 resp.
170 vertices. We increased the number of vertices of the triangular meshes
Y resp. X to 12500 resp. 1500 in order to improve the representation of the
objects and therefore the accuracy of our results. Computing the collision-free
starting configuration Xς

1 lasts about 2.1sec, where performing 60 times the
ANN-algorithm requires about 87% of the total cputime.

Y
Xid

Xγ ,Xϕ

Xς
1

Xτ

(a)

Y

Xγ ,Xϕ

Xid

Xς

(b)

Fig. 6. Cup: Ex. 1

Table 1 distance initial guess calls total time(tt) collision test Fig.

PDt 1 Xς
1 43 4.1719sec 87% of tt 6(a)

PDS 0.8277 Xς
1 43 4.4375sec 96% of tt 6(a)

PDG 0.8301 Xς
1 60 5.8430sec 90% of tt 6(a)

PDS 0.6339 Xς 53 5.2031sec 81% of tt 6(b)

PDG 0.6359 Xς 57 6.0781sec 79% of tt 6(b)

Example 1: The starting configuration Xς
1 as well as the solutions Xϕ and Xτ

of the PDS(X, Y) algorithm resp. of the adapted one are displayed in Fig. 6
(a). We also tested our PDG(X, Y) algorithm for the same starting configu-
ration Xς

1 but its solution Xγ is too close to Xϕ that one can see a difference.
These two minimization problems seem to have the same local minimizer. The
performance of these three algorithms is shown in table 1.

26

The obtained solutions are only local minima because running the PDS(X, Y)
algorithm resp. PDG(X, Y) algorithm starting with the pose Xς illustrated in
Fig. 6 (b) yields another solution Xϕ resp. Xγ, which is closer to Xid as Xϕ

resp. Xγ (see table 1). The starting configuration Xς could not be obtained
by method 1 of section 3.4 because the ellipsoid E, which encloses X is to
big for the hole of the handle. This example points out the limitations of the
presented algorithm. The PDG(X, Y) algorithm with respect to the starting
configuration Xς has again a nearly identical solution to Xϕ. The performance
of the PDG(X, Y) resp. PDS(X, Y) algorithm with respect to Xς is also shown
in table 1.

Y

Xid
Xϕ,Xγ

Xς
1

(a)

Y

Xid

Xτ

Xς
1

(b)

Fig. 7. Cup: Ex. 2

Y

Xid

Xϕ,Xγ

Xς
1

(a)

Y

Xid

Xτ

(b)

Fig. 8. Cup: Ex. 3

Examples 2 and 3: In example 2 and 3 illustrated in Fig. 7 and Fig. 8,
respectively, we run the PDS(X, Y) algorithm and the PDG(X, Y) algorithm
with respect to the starting configuration Xς

1. As in example 1 the obtained
poses Xϕ and Xγ are too close to see a difference. The performance of the
algorithms is shown in table 2, where the values for PDS(X, Y) and PDG(X, Y)
are given with respect to PDt. The pose Xτ which causes PDt is illustrated
in Fig. 7 (b) and Fig. 8 (b), respectively.

27

Table 2 distance initial guess calls total time(tt) collision test Fig.

PDS 0.8070·PDt Xς
1 55 5.1250sec 88% of tt 7

PDG 0.8071·PDt Xς
1 63 6.4219sec 85% of tt 7

PDS 0.8276·PDt Xς
1 38 5.0313sec 88% of tt 8

PDG 0.8285·PDt Xς
1 46 6.1250sec 79% of tt 8

The gap example
We constructed this example in order to illustrate the slight difference between
the poses Xϕ and Xγ. The fixed object Y consists of two disjoint half-spaces
and the moving object X looks like the character ’X’. Due to the fact that the
boundary surface ∂Y of Y are two planes we can be sure that our algorithms
do not only reach local minima but global ones. Moreover it should be said
that the Euclidean maps ϕ and γ are pure rotations. The angle enclosed by
these two spherical motions is only about 0.64◦. The corresponding poses Xϕ

and Xγ as well as ∂Y and the 10 intermediate positions for the computation
of PDG(X, Y) are displayed in Fig. 9.

∂Y

Xid

Xγ

Xϕ

(a) (b)

Fig. 9. The gap example

The cross examples
The triangular meshes Y and X of the half torus and cross, respectively,
consists of 7000 and 11000 vertices. The computation of the collision-free initial
guess Xς

1 lasts about 5.1sec, where performing 60 times the ANN-algorithm
requires about 94% of the total cputime. In the following four examples we

28

tested the PDS(X, Y) algorithm (see table 3) starting with Xς
1.

Table 3 distance initial guess calls total time(tt) collision test Fig.

PDS 1 Xς
1 58 17.9375sec 80% of tt 10(a)

PDS 1.5396 Xς
1 71 16.6406sec 79% of tt 10(b)

PDS 1.1079 Xς
1 79 21.5313sec 84% of tt 11(a)

PDS 1.6650 Xς
1 49 12.4219sec 72% of tt 11(b)

Moreover we tested the second method of section 3.4 for computing an initial
guess. We run the corresponding Xς

2 algorithm for b = −min(d(x, Y)|x ∈
X id)/5. The performance of this algorithm is shown in table 4 and Fig. 12,
respectively. The given examples demonstrate that the proposed algorithm
works very well for examples, where the extent of overlap is small.

Table 4 calls total time(tt) collision test S(Xϕ,Xς
2) Fig.

Xς
2 10 1.5156sec 63% of tt 0.10·S(Xϕ,Xς

1) 10(a)

Xς
2 12 1.6094sec 63% of tt 0.39·S(Xϕ,Xς

1) 10(b)

Xς
2 9 1.6093sec 67% of tt 0.07·S(Xϕ,Xς

1) 11(a)

Xς
2 13 1.7813sec 59% of tt 0.58·S(Xϕ,Xς

1) 11(b)

(a) (b)

Fig. 10. Cross: (a) Ex. 1 (b) Ex. 2. Illustration of Xid (red), Xς
1 (green), Xς

2 (yellow)
and Xϕ (blue). (For interpretation of the references to colour in these figures, the
reader is referred to the web version of this article.)

If we run the PDG(X, Y) algorithm with the initial guess Xϕ we cannot achieve
a significant improvement of the geodesic distance because the algorithm stops
after a few iteration steps. The resulting local minimum is again too close to

29

(a) (b)

Fig. 11. Cross: (a) Ex. 3 (b) Ex. 4. Illustration of Xid (red), Xς
1 (green), Xς

2 (yellow)
and Xϕ (blue). (For interpretation of the references to colour in these figures, the
reader is referred to the web version of this article.)

0

 b

2b

3b

4b

5b

2 4 6 8 10 12

Ex. 1
Ex. 3

Ex. 2
Ex. 4

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12

Ex. 3

Ex. 1

Ex
. 2

Ex
. 4

(b)

Fig. 12. Performance of the Xς
2 algorithm: (a) The extent of overlap measured by

−min(d(x,Y)|x ∈ X) for each iteration step. (b) Evaluation of the screw qmax by
the function κ(q) of (43).

Xϕ that a graphical representation would make sense. It seems that in the
general case these minima Xϕ and Xγ are much closer to each other than in
the synthetically generated example illustrated in Fig. 9.

6 Conclusion and future work

In this paper we defined the generalized penetration depth PD of two colliding
rigid bodies X and Y with respect to the object-oriented metric S introduced
by Hofer et al. (2004) which takes the mass distribution of the moving body
X into consideration. We used a kinematic mapping which maps rigid body
displacements to points of a 6-dimensional manifold M6 in the 12-dimensional
space of affine mappings. This space equipped with the above mentioned met-
ric is a Euclidean space. We formulated PD as the solution of the constrained
minimization problem of finding the closest footpoint on the boundary of the
set of all points of M6 which correspond to colliding configurations. Based on
the theory of gliding motions, the closest footpoint with respect to the metric

30

S (⇒ PDS) can be computed with an adapted projected gradient algorithm.
The outlined PDS algorithm can easily be modified for the computation of
the translational penetration depth as well. We also presented a geometric op-
timization algorithm which computes the closest footpoint with respect to the
geodesic metric G of M6 induced by the metric of the ambient space (⇒ PDG).
Moreover we introduced two algorithms for the computation of a collision-free
initial guess and gave a physical interpretation of PDS and PDG. We also
tested the functionality of the presented geometric optimization algorithms
based on prototype implementations and gave several examples.

A drawback of our approach is that our algorithms can only compute local
minima, and thus they depend on the choice of the initial guess. Therefore
we are working on a global approach by calculating a distance field on M6

based on a fair discretization of SO(3). Subdivision schemes for generating
such fair discretizations of the spherical motion group were already presented
(see Nawratil and Pottmann (in press)).

Acknowledgment

This research was carried out as part of the project S9206-N12 which was
supported by the Austrian Science Fund (FWF). The authors would like to
thank Michael Hofer for providing us some of his Matlab implementations, as
well as Liangjun Zhang for placing the dataset of the cup and spoon example
at our disposal.

The authors would also like to thank the reviewers for their useful comments
and suggestions.

References

[1] Arnol’d, V.I., 1989. Mathematical methods of classical mechanics. 2nd Edition,
Springer, New York.

[2] Belta, C., and Kumar, V., 2002. An SVD-projection method for interpolation
on SE(3). IEEE Trans. Robotics Automation 18 (3), 334–345.

[3] Botsch, M., Pauly, M., Gross, M., and Kobbelt, L., 2006. PriMo: Coupled
Prisms for Intuitive Surface Modeling. Eurographics Symposium on Geometry
Processing (K. Polthier and A. Sheffer, eds), 11–20.

[4] Cameron, S., 1997. Enhancing GJK: Computing minimum and penetration
distance between convex polyhedra. In Proc. of IEEE International Conference
on Robotics and Automation, 3112–3117.

31

[5] Hofer, M., 2004. Variational motion design in the presence of obstacles. Ph.D.
Dissertation, Vienna University of Technology.

[6] Hofer, M., and Pottmann, H., 2004. Energy-Minimizing Splines in Manifolds.
Transactions on Graphics 23 (3), 284–293 (Proceedings of ACM SIGGRAPH
2004).

[7] Hofer, M., Pottmann, H., and Ravani, B., 2004. From curve design algorithms
to the design of rigid body motions. The Visual Computer 20 (5), 279–297.

[8] Horn, B.K.P., 1987. Closed form solution of absolute orientation using unit
quaternions. J. Optical Society A 4, 629–642.

[9] Kim, B., and Rossignac, J., 2003. Collision Prediction for Polyhedra under
Screw Motions. In Proc. of ACM Symposium on Solid Modeling and
Applications, 4–10.

[10] Kim, Y., Lin, M., and Manocha, D., 2002. Deep: Dual-space expansion for
estimating penetration depth between convex polytopes. In Proc. of IEEE
International Conference on Robotics and Automation, 921–926.

[11] Nawratil, G., 2007. New performance indices for 6R robots. Mechanism and
Machine Theory, 42 (11), 1499-1511.

[12] Nawratil, G., and Pottmann, H., in press. Subdivision Schemes for the fair
Discretization of the Spherical Motion Group. Journal of Computational and
Applied Mathematics.

[13] Pottmann, H., and Hofer, M., 2004. Algorithms for constrained minimization
of quadratic functions - geometry and convergence analysis. Technical Report
121, Geometry Preprint Series, Vienna Univ. of Technology.

[14] Pottmann, H., Hofer, M., and Ravani, B., 2004. Variational Motion Design. On
Advances in Robot Kinematics (J. Lenarcic and C. Galletti, eds.), 361–370.

[15] Pottmann, H., and Ravani, B., 2000. Singularities of motions constrained by
contacting surfaces. Mechanism and Machine Theory 35 (7), 963–984.

[16] Pottmann, H., and Wallner, J., 2001. Computational Line Geometry. Springer-
Verlag.

[17] Zhang, L., Kim, Y.J., Varadhan, G., and Manocha, D., 2006. Generalized
Penetration Depth Computation. Symposium on Solid and Physical Modeling,
173–184.

[18] Zhang, L., Kim, Y.J., and Manocha, D., 2007. A Fast and Practical Algorithm
for Generalized Penetration Depth Computation. In Proc. of Robotics: Science
and Systems Conference (RSS07), 2007.

[19] Zhao, H.K., 2005. Fast sweeping method for eikonal equations. Math. Comp.
74, 603–627.

[20] Van den Bergen, G., 2001. Proximity queries and penetration depth computation
on 3D game objects. In Proc. Game Developers Conference, 821–837.

32

