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Abstract

The objective of this paper is to study and construct matrix-valued templates for in-
terpolatory curve subdivision. Since our investigation of this problem was motivated by
the need of such subdivision stencils as boundary templates for interpolatory surface sub-
division, we provide both spline and non-spline templates that are necessarily symmetric,
due to the lack of direction-orientation in carrying out surface subdivision in general. For
example, the minimum-supported Hermite interpolatory C1 cubic spline curve subdivi-
sion scheme, with the skew-symmetric basis function for interpolating first derivatives,
does not meet the symmetry specification. Non-spline C2 interpolatory templates con-
structed in this paper are particularly important, due to their smaller support needed
to minimize undesirable surface oscillations, when adopted as boundary templates for
interpolatory C2 surface subdivision. The curve subdivision templates introduced in
this paper are adopted as boundary stencils for interpolatory surface subdivision with
matrix-valued templates.

1 . Introduction

It is well-known that subdivision schemes provide the most efficient way for generating
curves and surfaces, see e. g. [15, 10]. To construct a smooth curve in the plane or in the
3-dimensional space, the subdivision process is carried out by taking weighted averages
of the vertices iteratively, using the weights as specified by some “subdivision templates”.
The initial vertices, called control points, are vertices of a given (control) polygon, and
the number of vertices is increased after each iterative step, thereby generating a sequence
of finer and finer polygons that eventually converge to a desirable limiting curve, called
subdivision curve. For instance, when a “dyadic” subdivision scheme is employed, a
finer polygon with “twice” as many vertices is generated from the previous polygon
for each iterative step. This is accomplished by creating one new vertex (called “odd
numbered” vertex) between every two consecutive old vertices (called “even numbered”
vertices) of the coarser polygon (i.e. the polygon before the iterative step is carried out),
while the positions of the old vertices may or may not be updated, again according to
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the subdivision templates. If the even numbered vertices are not to be updated, then
the vertices of each coarser polygon are among the vertices of the finer polygon. This
subdivision process is then called an interpolatory subdivision scheme. Otherwise, it is
called an approximation subdivision scheme.

The subdivision templates of a “dyadic” curve subdivision scheme are constructed
by following some local averaging rule, usually derived from certain refinement equation

φ(x) =
∑

k∈ZZ2

pkφ(2x− k), x ∈ IR, (1.1)

where φ(x) is called a refinable function, with dilation factor 2 and corresponding (sub-
division) refinement mask {pk}, which is necessarily a finite sequence. For any control
polygon with vertices v0

k, an application of the refinement equation (1.1), immediately
yields the local averaging rule:

vm+1
j =

∑

k

vmk pj−2k, m = 0, 1, · · · , (1.2)

where, for each m = 1, 2, · · · , the point-set {vmk }k denotes the set of vertices obtained
after taking m iterations according to this local averaging rule. To facilitate imple-
mentational convenience, the local averaging rule can also be described in terms of
two subdivision templates, by considering the index j in (1.2) to be even and odd in-
tegers, respectively. For example, the local averaging rule for the subdivision mask
{− 1

16
, 0, 9

16
, 1, 9

16
, 0,− 1

16
}, introduced independently in [4] and [5], can be re-formulated

as:

vm+1
2i+1 =

1

16
(−vmi−1 + 9vmi + 9vmi+1 − vmi+2),

vm+1
2i = vmi , m ≥ 0;

and therefore may be described by the two subdivision templates shown in the middle
and right of the three diagrams in Fig. 1. Here, solid circles represent the old vertices (i.e.
before the iterative subdivision step is carried out) and the hollow circles represent the
new vertices obtained after each iterative subdivision step. Observe that in this example
the first subdivision template (shown in the middle) is a single solid circle. This means
that the old vertices are not moved, and the subdivision scheme is interpolatory. On
the other hand, the second template (shown on the right) consists of four solid circles
and one hollow circle (for the new vertex). Hence, this subdivision scheme is called a
4-point interpolatory scheme.

1 −−16
1 −916 −916 −−16

1

Figure 1: Templates of 4-point interpolatory subdivision

As illustrated by the above example, a (scalar) subdivision scheme is interpolatory,
if and only if the subdivision mask {pk} satisfies the condition:

p0 = 1, p2k = 0, k 6= 0,
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which, under certain mild condition, is equivalent to the interpolatory property

φ(k) = δk, k ∈ ZZ

of the scaling function φ(x). It is well-known, as proved in [5], that the above 4-point
interpolatory scheme is a C1 scheme, meaning that the (limiting) subdivision curve is
C1 in terms of the parameter on the real line. On the other hand, to construct C2 inter-
polatory schemes, it is necessary to admit larger templates (that is, more solid circles in
the diagram on the right of Fig. 1), unless a larger integer dilation factor is considered.
In this regard, the interested reader is referred to [13] for some 6-point C2 interpola-
tory scheme, and [6] for some 4-point C2 ternary interpolatory scheme. However, the
subdivision curves so obtained are not spline curves; that is, the corresponding scaling
functions are not (piecewise polynomial) spline functions.

More recently, in the construction of multi-wavelets, the refinement equation (1.1)
is extended to vector refinement, which naturally leads to matrix-valued subdivision
masks. For example, in [1], we studied matrix-valued interpolatory subdivision schemes
for surface design and illustrated that matrix-valued C2 interpolatory schemes with small
subdivision templates can be constructed. In fact, the construction in [1] includes matrix-
valued compactly supported spline scaling functions that assure the subdivision surfaces
(at regular vertices) to be spline surfaces. The main objective of this paper is to apply
the method introduced in [1] to construct matrix-valued 4-point C2 spline interpolatory
schemes and 3-point C2 (non-spline) interpolatory schemes for curve design. In addition
to being interpolatory, the curve subdivision templates constructed in this paper are
symmetric, and therefore can be readily adopted as boundary subdivision templates for
matrix-valued interpolatory surface subdivision.

This paper is organized as follows. In Section 2, we briefly recall the definition and
some basic properties of matrix-valued interpolatory schemes introduced in [1]. Con-
struction of some 4-point C1 quadratic-spline and C1 cubic-spline interpolatory schemes,
both with symmetric subdivision templates, is demonstrated in Section 3. A 4-point C2

cubic-spline interpolatory scheme, again with symmetric subdivision templates, is in-
troduced in Section 4. In Section 5, a 3-point C2 non-spline symmetric interpolatory
scheme is presented. Finally, these curve subdivision schemes are adopted as boundary
schemes for matrix-valued interpolatory surface subdivision in Section 6.

2 . Matrix-valued interpolatory schemes for curve design

Matrix-valued subdivision schemes for curve generation are associated with some vector
refinement equation

Φ(x) =
∑

k∈ZZ

PkΦ(2x− k), x ∈ IR, (2.1)

with an r-dimensional vector-valued refinable function Φ = [φ0, · · · , φr−1]T (also called
refinable function vector), and refinement (or two-scale) sequence of r-dimensional square
matrices {Pk}, called a refinement (or subdivision) mask. The refinement equation (2.1)
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can also be written as Φ̂(ω) = P (ω
2
)Φ̂(ω

2
), where P (ω) = 1

2

∑
k Pke

−ikω, is called the (two-

scale) symbol of Φ. Here and throughout, Φ̂ = [φ̂0, · · · , φ̂r−1]T , where φ̂` denotes the
Fourier transform of φ`. In the following, Φ is always assumed to satisfy the property of
“partition of unity”, meaning that there exists a nonzero constant r-dimensional vector
y0 such that

y0

∑

k∈ZZ

Φ(x− k) = const 6= 0, x ∈ IR. (2.2)

When the vector refinement equation (2.1) is applied to curve subdivision, the local
averaging rule (1.2) is extended to the matrix setting:

vm+1
k =

∑
j

vmj Pk−2j, m = 0, 1, · · · , (2.3)

where
vmk =: [vmk , s

m
k,1 · · · , smk,r−1] (2.4)

are “row-vectors” with r components of 3 × 1 vectors vmk , s
m
k,i, i = 1, · · · , r − 1. For

the vector y0 = [1, 0, · · · , 0], as chosen in our earlier work [1, 2, 3], we may use the
first components vmk to denote the vertices of the 3-D subdivision polygons generated
after the m-th iterative step, with initial vertices v0

k being the control points of the
curve subdivision. The other components s0

k,1, · · · , s0
k,r−1 of v0

k, can be used to control
the geometric shape of the limiting curve. Then, it can be shown by applying the
property of partition of unity, as in [2], that the vertices vmk provide an accurate discrete
approximation of the target subdivision curve, formulated by the series representation:

F (x) =
∑

k

v0
kφ0(x− k) +

∑

k

(
s0
k,1φ1(x− k) + · · ·+ s0

k,r−1φr−1(x− k)

)
.

For the matrix-valued surface subdivision, the other components s0
k,1, · · · , s0

k,r−1 of v0
k

are called the shape control pararemeters in [1, 2, 3]. It was demonstrated in [2] that
the shape control parameters can change the shape of the limiting surface significantly.

The local averaging rule for a matrix-valued scheme can also be described in terms
of subdivision templates. For example, the two templates for the local averaging rule of
any subdivision mask {Pk}k=−3,··· ,3 are shown in Fig. 2.

3−20PP2 P1 P−1 −3PPP

Figure 2: Templates of matrix-valued 4-point subdivision scheme

Following [1] in the study of surface subdivision schemes, we have the following
definition for matrix-valued interpolatory curve subdivision schemes.

Definition 1 A matrix-valued (dyadic) subdivision scheme with matrix-valued mask
{Pk} is said to be interpolatory, if for any given control vectors v0

k, the first compo-
nents vm2k of vm2k, m = 1, 2, · · · , in (2.3) remain the same as the corresponding first
components of coarser vectors vm−1

k ; i.e., vm2k = vm−1
k , m = 1, 2, · · · .
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The following result on characterization of interpolatory subdivision masks for the
matrix-valued setting can be easily established.

Proposition 1 A (dyadic) subdivision scheme with matrix-valued mask {Pk} is inter-
polatory if and only if Pj satisfies

P0 =




1 ∗ · · · ∗
0 ∗ · · · ∗
...

... · · · ...
0 ∗ · · · ∗


 , P2k =




0 ∗ · · · ∗
...

... · · · ...
0 ∗ · · · ∗


 , k 6= 0, k ∈ ZZ; (2.5)

that is, the first column of P0 must be the unit vector [1, 0, · · · , 0]T and the first columns
of the other P2k (with even indices) must be the zero vector.

Let Φ = [φ0, φ1, · · · , φr−1]T be a refinable function vector with subdivision mask
{Pk}. Then under certain mild conditions (see, for example, [1] and [14]), the subdivision
scheme associated with {Pk} is interpolatory if and only if Φ satisfies:

φ0(k) = δ(k), φ1(k) = 0, · · · , φr−1(k) = 0, k ∈ ZZ. (2.6)

3 . Matrix-valued 4-point C1 quadratic and cubic spline inter-
polatory scheme

This section is devoted to the study of cardinal spline interpolation by compactly sup-
ported, symmetric, and refinable piecewise-polynomial functions, where cardinal inter-
polation means interpolation of the data δk, k ∈ ZZ. The statement of this problem
itself demands an explanation, since the problem of spline interpolation is well, and
perhaps, overly studied in the published literature in both mathematics and engineering
(see particularly [9, 11], for quadratic spline interpolation). However, the specification
of the problem, as governed by the adjectives, “compactly supported”, “symmetric”,
and “refinable”, does impose some challenge, and this particular specification must be
met in constructing interpolatory curve subdivision templates, that can be adopted as
boundary stencils for interpolatory surface subdivision, (the topic of discussion in Sec-
tion 6). In particular, in application to connecting individually designed subdivision
surface patches in the 3-space, symmetry of the (curve) subdivision templates would
compensate for the lack of orientation of the surface subdivision schemes. For exam-
ple, the minimum-supported Hermite interpolatory C1 cubic spline curve subdivision
scheme, with the skew-symmetric basis function for interpolating first derivatives, does
not meet the symmetry specification; and the issue of refinability of basis functions were
not considered in the quadratic spline interpolation papers [9, 11].

For spline-based subdivision, we only need to study quadratic and cubic spline inter-
polation. Let B3(x) be the normalized C1 quadratic cardinal B-spline with support [0,
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3]. In the following, we consider some spline function ϕ0 with support [-1, 1] and sym-
metric with respect to x = 0. (In this regard, observe that the spline function B3(2x+1)
with support [−1

2
, 1] lacks symmetry). Let

ϕ0(x) := B3(2x+ 2) +B3(2x+ 1). (3.1)

Note that ϕ0 is not refinable, in the sense that ϕ0(x
2
) is not a (finite) linear combination

of ϕ0(x− k), k ∈ ZZ. Yet we may still write

ϕ̂0(2ω) =
1

8
(2 + eiω + e−iω + 2ei

ω
2 + 2e−i

ω
2 )ϕ̂0(ω), (3.2)

which follows directly from the definition of ϕ0 and the refinement of B3(x) : B̂3(2ω) =
1
8
(1 + e−iω)3B̂3(ω). Next, we introduce ϕ1(x) = 1

3
ϕ0(x) + 2

3
(ϕ0(x + 1

2
) + ϕ0(x − 1

2
)),

namely:

ϕ1(x) := B3(2x+ 2) + B3(2x+ 1) +
2

3
(B3(2x+ 3) + B3(2x)). (3.3)

The Bézier coefficients for ϕ0 and ϕ1 are shown in Figs. 3 and 4 respectively. In the
following proposition, we will see that the vector-valued function Φa := [ϕ0, ϕ1]T is
refinable.

−1 1−0.5 0.5

0 1 0

0

0 1/2 1 1/21 0

Figure 3: Support and Bézier coefficients for ϕ0

1

2/3 1/3 00 0 1/3 2/3 5/6 1 1 5/61 0

1.5−1−1.5 −0.5 0 0.5

Figure 4: Support and Bézier coefficients for ϕ1

Proposition 2 Let ϕ0 and ϕ1 be the compactly supported C1 quadratic spline functions
defined by (3.1) and (3.3) respectively. Then Φa = [ϕ0, ϕ1]T is refinable with refinement
mask {Pk} given by

P0 =

[
1
4

3
4

5
12

1
4

]
, P1 = P−1 =

[
1
4

0
1
4

1
2

]
, P2 = P−2 =

[
0 0
1
6

0

]
, Pk = 0, |k| > 2. (3.4)

We remark that the matrices Pk in (3.4) do not satisfy the conditions in Proposition
1, but they will be later modified to satisfy these conditions.

Proof of Proposition 2. From ϕ1(x) = 1
3
ϕ0(x) + 2

3
(ϕ0(x + 1

2
) + ϕ0(x − 1

2
)), or

equivalently,

ϕ̂1(ω) =
1

3
ϕ̂0(ω) +

2

3
(ei

ω
2 + e−i

ω
2 )ϕ̂0(ω),
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and in view of (3.2), we have

ϕ̂0(2ω) =
1

8
(2 + eiω + e−iω)ϕ̂0(ω) +

1

4
· 3

2
(ϕ̂1(ω)− 1

3
ϕ̂0(ω))

=
1

8
(1 + eiω + e−iω)ϕ̂0(ω) +

3

8
ϕ̂1(ω). (3.5)

On the other hand, since

ϕ̂1(2ω) =
1

3
ϕ̂0(2ω) +

2

3
(eiω + e−iω)ϕ̂0(2ω)

=
1

3
(1 + 2(eiω + e−iω)){1

8
(1 + eiω + e−iω)ϕ̂0(ω) +

3

8
ϕ̂1(ω)}

=
1

24
(5 + 3eiω + 3e−iω + 2ei2ω + 2e−i2ω)ϕ̂0(ω) +

1

8
(1 + 2eiω + 2e−iω)ϕ̂1(ω),(3.6)

It follows, by combining (3.5) and (3.6), that Φa is refinable with refinement mask given
by (3.4). ♦

The refinement mask of Φa yields the subdivision templates for the local averaging
rule, as shown in Fig. 5 with G = P0, H = P1, L = P2.

HGL L H

Figure 5: Local averaging rule

Since P0, P2 do not satisfy (2.5), this scheme is not interpolatory. However, since ϕ0

is supported on [-1, 1], we can modify ϕ1 by subtracting from ϕ1(x) a suitable finite
linear combination of ϕ0(x− k). Observe that ϕ1(0) = 1, ϕ1(1) = ϕ1(−1) = 1

3
. So, if we

let ϕ̃1(x) := ϕ1(x)−ϕ0(x)− 1
3
(ϕ0(x− 1) +ϕ0(x+ 1)), then ϕ̃1 satisfies (2.6). Therefore,

[ϕ0, ϕ̃1(x)]T will yield a matrix-valued interpolatory scheme, provided that it is refinable.

However, although it is indeed refinable, we will consider instead, Φ̃a := [ϕ0 + 3
8
ϕ̃1,

3
8
ϕ̃1]T ,

in the following, since Φ̃a satisfies the condition of generalized partition of unity (2.2)
with y0 = [1, 0].

Proposition 3 Let ϕ0 and ϕ1 be the compactly supported C1 quadratic spline functions
defined by (3.1) and (3.3) resp. Set

ϕ̃0(x) =
5

8
ϕ0(x) +

3

8
ϕ1(x)− 1

8
(ϕ0(x− 1) + ϕ0(x+ 1));

ϕ̃1(x) =
3

8
(ϕ1(x)− ϕ0(x))− 1

8
(ϕ0(x− 1) + ϕ0(x+ 1)).

Then Φ̃a = [ϕ̃0, ϕ̃1]T is refinable with refinement mask {P̃k} given by

P̃0 =
1

16

[
16 8
0 −8

]
, P̃1 = P̃−1 =

1

16

[
9 −1
1 7

]
, (3.7)

P̃2 = P̃−2 =
1

16

[
0 −4
0 −4

]
, P̃3 = P̃−3 =

1

16

[ −1 1
−1 1

]
, P̃k = 0, |k| > 3.
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Proof. With z = e−iω, let

U(z) =

[
5
8
− 1

8
(z + z−1) 3

8

−3
8
− 1

8
(z + z−1) 3

8

]
.

Then
̂̃
Φa(ω) = U(z)Φ̂a(ω). Thus, the two-scale symbol P̃ (ω)=U(z2)P (ω)U(z) of Φ̃a is

z−3

32

[
16z3 + 9(z4 + z2)− (z6 + 1) 8z3 − (z4 + z2)− 4(z5 + z) + (z6 + 1)
(z4 + z2)− (z6 + 1) −8z3 + 7(z4 + z2)− 4(z5 + z) + (z6 + 1)

]
.

Therefore, Φ̃a is refinable with refinable mask given by (3.7). ♦

Z X XY YWZ

Figure 6: Matrix-valued 4-point interpolatory scheme

Clearly, the mask of Φ̃a immediately yields an interpolatory scheme with templates
shown in Fig. 6 with W = P̃0, X = P̃1, Y = P̃3, Z = P̃2. We call such a scheme a
matrix-valued 4-point interpolatory scheme.

0

10−1

0 0 1 1 1 0

Figure 7: Support and Bézier coefficients for f0

We can also construct the matrix-valued C1 cubic 4-point interpolatory scheme by
the same method. To be more precise, let f0(x) be the C1 cubic spline supported
on [-1, 1] with its Bézier coefficients shown in Fig. 7. Note that f0 is not refinable.
So, let f1(x) = f0(x

2
), and by applying the C2-smoothing formula, we have the Bézier

representations f1(x) and f1(x
2
), as shown in Fig. 8 and Fig. 9, respectively. By

evaluating the Bézier coefficients of f1(x
2
) and f0(x − k), f1(x − k), we can show that

Φb(x) := [f0(x), f1(x)]T is refinable and its refinement mask can be easily computed.

Furthermore, we can show that Φ̃b(x) := [f̃0(x), f̃1(x)]T yields a matrix-valued 4-point
interpolatory scheme, where

{
f̃0(x) = 1

3
f0(x) + 2

3
f1(x)− 1

3
(f0(x− 1) + f0(x+ 1)),

f̃1(x) = 2
3
(f1(x)− f0(x))− 1

3
(f0(x− 1) + f0(x+ 1)).

(3.8)

More precisely, we have the following result.

0

2−2 10−1

0 011/2 3/4 1 1 3/4 1/2 1/4 01/4

Figure 8: Support and Bézier coefficients for f1(x)(= f0(x2 ))
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1

0 1 2 3 4

027/321 5/32 1/16 03/4 5/8 1/2 3/8 1/415/16

Figure 9: Bézier coefficients for f1(x2 )(= f0(x4 )) on [0, 4]

Proposition 4 Suppose f0 is the compactly supported C1 cubic spline functions with
Bézier coefficients shown in Fig. 7. Let f1(x) = f0(x

2
), and f̃0, f̃1 be the functions defined

by (3.8). Then both Φb = [f0, f1]T and Φ̃b = [f̃0, f̃1]T are refinable, with refinement

masks, (Gk)k and (G̃k), given respectively by

G0 =

[
0 1
−1

4
3
4

]
, G1 = G−1 =

[
0 0
− 7

32
1
2

]
,

G2 = G−2 =

[
0 0
−1

8
3
8

]
, G3 = G−3 =

[
0 0
− 1

32
0

]
, Gk = 0, |k| > 3,

and

G̃0 =
1

16

[
16 4
0 −4

]
, G̃1 = G̃−1 =

1

16

[
9 −1
1 7

]
,

G̃2 = G̃−2 =
1

16

[
0 −2
0 −2

]
, G̃3 = G̃−3 =

1

16

[ −1 1
−1 1

]
, G̃k = 0, |k| > 3.

Again, the mask of Φ̃b yields a matrix-valued 4-point interpolatory scheme with
templates shown in Fig. 6, where W = G̃0, X = G̃1, Y = G̃3, Z = G̃2.

4 . Matrix-valued 4-point C2 cubic spline interpolatory scheme

In this section we consider C2 cubic spline functions and show that the above approach
can be applied to construct a matrix-valued 4-point C2 cubic-spline interpolatory scheme.
Let B4(x) be the normalized cardinal C2 cubic B-spline with support [0, 4], and φ0(x) =
3
2
B4(2x + 2). Then φ0 is supported in [-1, 1] and symmetric with respect to x = 0.

However, φ0 is not refinable. More precisely, from the definition of φ0 and the refinement
of B4(x) : B̂4(2ω) = 1

16
(1 + e−iω)4B̂4(ω), we have

φ̂0(2ω) =
1

16
(6 + eiω + e−iω)φ̂0(ω) +

1

4
(ei

ω
2 + e−i

ω
2 )φ̂0(ω). (4.1)

Next, we define φ1(x) = 7
9
φ0(x) + 4

9
(φ0(x+ 1

2
) + φ0(x− 1

2
)), namely:

φ1(x) :=
7

6
B4(2x+ 2) +

2

3
(B4(2x+ 3) +B4(2x+ 1)). (4.2)

The Bézier coefficients for φ0 and φ1 are shown in Figs. 10 and 11 resp., and the vector-
valued function Φc := [φ0, φ1]T is refinable. More precisely, we have the following result.
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0−1 1−0.5 0.5

0 01/2 1 1 1/2 1/40 0011/40

Figure 10: Support and Bézier coefficients for φ0

5/6

1.5−1−1.5 −0.5 0 0.5 1

0 0 0 1/9 2/9 4/9 23/36 5/6 23/3611 0001/92/94/91

Figure 11: Support and Bézier coefficients for φ1

Proposition 5 Let φ0 = 3
2
B4(2x + 2) and φ1 be defined by (4.2). Then Φc = [φ0, φ1]T

is refinable and its associated refinement mask {Hk} is given by

H0 =

[ −1
8

9
8

1
72

7
8

]
, H1 = H−1 =

[
1
8

0
1
24

1
2

]
, H2 = H−2 =

[
0 0
1
18

0

]
, Hk = 0, |k| > 2.(4.3)

Proof. From φ1(x) = 7
9
φ0(x) + 4

9
(φ0(x+ 1

2
) + φ0(x− 1

2
)), we have

φ̂1(ω) =
7

9
φ̂0(ω) +

4

9
(ei

ω
2 + e−i

ω
2 )φ̂0(ω).

This, together with (4.1), leads to

φ̂0(2ω) =
1

16
(6 + eiω + e−iω)φ̂0(ω) +

1

4
(
9

4
φ̂1(ω)− 7

4
φ̂0(ω))

=
1

16
(−1 + eiω + e−iω)φ̂0(ω) +

9

16
φ̂1(ω). (4.4)

On the other hand, we have

φ̂1(2ω) =
1

9
(7 + 4eiω + 4e−iω)φ̂0(2ω)

=
1

9
(7 + 4eiω + 4e−iω)){ 1

16
(−1 + eiω + e−iω)φ̂0(ω) +

9

16
φ̂1(ω)}

=
1

144
(1 + 3eiω + 3e−iω + 4ei2ω + 4e−i2ω)φ̂0(ω) +

1

16
(7 + 4eiω + 4e−iω)φ̂1(ω).(4.5)

From (4.4) and (4.5), we see that Φc is refinable and its associated refinement mask is
given by (4.3). ♦

The refinement mask of Φc yields the templates for the local averaging rule as shown
in Fig. 5 with G = H0, H = H1, L = H2. In this case the vector y0 for the partition
unity property of Φc is [1, 9]. In practice, if such a matrix-valued C2 cubic approximation
subdivision scheme is used for curve design, we would recommend the choice of Φd :=
[φ0+9φ1, −9φ0+9φ1]T , since the vector y0 for the generalized partition of unity property

of Φd is [1, 0], and Φd is refinable with refinement mask, denoted as (H
(d)
k )k, given by

H
(d)
0 =

[
9
10

1
10

− 1
10
− 3

20

]
, H

(d)
1 = H

(d)
−1 =

[
1
2

0
3
8

1
8

]
,

H
(d)
2 = H

(d)
−2 =

[
1
20
− 1

20
1
20
− 1

20

]
, H

(d)
k = 0, |k| > 2.
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The scheme derived from Φc is not interpolatory, since H0, H2, H−2 do not satisfy
(2.5). However, we can modify φ1 as in the above section such that the resulting refinable
function vector will yields an interpolatory scheme. Observe that φ1(0) = 1, φ1(1) =
φ1(−1) = 1

9
. Then

φ̃1(x) :=
3

4
(φ1(x)− φ0(x))− 1

12
(φ0(x− 1) + φ0(x+ 1)) (4.6)

satisfies (2.6). We can show that [φ0, φ̃1]T is refinable, and therefore, its associated mask
yields a matrix-valued interpolatory scheme. However, the vector y0 for the property of
generalized partition of unity (2.2) is [1, 1]. Hence, in the following we consider, instead,

Φ̃c := [φ̃0, φ̃1]T so that the vector y0 for generalized partition of unity (2.2) of Φ̃c is [1, 0],

where φ̃0 = φ0 + φ̃1, namely,

φ̃0(x) :=
1

4
φ0(x) +

3

4
φ1(x)− 1

12
(φ0(x− 1) + φ0(x+ 1)). (4.7)

Proposition 6 Suppose φ0 = 3
2
B4(2x+ 2) and φ1 is defined by (4.2). Let φ̃0 and φ̃1 be

the C2 cubic spline functions defined by (4.7) and (4.6). Then Φ̃c = [φ̃0, φ̃1]T is refinable
and the refinement mask is given by

H̃0 =
1

48

[
48 12
0 −12

]
, H̃1 = H̃−1 =

1

48

[
25 −1
13 11

]
, (4.8)

H̃2 = H̃−2 =
1

48

[
0 −6
0 −6

]
, H̃3 = H̃−3 =

1

48

[ −1 1
−1 1

]
, H̃k = 0, |k| > 3.

Proof. Let

U1(z) =

[
1
4
− 1

12
(z + z−1) 3

4

−3
4
− 1

12
(z + z−1) 3

4

]
,

where z = e−iω. Then
̂̃
Φc(ω) = U1(z)Φ̂c(ω). Thus, the two-scale symbol H̃(ω)=U1(z2)H(ω)U1(z)−1

of Φ̃c is

z−3

96

[
48z3 + 25(z4 + z2)− (z6 + 1) 12z3 − (z4 + z2)− 6(z5 + z) + (z6 + 1)
13(z4 + z2)− (z6 + 1) −12z3 + 11(z4 + z2)− 6(z5 + z) + (z6 + 1)

]
.

Therefore Φ̃c is refinable with refinement mask given by (4.8), as desired; and Φ̃c yields
a matrix-valued 4-point interpolatory scheme with templates shown in Fig. 6, where
W = H̃0, X = H̃1, Y = H̃3, Z = H̃2. ♦

5 . Matrix-valued 3-point C2 non-spline interpolatory scheme

In the previous two sections, we have constructed matrix-valued spline interpolatory
schemes; namely, schemes with spline functions as refinable functions. In this section, we
will construct 3-point non-spline C2 interpolatory schemes with templates shown in Fig.

11



12. More precisely, we consider the refinable function vector Φe(x) := [φe0(x), φe1(x)]T

that satisfies the refinement relation:

Φe(x) =
2∑

k=−2

QkΦ
e(2x− k),

with

Q0 =

[
1 −2t1
0 1

4
− 2(t1 + t2)

]
, Q1 = Q−1 =

[
1
2

0
−1

8
1
8

]
, Q2 = Q−2 =

[
0 t1
0 t2

]
, t1, t2 ∈ IR.

The mask {Qk}k=−2,−1,0,1,2 satisfies the so-called “sum rule of order 4” (refer to e. g., [7]),
which implies that the integer shifts φe0(x− k), φe1(x− k), k ∈ ZZ reproduce polynomials
of degrees up to 3. We can determine t1, t2 by the Sobolev smoothness estimate formula
in [8] for the refinable function vectors so that the resulting φe0, φ

e
1 are C2. There are

many choices of t1, t2 for C2 φe0, φ
e
1. For example, if we choose

t1 =
21

64
, t2 = − 7

64
,

the resulting φe0, φ
e
1 are in the Sobolev space W 3.428(IR). For such t1, t2, the corresponding

Qk,−2 ≤ k ≤ 2, are Q0 = W1, Q1 = Q−1 = X1, Q2 = Q−2 = Z1, where

W1 =

[
1 −21

32

0 − 3
16

]
, X1 =

[
1
2

0
−1

8
1
8

]
, Z1 =

[
0 21

64

0 − 7
64

]
. (5.1)

Thus, we have a matrix-valued 3-point C2 interpolatory scheme shown in Fig. 12.

W X X1 1Z Z1 11

Figure 12: Matrix-valued 3-point interpolatory scheme

6 . Application to surface design

In this section, we will apply the matrix-valued C2 interpolatory schemes for curve
subdivision constructed in Sections 3-5 as boundary schemes for interpolatory surface
design. However, for simplicity, we will only consider the triangular mesh and the interior
boundary vertices which are not corner vertices. Furthermore, we will only illustrate
our approach by considering the non-spline 1-ring C2 interpolatory surface subdivision
schemes constructed in [1] and [3] for the interior vertices. The subdivision templates
for regular vertices are shown in Fig.13, where the matrix-valued weights are given by

A =

[
1 −435

256

0 − 91
256

]
, D =

[
0 145

512

0 − 45
512

]
, B =

[
3
8

0
− 47

512
69
512

]
, C =

[
1
8

0
− 17

512
− 5

512

]
.

(6.1)
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DD

D

D BB

C

Figure 13: Templates of 1-ring C2 interpolatory scheme for regular old (“even”) vertices (left)
and new (“odd”) vertices (right)

An (interior) boundary vertex on a triangular mesh is called a regular boundary
vertex if its valence (number of its neighbors) is 4; otherwise, it is called an extraordinary
boundary vertex. We will use the templates of the averaging rule in Fig. 6 for both
regular and extraordinary boundary vertices. Using the same templates for both regular
and extraordinary boundary vertices has the advantage in connecting two individually
designed subdivision surface patches, as pointed out in [15]. Here, we show that the
eigenvalues λ0, λ1, · · · (in the order of non-increasing magnitudes) of the subdivision
matrices near boundary extraordinary vertices satisfy certain basic properties. In this
regard, we need the following lemma.

Lemma 1 Let Mn(s, t) be a 3-banded n× n symmetric matrix defined by

Mn(s, t) =




s t
t s t

. . . . . . . . .
. . . . . . t

t s



n×n

, (6.2)

where s, t ∈ IR. Then the eigenvalues of Mn(s, t) are given by s− 2t cos jπ
n+1

, 1 ≤ j ≤ n.

The eigenvalues of a matrix of the form (6.2) have been discussed in [12]. For complete-
ness, we will provide the proof of Lemma 1 in the Appendix.
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Figure 14: 2-D representation of initial vectors and refined vectors after one step of matrix-
valued subdivision iteration near the extraordinary boundary vertex x0

Let x0 be an initial vector associated with an extraordinary boundary vertex with
valence n, and let xj,yj,uj, zk,vk,wk, 1 ≤ j ≤ n, 1 ≤ k ≤ n − 1, be the initial vectors
associated with vertices in the neighborhood of this extraordinary vertex. Also, let
a0, aj,bj,dj, ck, ek, fk, 1 ≤ j ≤ n, 1 ≤ k ≤ n − 1, be the corresponding vectors after
carrying out one iteration of the subdivision process with the averaging rules given in
Figs. 6 and 13. See Fig. 14 for the 2-D representation of these initial vectors and refined
vectors.

Consider the subdivision matrix S, defined by

[
[a0, a1, an,b1,bn,d1,dn], [a2, a3, · · · , an−1], [c1, c2, · · · , cn−1], [b2,b3, · · · ,bn−1],

[d2,d3, · · · ,dn−1], [e1, e2, · · · , en−1], [f1, f2, · · · , fn−1]

]

=

[
[x0,x1,xn,y1,yn,u1,un], [x2,x3, · · · ,xn−1], [z1, z2, · · · , zn−1], [y2,y3, · · · ,yn−1],

[u2,u3, · · · ,un−1], [v1,v2, · · · ,vn−1], [w1,w2, · · · ,wn−1]

]
S.

Then S is an upper-triangular block matrix with nonzero diagonal blocks Sj,j, 0 ≤ j ≤ 3
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given by

S0,0 =




W X X Z Z Y Y
Z X Y W 0 X 0
Z Y X 0 W 0 X
0 Y 0 Z 0 X 0
0 0 Y 0 Z 0 X
0 0 0 0 0 Y 0
0 0 0 0 0 0 Y




, S1,1 =




B C
C B C

. . . . . . . . .
. . . . . . C

C B




(n−2)×(n−2)

,

S2,2 =




C
C

. . .

C




(n−1)×(n−1)

, S3,3 =




D
D

. . .

D




(n−2)×(n−2)

.

Here, S2,2 has (nonzero) eigenvalues 1
8

and − 5
512

, each with multiplicity n − 1, and
S3,3 has (nonzero) eigenvalue − 45

512
with multiplicity n − 2. For S1,1, let us consider

512S1,1, and introduce the notation

B̃ = 512B =

[
192 0
−47 69

]
, C̃ = 512C =

[
64 0
−17 −5

]
.

Then by interchanging the second and third rows, followed by interchanging the second
and third columns of the matrix 512S1,1, we have the matrix

S̃1,1 =




192 64
64 192

0 0
0 0

0 0
64 0

0 0 · · · 0

−47 −17
−17 −47

69 −5
−5 69

0 0
−17 −5

0 0 · · · 0

0 64
0 −17

0 0
0 −5

192 0
−47 69

64 0
−17 −5

0 · · · 0

0 0 B̃ C̃ 0 · · · 0

0 0 C̃ B̃ C̃ · · · 0
. . . . . . . . .

. . . . . . C̃

C̃ B̃




.

Next, by moving the 5th row to become the third row, followed by moving the 5th
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column to become the third column, of the matrix S̃1,1, we have the matrix

˜̃
S1,1 =




192 64
64 192

0 0
64 0

0 0
0 0

0 0
0 0

0 0 · · · 0

0 64
−47 −17

192 0
0 69

0 0
−5 0

64 0
0 0

0 0 · · · 0

−17 −47
0 −17

−17 −5
−47 0

69 −5
−5 69

0 0
−17 −5

0 0 · · · 0

0 0
0 0

64 0
−17 0

0 0
0 −5

192 0
−47 69

C̃ 0 · · · 0

0 0 0 C̃ B̃ C̃ · · · 0
. . . . . . . . .

. . . . . . C̃

C̃ B̃




.

In general, this procedure is repeated by moving the (2j + 1)th row to become the
(j+1)th row, followed by moving the (2j+1)th column to become the (j+1)th column,
for 1 ≤ j ≤ n− 3, to arrive at the block matrix:

[
Mn−2(192, 64) 0
Mn−2(−47,−17) Mn−2(69,−5)

]
,

where Mn−2(s, t) is the matrix defined by (6.2). Thus, S1,1 is similar to

[
Mn−2(3

8
, 1

8
) 0

Mn−2(− 47
512
,− 17

512
) Mn−2( 69

512
,− 5

512
)

]
.

Therefore, it follows from Lemma 1, that S1,1 has eigenvalues

3

8
− 1

4
cos

jπ

n− 1
,

69

512
+

5

256
cos

jπ

n− 1
, 1 ≤ j ≤ n− 2, (6.3)

among which 3
8
− 1

4
cos (n−2)π

n−1
= 3

8
+ 1

4
cos π

n−1
is the largest in magnitude.

If we apply the matrix-valued 4-point C2 spline interpolatory scheme for the regular
boundary vertices, namely, X = H̃1, Y = H̃3,W = H̃0, Z = H̃2 with H̃k, k = 0, · · · , 3,
given in (4.8), then the nonzero eigenvalues of S0,0 are

1,
1

2
,
1

4
,
1

8
,
1

8
.

Hence, the eigenvalues λk of S satisfy λ0 = 1 > |λ1| ≥ |λ2| ≥ · · · .
Also, if we use the matrix-valued 3-point C2 non-spline interpolatory scheme for the

regular boundary vertices, namely, X = X1, Y = 0,W = W1, Z = Z1 with W1, X1, Z1

given in (5.1), then the nonzero eigenvalues of S0,0 are

1,
1

2
,
1

4
,
1

8
,
1

8
,

1

16
.
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Figure 15: Initial open mesh (left) and limiting surface (right)

Thus, the eigenvalues λk of S also satisfy λ0 = 1 > |λ1| ≥ |λ2| ≥ · · · . On the right of
Fig. 15, we show the limiting surface by applying this scheme with control parameters
s0

k = −v0
k to an initial (open) mesh shown on the left of Fig. 15 .

Observe that when n > 7, the first two largest eigenvalues 3
8

+ 1
4

cos π
n−1

and 3
8

+
1
4

cos 2π
n−1

of S1,1 listed in (6.3) are bigger than 1
2
, an eigenvalue of S. So, it is likely that

the resulting surface is not C1 at boundary extraordinary vertices with large valences.
To force the largest eigenvalue of S1,1 to be 1

2
, one can use a modified template for

the new vertices next to an extraordinary boundary vertex, as suggested in [15]. More
precisely, for an extraordinary boundary vertex x0 with valence n, we may apply the
template in Fig. 16 to a2, a3, · · · , an−1 in Fig. 14, where B1(n), B2(n) are 2×2 matrices
depending on n, and C is given in (6.1).

C

0

B2(n) B (n)1

C

x

Figure 16: Template for new (“odd”) vertices next to an extraordinary vertex x0

In this case the subdivision matrix S is still an upper-triangular block matrix with
exactly the same nonzero matrices Sj,j except S1,1, which is now given by

S1,1 =




B2(n) C
C B2(n) C

. . . . . . . . .
. . . . . . C

C B2(n)




(n−2)×(n−2)

.

If we choose
B2(n) = γnB, B1(n) = (1− γn)B,
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where γn is a real number and B is given by (6.1), then the nonzero eigenvalues of S1,1

become
3

8
γn − 1

4
cos

jπ

n− 1
,

69

512
γn +

5

256
cos

jπ

n− 1
, 1 ≤ j ≤ n− 2.

Therefore, if γn is so chosen that 3
8
γn + 1

4
cos π

n−1
= 1

2
, namely,

γn =
4

3
− 2

3
cos

π

n− 1
, (6.4)

then 1
2

is an eigenvalue of S1,1 and it is the largest eigenvalue in magnitude of S1,1. Hence,
with γn as given in (6.4), the eigenvalues of S are 1, 1

2
, 1

2
, λ3, λ4, · · · with 1

2
> |λ3| ≥ |λ4| ≥

· · · for either the 4-point C2 spline scheme or 3-point C2 non-spline scheme to be used
as the boundary scheme.

Appendix

Proof of Lemma 1. For t = 0, the result is trivial, since Mn(s, t) becomes a diagonal
matrix. In the following, we consider the case t 6= 0. Let pn(λ) =det(Mn(s, t) − λIn)
be the polynomial in λ with degree n. Clearly, p1(λ) = s − λ, and with the notation
p0(λ) := 1, we have

pn = (s− t)pn−1 − t2pn−2, n ≥ 2.

To determine the zeros of pn(λ), write s − λ = t(z + z−1), where z = e−iθ for some
θ ∈ IR\{0}. Then we have

pn = (tz + tz−1)pn−1 − t2pn−2.

Therefore,

pn − tz−1pn−1 = tzpn−1 − t2pn−2 = tz(pn−1 − tz−1pn−2)

= (tz)2(pn−2 − tz−1pn−3) = · · · = (tz)n−1(p1 − tz−1p0)

= (tz)n−1(s− λ− tz−1) = (tz)n−1(tz + tz−1 − tz−1) = (tz)n.

Hence, we have

pn = tz−1pn−1 + (tz)n = tz−1(tz−1pn−2 + (tz)n−1) + (tz)n

= (tz−1)2pn−2 + tnzn−2 + tnzn = · · ·
= (tz−1)np0 + tnzn−2(n−1) + · · ·+ tnzn−2 + tnzn

= tn(z−n + zn−2(n−1) + · · ·+ zn−2 + zn)

= tn
zn+1 − z−(n+1)

z − z1
= tn

sin(n+ 1)θ

sin θ
.

Clearly, when θ = θj = jπ
n+1

, 1 ≤ j ≤ n, we have sin(n+1)θ
sin θ

= 0. Thus, λj = s − 2t cos θj
are the zeros of pn; and hence, they are the eigenvalues of Mn(s, t). In addition, for
t 6= 0, the n values λj, 1 ≤ j ≤ n are distinct. Thus, λj, 1 ≤ j ≤ n, are the n eigenvalues
of Mn(s, t).
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