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Université de P. et M. Curie, Paris VI, France

E-mail address: nbotbol@dm.uba.ar

Alicia Dickenstein

Departamento de Matemática
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Abstract

In this paper we show that a surface in P
3 parametrized over a 2-dimensional toric variety T can be represented

by a matrix of linear syzygies if the base points are finite in number and form locally a complete intersection. This
constitutes a direct generalization of the corresponding result over P

2 established in [BJ03] and [BC05]. Exploiting
the sparse structure of the parametrization, we obtain significantly smaller matrices than in the homogeneous case
and the method becomes applicable to parametrizations for which it previously failed. We also treat the important
case T = P

1
× P

1 in detail and give numerous examples.
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1. Introduction

Rational algebraic curves and surfaces can be described in several different ways, the most common being
parametric and implicit representations. Parametric representations describe the geometric object as the
image of a rational map, whereas implicit representations describe it as the set of points verifying a certain
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algebraic condition, e.g. as the zeros of a polynomial equation. Both representations have a wide range of
applications in Computer Aided Geometric Design (CAGD), and depending on the problem one needs to
solve, one or the other might be better suited. To give a simple example, the parametric description is better
for drawing a surface, as it allows to rapidly generate points on the surface, which can then be interpolated,
whereas an implicit representation is better adapted for testing if a given point lies on the surface, since
one only needs to check whether the point verifies the algebraic condition that defines the surface. It is
thus interesting to be able to pass from the parametric representation to the implicit equation. This is a
classical problem and there are numerous approaches to its solution, see [SC95] and [Co01] for good historical
overviews. However, it turns out that the implicitization problem is computationally difficult. A promising
alternative suggested in [BD07] is to compute a so-called matrix representation instead, which is easier to
compute but still shares some of the advantages of the implicit equation. Here is the definition.

Definition 1. Let H ⊂ Pn be a hypersurface. A matrix M with entries in the polynomial ring K[T0, . . . , Tn]
is called a representation matrix of H if it is generically of full rank and if the rank of M evaluated in a
point of Pn drops if and only if the point lies on H .

It follows immediately that a matrix M represents H if and only if the greatest common divisor of all its
minors of maximal size is a power of the homogeneous implicit equation F ∈ K[T0, . . . , Tn] of H . One major
ingredient in the construction of such matrices are syzygies. The theory of syzygies has been developed in
the theoretical context of commutative algebra at the beginning of the 20th century by mathematicians
such as David Hilbert. However, it was only in the 1990s that the CAGD and geometric modeling commu-
nity discovered that the concept of syzygies is useful in their field. Initially unaware of the connections to
commutative algebra, [SC95], [SSQK94], [SGD97], and numerous other authors labeled this approach the
method of “moving curves” (or “moving surfaces”) and showed how it can be used to express the implicit
equation as a determinant.

In the case of a planar rational curve C given by a parametrization of the form A1 f
99K A2, s 7→

(

f1(s)
f3(s)

, f2(s)
f3(s)

)

, where fi ∈ K[s] are coprime polynomials of degree d and K is a field, a linear syzygy (or

moving line) is a linear relation on the polynomials f1, f2, f3, i.e. a linear form L = h1T1 + h2T2 + h3T3 in
the variables T1, . . . , T3 and with polynomial coefficients hi ∈ K[s] such that

∑

i=1,2,3 hifi = 0. We denote
by Syz(f) the set of all those linear syzygies forms and for any integer ν the graded part Syz(f)ν of syzygies
of degree at most ν. Actually, to be precise, one should homogenize the fi with respect to a new variable
and consider Syz(f) as a graded module here. It is obvious that Syz(f)ν is a finite-dimensional K-vector
space and one can easily obtain a basis (L1, . . . , Lk) by solving a linear system. We define the matrix Mν of
coefficients of the Li with respect to a K-basis of K[s]ν as

Mν =
(

L1 L2 · · · Lk

)

,

that is, the coefficients of the syzygies Li form the columns of the matrix. Note that the entries of this matrix
are linear forms in the variables T1, T2, T3 with coefficients in the field K. Let F denote the homogeneous
implicit equation of the curve and deg(f) the degree of the parametrization as a rational map. Intuitively,
deg(f) measures how many times the curve is traced. It is known that for ν ≥ d − 1, the matrix Mν is a
representation matrix; more precisely: if ν = d−1, then Mν is a square matrix, such that det(Mν) = F deg(f).
Also, if ν ≥ d, then Mν is a non-square matrix with more columns than rows, such that the greatest common
divisor of its minors of maximal size equals F deg(f).
In other words, one can always represent the curve as a square matrix of linear syzygies. In principle, one

could now actually calculate the implicit equation. However, it might be advantageous to avoid the costly
determinant computation and work directly with the matrix instead, as it has the advantage of making
the well-developed theory and tools of linear algebra applicable to solve geometric problems. For instance,
testing whether a point P lies on the curve only requires computing the rank of Mν evaluated in P . Other
interesting results using square matrix representations directly to solve geometric problems are presented,
for example, in [ACGS07] or [Ma94], in which intersection problems are treated by means of eigenvalue
techniques.
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It is a natural question whether this kind of matrix representation can be generalized to rational surfaces
defined as the image of a map

A
2 f
99KA

3

(s, t) 7→

(

f1(s, t)

f4(s, t)
,
f2(s, t)

f4(s, t)
,
f3(s, t)

f4(s, t)

)

where fi ∈ K[s, t] are coprime polynomials of degree d. In order to put the problem in the context of graded
modules, one first has to consider an associated projective map

T
g

99K P
3

P 7→ (g1(P ) : g2(P ) : g3(P ) : g4(P ))

where T is a 2-dimensional projective toric variety (for example P2 or P1 × P1) with coordinate ring A
and the gi ∈ A are homogenized versions of their affine counterparts fi. In other words, T is a suitable
compactification of the affine space (A∗)2 [Co03a, Fu93]. In this case, a linear syzygy (or moving plane) of
the parametrization g is a linear relation on the g1, . . . , g4, i.e. a linear form L = h1T1 + h2T2 + h3T3 + h4T4

in the variables T1, . . . , T4 with hi ∈ K[s, t] such that
∑

i=1,...,4

higi = 0 (1)

Exactly in the same way as for curves, one can set up the matrix Mν of coefficients of the syzygies in a
certain degree ν, but unlike in the curve case, it is in general not possible to choose a degree ν such that Mν

is a square matrix representation of the surface. In recent years, two main approaches have been proposed
to deal with this problem:
– One allows the use of quadratic syzygies (or higher-order syzygies) in addition to the linear syzygies in
order to be able to construct square matrices.

– One only uses linear syzygies as in the curve case and obtains non-square representation matrices.
The first approach using linear and quadratic syzygies (or moving planes and quadrics) has been treated

in [Co03a] for base-point-free homogeneous parametrizations, i.e. T = P
2, and [BCD03] does the same in the

presence of base points. In [AHW05], square matrix representations of bihomogeneous parametrizations, i.e.
T = P1 × P1, are constructed with linear and quadratic syzygies, whereas [KD06] gives such a construction
for parametrizations over toric varieties of dimension 2. The methods using quadratic syzygies usually require
additional conditions on the parametrization and the choice of the quadratic syzygies is often not canonical.
The second approach, even though it does not produce square matrices, has certain advantages, in par-

ticular in the sparse setting that we present. In previous publications, this approach with linear syzygies,
which relies on the use of the so-called approximation complexes has been developed in the case T = P2,
see for example [BJ03], [BC05], and [Ch06], and in [BD07] for bihomogeneous parametrizations of degree
(d, d). However, for a given affine parametrization f , these two varieties are not necessarily the best choice
of a compactification of affine space, since they do not always reflect well the combinatorial structure of the
polynomials f1, . . . , f4. In this paper we will extend the method to a much larger class of varieties, namely
toric varieties of dimension 2, and we will see that this generalization allows us to choose a “good” toric
compactification of (A∗)2 depending on the polynomials f1, . . . , f4, which makes the method applicable in
cases where it failed over P2 or P1 × P1 and we will also see that it is significantly more efficient and leads
to much smaller representation matrices.
The main idea of our method is similar to the one in [BD07]. We use a (general) toric embedding to

consider our domain as a 2-dimensional toric variety contained in a higher-dimensional projective space,
which we present in Section 2. Contrary to the cited paper, this natural domain will not be in general
a hypersurface and its coordinate ring will usually not be Gorenstein, which means that we have to give
new proofs for some of the results in which this property was used. In Section 3 we proceed to establish the
necessary homological tools and in particular to derive bounds on local cohomology in Theorem 11, our main
technical result. After that, we will see in Section 4 that we can deduce the validity of the approach from
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previous results to produce an efficient representation matrix for the implicit equation (see Corollary 14).
The particular case of bihomogeneous parametrizations of any bidegree is illustrated in Section 5. We then
show the advantages of our method through several examples in Section 6. After some concluding remarks
which summarize the scope of the paper in Section 7, an implementation in Macaulay2 [M2] for the important
special case T = P1 × P1 is included as an appendix.

2. Toric embeddings

Let K be a field. All the varieties considered hereafter are understood to be taken over K. We suppose given
a rational map

A
2 f
99K P

3

(s, t) 7→ (f1 : f2 : f3 : f4)(s, t)

where fi ∈ K[s, t] are polynomials. We assume that
– f is a generically finite map onto its image and hence parametrizes an irreducible surface S ⊂ P3

– gcd(f1, . . . , f4) = 1, which means that there are only finitely many base points.
We briefly introduce some basic notions from toric geometry. These constructions are investigated in more
detail in [KD06, Sect. 2], [Co03b], and [GKZ94, Ch. 5 & 6].

Definition 2. Let p =
∑

(α,β)∈Z2 pα,βs
αtβ ∈ K[s, t]. We define the support Supp(p) to be the set of all the

exponents which appear in p, i.e.

Supp(p) = {(α, β) ∈ Z
2 | pα,β 6= 0} ⊂ Z

2

The Newton polytope N(f) ⊂ R2, where f = (f1, f2, f3, f4), is defined as the convex hull of the union
⋃

i Supp(fi) in R2 of the supports of the fi. In other words, N(f) is the smallest convex lattice polygon in
R2 containing all the exponents appearing in one of the fi. Note that our hypothesis that f is generically
finite implies that N(f) is two-dimensional. Furthermore, let d ∈ N be the biggest integer such that N(f)
equals

d ·N′(f) = {p1 + · · ·+ pd, pi ∈ N′(f)},

where N′(f) is a lattice polygon. In other words, N′(f) is the smallest possible homothety of N(f) with
integer vertices.

Then N′(f) defines a two-dimensional projective toric variety T ⊆ Pm, as explained in [Co03b], where m+1
is the cardinality of N′(f) ∩ Z2. It is defined as the closed image of the embedding

(A∗)2
ρ
→֒ P

m

(s, t) 7→ (. . . : sitj : . . .)

where (i, j) ∈ N′(f) ∩ Z2. For example, the triangle between the points (0, 1), (1, 0), and (0, 0) corresponds
to P2 and P1×P1 has a rectangle as polygon. The rational map f factorizes through T in the following way

(A∗)2
f //___

ρ

��

P3

T

g

<<
y

y

y

y

y

(2)

where g is given by four polynomials g1, . . . , g4 of degree d in m variables. Thus, we have extended the affine
parametrization f to a parametrization g of S over the projective variety T

T
g

99K P
3

P 7→ (g1(P ) : . . . : g4(P ))
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for which we will adapt the method of approximation complexes. This map induces an application between
the homogeneous coordinate rings

K[T1, T2, T3, T4]
h
−→A

Ti 7→ gi(X0, . . . , Xm)

where A = K[X0, . . . , Xm]/I(T ) is the homogeneous coordinate ring of T , which is a domain, as I(T ) is
prime. Note that the variables Xk correspond to monomials sitj and the ideal I(T ) is the ideal of relations
between these monomials. The implicit equation of S is a generator of the principal ideal ker(h). We should
remark that the toric ideals I(T ) are very well understood and there exist highly efficient software systems
to compute their Gröbner bases, for example [4ti2].

Instead of N′(f) we could actually have chosen any polygon Q such that a multiple d · Q, d ∈ N, contains
N(f). In particular, we could choose N(f) itself, in which case the gi will become linear forms, compare
[KD06, Sect. 2]. We will see in Section 5 that N′(f) is always a better choice than N(f); for the moment let
us just state that a smaller polygon leads to a less complicated coordinate ring but to a higher degree of the
gi and that the advantages of the former outweigh the inconveniences of the latter. Intuitively, the surface
T should be understood to be the smallest compactification of (A∗)2 through which the map f factorizes,
so in a way it respects the geometry of the map best and is a natural candidate. However, we will see in
Example 18 that in some cases there are better choices than the canonical choice N′(f).

2.1. The combinatorial structure of the ring A

We can describe the ring A in a more combinatorial way, which will enable us to study its properties in
more detail. Let C be the cone generated by the polytope N′(f). i.e. the rational cone over N′(f)× 1 ⊂ R

3.
Then C ∩ Z3 equals the union of Cn for n ∈ N, where

Cn = {(i, j, n) | (i, j) ∈ (n · N′(f)) ∩ Z
2} ⊆ Z

3

which means that at each height n we have a homothety of N′(f) by a factor of n. In particular, we identify
C1 with N′(f) ∩ Z2. Since we are dealing with polygons in dimension two, it holds that

(n ·N′(f)) ∩ Z
2 = n · (N′(f) ∩ Z

2).

This property is called normality. We should note that these considerations are no longer true in higher
dimensions. This is because in dimension ≥ 3 there exist non-normal lattice polytopes [MS05, Ex. 12.6]. In
fact, the study of normality of smooth lattice polytopes is a subject of current research [HHM07]
As an illustration, consider the following picture of the cone C:

i

j

n

b
b

b

b

b

b

b

b

b

b

Now we can associate an affine semigroup ring K[C] to this cone: one takes the K-vector space freely
generated by the elements of C ∩ Z3 and equips it with a natural multiplication, which is induced by the
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addition of vectors in Z3, see [BH93, Ch. 6] for more details. It is actually a graded K-algebra, with the
grading being induced by the height n, i.e. by the decomposition C ∩ Z3 =

⋃

n Cn. If the variable Xk in A
stands for the monomial sitj , we can identify it with the point (i, j, 1) ∈ C ∩ Z

3. The multiplication of two
monomials in A corresponds to the addition of two vectors in C.
It is easy to verify that the above correspondence extends to a graded isomorphism of K-algebras between

A and K[C] by observing that the relations of I(T ) correspond to different decompositions of an element
of Cn as the sum of elements of smaller degree, so we actually have

A ≃ K[C]

Exploiting this combinatorial description of the ring A we can deduce some algebraic properties, but let us
first recall the definition of the canonical module, a notion we will use in this section.

Definition 3. Let R = K[X1, . . . , Xn], I an ideal of R and suppose that M = R/I is of dimension d. Then
the canonical module of R is defined as ωR = R[−n] and

ωM = Extn−d
R (M,R[−n])

is the canonical module ωM of M .

The ring A is an affine normal semigroup ring by [BH93, Prop. 6.1.2 and 6.1.4], since C ∩ Z3 is a normal
semigroup. Moreover, by [BH93, Prop. 6.3.5] it is Cohen-Macaulay and its canonical module ωA is the ideal
generated by the monomials that correspond to integer points in the interior of C. This shows that A is
Gorenstein if and only if the first Ci with non-empty interior (either i = 1, i = 2, or i = 3) contains exactly
one point. In this case, it is actually easy to see the isomorphism between ωA and A geometrically: It is
nothing else than the translation that moves this point in the interior of Ci to the origin. Note that in the
previous works [BJ03], [BC05], and [BD07], the ring A was always Gorenstein and this property was used
in some of the proofs. In our context we have to do without this property, which means that some of the
proofs need to be modified.

3. Homological tools

3.1. Overview of approximation complexes

We will quickly recall the construction of the approximation complex Z• in order to fix notation, compare
also [HSV83], [Va94], and [BJ03].
Let us denote by Xi the class of the variable in the homogeneous coordinate ring A = K[X]/J of T ,

where J = I(T ) and X stands for the sequence X0, . . . , Xm. A is a graded ring, each variable having weight
1. Let I = (g1, g2, g3, g4) ⊂ A be the ideal generated by the gi, recall that d = deg(gi). We consider the
Koszul complex (K•(g,A), δ•) associated to g1, . . . , g4 over A

A[−4d]
δ4 // A[−3d]4

δ3 // A[−2d]6
δ2 // A[−d]4

δ1 // A

where the differentials are matrices with ±g1, . . . ,±g4 as non-zero entries. Write K0 = A, K1 = A4[−d],
K2 = A6[−2d], K3 = A4[−3d], and K4 = A[−4d]. Set Zi := ker(δi) ⊂ Ki, which says that Zi also keeps the
degree shift. Note that with this notation the sequence

0 → Zi → Ki → Bi−1 → 0 (3)

is an exact sequence of graded modules (with morphisms of degree zero).
We set Zi = Zi[i ·d]⊗AA[T ], which we will consider as bigraded A[T ]-modules (one grading is induced by

the grading of A, the other one comes from setting deg(Ti) = 1 for all i). Now the approximation complex
of cycles (Z•(g,A), ǫ•), or simply Z•, is the complex

0 // Z3(−3)
ǫ3 // Z2(−2)

ǫ2 // Z1(−1)
ǫ1 // Z0

6



where the differentials ǫ• are obtained by replacing gi by Ti for all i in the matrices of δ• and where the
degree shifts are with respect to the grading by the Ti. Then im(ǫ1) is generated by the linear syzygies of
the gi and

H0(Z•) = A[T ]/im(ǫ1) ≃ SymA(I)

From now on, when we take the degree ν part of the approximation complex, denoted (Z•)ν , it should
always be understood to be taken with respect to the grading of A. Hereafter we denote by m the maximal
ideal (X0, . . . , Xm) ⊂ A.

The geometric intuition behind the Z-complex is quite profound, we only give some hints and refer to [Ch06,
Sect. 3] or [Va94] for a more thorough treatment of the subject. The symmetric algebra is closely related to
the Rees algebra ReesA(I), which can be defined as the quotient of A[T ] by all the syzygies (not only the
linear ones). One has thus a canonical surjection from SymA(I) onto ReesA(I), which induces an inclusion

Biproj(ReesA(I)) →֒ Biproj(SymA(I)) (4)

Now Biproj(ReesA(I)) corresponds to the closure of the graph of the map g and its image by the projection
to P3 equals the surface S , while Biproj(SymA(I)) is a priori a bigger object. However, SymA(I) is in
some ways easier to study and under suitable conditions on the base points the inclusion in (4) becomes
an isomorphism and one can retrieve the information about S contained in the Rees algebra from the
symmetric algebra. More precisely, we will see that the implicit equation of S can be obtained from the
determinant of certain graded parts of the Z-complex.
The next lemma shows that the complex Z•(g1, . . . , g4;A) is acyclic if the base points are local complete

intersections and finite in number. This is a standard hypothesis for syzygy-based implicitization methods,
see [KD06].

Lemma 4. Let I = (g1, g2, g3, g4) ⊂ A. Suppose that P := Proj(A/I) ⊂ T has at most dimension 0 and is
locally a complete intersection, then the complex Z• is acyclic.

Proof. If there are no base points this follows immediately from [BJ03, Prop. 4.7] and for finitely many
base points from [BJ03, Prop. 4.9]. We only have to check that the hypotheses of these propositions are
verified: In our case, we have n = 4 and we need to check that dim(A) = depthm(A) = n − 1 = 3, which
is true because A is Cohen-Macaulay and because A is the homogeneous coordinate ring of a (projective)
surface. Moreover, in the presence of base points, the equality depthI(A) = codim(I) = 2 = n− 2 is again
a consequence of the Cohen-Macaulayness of A.

Remark 5. It can be shown in a similar way as in [BD07, Lemma 1] that the Z-complex is still acyclic if
the base points are almost local complete intersections, but we will not treat this case here.

3.2. Bounds on local cohomology

The following lemma establishes a vanishing criterion on the local cohomology of SymA(I), which ensures
that the implicit equation can be obtained as a generator of the annihilator of the symmetric algebra in a
certain degree. We refer to [BS98] for more details on local cohomology, a detailed treatment of which is
beyond the scope of this work.

Lemma 6. Suppose that P := Proj(A/I) ⊂ T has at most dimension 0 and is locally a complete intersec-
tion. If η is an integer such that

H0
m(SymA(I))ν = 0 for all ν ≥ η

then we have
annK[T ](SymA(I)ν) = annK[T ](SymA(I)η) = ker(h)

for all ν ≥ η.

Proof. The proof of [BD07, Lemma 2] can be applied verbatim.

7



As we shall see, the annihilator in the above lemma can be computed as the determinant (or MacRae
invariant) of the complex (Z•)η, so we should give an explicit formula for the integer η, but we first need
to study the local cohomology of A using its combinatorial structure as a semigroup ring. The following
definition is the same as [MS05, Def. 11.15].

Definition 7. Let M be a graded A-module. The Matlis dual M∨ of M is the A-module defined by

(M∨)−u = HomK(Mu,K),

the multiplication being the transpose. One has (M∨)∨ = M if all the graded parts Mu of M are finite-
dimensional as K-vector spaces.

Lemma 8. Let M be a finitely generated graded A-module of dimension r. Then M is Cohen-Macaulay if
and only if Hi

m(M) = 0 for all i 6= r and Hr
m(M) = ω∨

M is the Matlis dual to ωM .

Proof. This is [MS05, Th. 13.37].

So the local cohomology of an A-module that is Cohen-Macaulay can be expressed in terms of its canonical
module. Let us apply this to the A-module A. Using that dim(A) = 3 and that A is Cohen-Macaulay we
immediately deduce

Corollary 9. The local cohomology of A is

Hi
m(A) =







0 if i 6= 3

ω∨
A if i = 3

where ω∨
A is the Matlis dual to the canonical module ωA.

So the third local cohomology module of A is the only one that is non-zero. Actually, we do not need to
know this module exactly; it is sufficient to know in which graded parts it vanishes.

Corollary 10. Let α := max{i | Ci contains no interior points} and let ν ∈ Z. Then we have H3
m(A)ν = 0

if ν ≥ −α.

Proof. By Corollary 9 and the definition of the Matlis dual we have the identities

H3
m(A)ν = (ω∨

A)ν = HomK((ωA)−ν ,K)

but the module ωA is generated by the elements in the interior of C, i.e. by elements of degree at least α+1,
so whenever ν ≥ −α, it follows (ωA)−ν = 0 and the modules in the above equation are all zero.

We can now proceed to investigate the vanishing of the 0th local cohomology of the symmetric algebra. The
proof is similar to the corresponding theorems [BJ03, 5.5 and 5.10] and [BD07, Th. 1]. We give two bounds,
an explicit one, which always holds, and a lower but more complicated bound for the case when there are
base points.

Theorem 11. Suppose that P := Proj(A/I) ⊂ T has at most dimension 0 and is locally a complete
intersection. Then

H0
m(SymA(I))ν = 0 ∀ν ≥ ν0 = 2d− α

where α := max{i | Ci contains no interior points } as before. Moreover, if there is at least one base point,
one even has

H0
m(SymA(I))ν = 0 ∀ν ≥ ν0 = max{d− α, 2d+ 1− indeg(H0

m(ωA/I.ωA))}.

Proof. The proof is virtually the same for the two cases. As the first one has been proven in [Do08, Th.
4.11], we only give a proof for the second bound. Consider the two spectral sequences associated to the
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double complex C•
m(Z•), both converging to the hypercohomology of Z•. By Lemma 4, Z• is acyclic, hence

the first spectral sequence stabilizes at step two with

′
∞Ep

q = ′
2E

p
q = Hp

m(Hq(Z•)) =







Hp
m(SymA(I)) for q = 0,

0 otherwise.

The second one has as first screen:

′′
1E

p
q = Hp

m(Zq)[qd]⊗A A[T1, . . . , T4](−q).

The comparison of the two spectral sequences shows that H0
m(SymA(I))ν vanishes as soon as (1

′′Ep
p )ν

vanishes for all p, in fact we have that

end(H0
m(SymA(I))) ≤ max

p≥0
{end(1

′′Ep
p)} = max

p≥0
{end(Hp

m(Zp)− p · d}.

where we denote end(M) = max{ν | Mν 6= 0 }. By Corollary 9 and the fact that Z0
∼= A, H0

m(Z0) = 0.
Recall that the sequence

0 → Zi+1 → Ki+1 → Bi → 0 (5)

shown in (3) is graded exact. From (5), applied to i = 0 (writing B0 = I) we obtain the long exact sequences
of local cohomology

. . . → H0
m(I) → H1

m(Z1) → H1
m(K1) → . . . .

Now H0
m(I) = 0, as I is an ideal of an integral domain, by Corollary 9 we have H1

m(K1) = 0, hence H1
m(Z1)

vanishes.
Now as depthA(I) ≥ 2, the Koszul complex is exact for i > 4 − 2 = 2, i.e. Bi = Zi. It is clear by

construction of the Koszul complex that Z4 = 0 and that B3 = im(d3) ≃ A[−d]. Using that H3
m(A)ν = 0 for

ν ≥ −α by Corollary 10, we can deduce that H3
m(Z3)ν = H3

m(B3)ν = 0 if ν ≥ d− α. It follows that

end(1
′′Ep

p ) ≤



















−∞ for p = 0, 1, or p > 3

ǫ for p = 2

d− α− 1 for p = 3

It remains to determine ǫ. From the short exact sequence 0 → Bi → Zi → Hi → 0 we get the exact sequence

H0
m(Z1) → H0

m(H1) → H1
m(B1) → 0,

hence, as H2
m(Z2) ∼= H1

m(B1) by (5), there is a surjective graded map H0
m(H1) ։ H2

m(Z2).
Moreover, setting —⋆ := HomgrA(—, A/m), by [Ch04, Lemma 5.8] we have the graded isomorphism

(H0
m(H1))

⋆ ∼= H0
m(H0(g1, . . . , g4;ωA))[4d] ∼= H0

m(ωA/I.ωA)[4d]. Hence, we obtain

end(′′1E
2
2) = end(H2

m(Z2)[2d])

≤ end(H0
m(H1))− 2d

= −indeg(H0
m(ωA/I.ωA)[4d])− 2d

= 2d− indeg(H0
m(ωA/I.ωA)).

We have shown that ǫ ≤ 2d− indeg(H0
m(ωA/I.ωA)), hence H0

m(SymA(I))ν vanishes as soon as ν ≥ ν0 :=
max{d− α, 2d+ 1− indeg(H0

m(ωA/I.ωA))}.

Remark 12. Clearly, the advantage of the bound ν0 = 2d− α is that it does not require the computation
of H0

m(ωA/I.ωA), which can turn out to be difficult even in simple examples. However, even though it might
not be obvious at first sight, the second bound is lower. For example, take the case studied in [BD07], i.e.
N′(f) is a unit square and A is the quotient K[X0, X1, X2, X3]/X0X3 −X1X2. By [BD07, Prop. 2], we can
identify ωA

∼= A[−4+2], hence ν0 = 2d+1− indeg(H0
m(A/I)[−2]) = 2d− 1− indeg(Isat), whereas the naive
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bound would be 2d−α = 2d− 1. Similarly, in the case T = P2, our bound coincides with the known bound
ν0 = 2d− 2− indeg(Isat) from [BC05, Th. 3.2], as compared to 2d− 2.
Also in the general case, one always has 2d+1− indeg(H0

m(ωA/I.ωA)) ≤ 2d−α due to ωA being generated
in degree at least α+ 1 as explained in Section 2.1, and obviously d− α < 2d− α.

4. The representation matrix

It can now be deduced that the determinant of the Z•-complex is a power of the implicit equation of S .
Indeed, using Lemma 4, Lemma 6, and Theorem 11, a completely analogous proof to [BJ03, Th. 5.2] shows
the following.

Theorem 13. Suppose that P := Proj(A/I) ⊂ T has at most dimension 0 and is locally a complete
intersection. Let α := max{i | Ci contains no interior points} as before and ν0 = 2d − α. For any integer
ν ≥ ν0 the determinant D of the complex (Z•)ν of K[T ]-modules defines (up to multiplication with a constant)
the same non-zero element in K[T ] and

D = F deg(g)

where F is the implicit equation of S .

By Theorem 11, one can replace the bound in this result by the more precise bound ν0 = max{d− α, 2d+
1 − indeg(H0

m(ωA/I.ωA))} if there is at least one base point. As in [Ch06] or [BCJ06], there is a possible
generalization of the above theorem to the case of almost local completion intersection base points. However,
the proofs of the corresponding results (or the one of [BC05, Th. 4]) do not apply directly here, because
they use at some points that A is Gorenstein, which is not necessarily the case in the toric setting.

By [GKZ94, Appendix A], the determinant D can be computed either as an alternating sum of subdetermi-
nants of the differentials in Zν or as the greatest common divisor of the maximal-size minors of the matrix
M associated to the first map (Z1)ν → (Z0)ν . Note that this matrix is nothing else than the matrix Mν of
linear syzygies as described in the introduction; it can be computed with the same algorithm as in [BD07]
by solving the linear system given by the degree ν0 part of (1). As an immediate corollary we deduce the
following very simple translation of Theorem 13, which can be considered the main result of this paper.

Corollary 14. Let T
g

99K P3 be a parametrization of the surface S ⊂ P3 given by g = (g1 : g2 : g3 : g4)
with gi ∈ A. Let Mν be the matrix of linear syzygies of g1, . . . , g4 in degree ν ≥ 2d − α, i.e. the matrix of
coefficients of a K-basis of Syz(g)ν with respect to a K-basis of Aν . If g has only finitely many base points,
which are local complete intersections, then Mν is a representation matrix for the surface S .

We should also remark that by [KD06, Prop. 1] (or [Co01, Appendix]) the degree of the surface S can be
expressed in terms of the area of the Newton polytope and the Hilbert-Samuel multiplicities of the base
points:

deg(g)deg(S ) = Area(N(f))−
∑

p∈V (g1,...,g4)⊂T

ep (6)

where Area(N(f)) is twice the Euclidean area of N(f), i.e. the normalized area of the polygon. For locally
complete intersections, the multiplicity ep of the base point p is just the vector space dimension of the local
quotient ring at p.

5. The special case T = P1
× P1

Bihomogeneous parametrizations, i.e. the case T = P1 × P1, are particularly important in practical ap-
plications, so we will now make explicit the most important constructions in that case and make some
refinements. We also include an implementation in Macaulay2 [M2] in the Appendix.
In this section, we consider a rational parametrization of a surface S
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P
1 × P

1 f
99K P

3

(s : u)× (t : v) 7→ (f1 : f2 : f3 : f4)(s, u, t, v)

where the polynomials f1, . . . , f4 are bihomogeneous of bidegree (e1, e2) with respect to the homogeneous
variable pairs (s : u) and (t : v), and e1, e2 are positive integers. We make the same assumptions as in the
general toric case. Let d = gcd(e1, e2), e

′
1 = e1

d
, and e′2 = e2

d
. So we assume that the Newton polytope N(f)

is a rectangle of length e1 and width e2 and N′(f) is a rectangle of length e′1 and width e′2 (in fact N(f)
might be smaller, but in this section we homogenize with respect to the whole rectangle).
So P1 × P1 can be embedded in Pm, m = (e′1 + 1)(e′2 + 1) − 1 through the Segre-Veronese embedding

ρ = ρe1,e2

P
1 × P

1 ρ
→֒ P

m

(s : u)× (t : v) 7→ (. . . : siue′
1
−itjve

′

2
−j : . . .)

We denote by T its image, which is an irreducible surface in Pm, whose ideal J is generated by quadratic
binomials. We have the following commutative diagram.

P
1 × P

1 f //___

ρ

��

P3

T

g

;;
v

v

v

v

v

(7)

with g = (g1 : . . . : g4), the gi being polynomials in the variables X0, . . . , Xm of degree d. We denote by
A = K[X0, . . . , Xm]/J the homogeneous coordinate ring of T . We can give an alternative construction of
the coordinate ring; consider the N-graded K-algebra

S :=
⊕

n∈N

(

K[s, u]ne′
1
⊗K K[t, v]ne′

2

)

⊂ K[s, u, t, v]

which is finitely generated by S1 as an S0-algebra. Then P1 × P1 is the bihomogeneous spectrum Biproj(S)
of S, since Proj(

⊕

n∈N
K[s, u]ne′

1
) = Proj(

⊕

n∈N
K[t, v]ne′

2
) = P1. The Segre-Veronese embedding ρ induces

an isomorphism of N-graded K-algebras

A
θ
−→ S

X i,j 7→ siue′
1
−itjve

′

2
−j

where X i,j = X(e′
2
+1)i+j for i = 0, . . . , e′1 and j = 0, . . . , e′2 and the implicit equation of S can be obtained

by the method of approximation complexes described in the previous sections as the kernel of the map

K[T1, . . . , T4]→A

Ti 7→ gi

The ring A is an affine normal semigroup ring and it is Cohen-Macaulay. It is Gorenstein if and only if
e′1 = e′2 = 1 (or equivalently e1 = e2), which is the case treated in [BD07]. The ideal J is easier to describe
than in the general toric case (compare [Su06, 6.2] for the case e′2 = 2). The generators of J can be described
explicitly. Let

Ai =





X i,0 . . . X i,e′
2
−1

X i,1 . . . X i,e′
2



 ,

then the ideal J is generated by the 2-minors of the 4× e′1e
′
2-matrix below built from the matrices Ai:





A0 . . . Ae′
1
−1

A1 . . . Ae′
1



 . (8)
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Let us also state the degree formula for this setting, which is a direct corollary of (6):

deg(g)deg(S ) = 2e1e2 −
∑

p∈V (g1,...,g4)⊂T

ep

where as before ep is the multiplicity of the base point p.
We have claimed before that it is better to choose the toric variety defined by N′(f) instead of N(f). Let

us now give some explanations why this is the case. As we have seen, a bihomogeneous parametrization of
bidegree (e1, e2) gives rise to the toric variety T = P

1×P
1 determined by a rectangle of length e′1 and width

e′2, where e′i =
ei
d
, d = gcd(e1, e2), and whose coordinate ring can be described as

S :=
⊕

n∈N

(

K[s, u]ne′
1
⊗K K[t, v]ne′

2

)

⊂ K[s, u, t, v]

Instead of this embedding of P1×P1 we could equally choose the embedding defined by N(f), i.e. a rectangle
of length e1 and width e2, in which case we obtain the following coordinate ring

Ŝ :=
⊕

n∈N

(K[s, u]ne1 ⊗K K[t, v]ne2) ⊂ K[s, u, t, v]

It is clear that this ring also defines P1 × P1 and we obviously have an isomorphism

Ŝn ≃ Sd·n

between the graded parts of the two rings, which means that the grading of Ŝ is coarser and contains
less information. It is easy to check that the above isomorphism induces an isomorphism between the
corresponding graded parts of the approximation complexes Z• corresponding to S and Ẑ• corresponding
to Ŝ, namely

Ẑν ≃ Zd·ν

If the optimal bound in Theorem 13 for the complex Z is a multiple of d, i.e. ν0 = d · η, then the optimal
bound for Ẑ is ν̂0 = η and we obtain isomorphic complexes in these degrees and the matrix sizes will be
equal in both cases. If not, the optimal bound ν̂0 is the smallest integer bigger than ν0

d
and in this case,

the vector spaces in Ẑν̂0 will be of higher dimension than their counterparts in Zν0 and the matrices of the
maps will be bigger. An example of this is given in the next section.

6. Examples

Example 15. We first treat some examples from [KD06]. Example 10 in the cited paper, which could not
be solved in a satisfactory manner in [BD07], is a surface parametrized by

f1 = (t+ t2)(s− 1)2 + (1 + st− s2t)(t− 1)2

f2 = (−t− t2)(s− 1)2 + (−1 + st+ s2t)(t− 1)2

f3 = (t− t2)(s− 1)2 + (−1− st+ s2t)(t− 1)2

f4 = (t+ t2)(s− 1)2 + (−1− st− s2t)(t− 1)2

The Newton polytope N′(f) of this parametrization is

b

bb

b

b
0 1 2

0

1

2

3

12



We can compute the new parametrization over the associated variety, which is given by linear forms g1, . . . , g4,
i.e. d = 1 (since there is no smaller homothety N′(f) of N(f)) and the coordinate ring is A = K[X0, . . . , X8]/J
where J is generated by 21 binomials of degrees 2 and 3. Recall that the 9 variables correspond to the 9
points in the Newton polytope. In the optimal degree ν0 = 1 as in Theorem 11, the implicit equation of
degree 5 of the surface S is represented by a 9 × 14-matrix, compared to a 15 × 15-matrix with the toric
resultant method (from which a 11× 11-minor has to be computed) and a 5× 5-matrix with the method of
moving planes and quadrics. Note also that this is a major improvement of the method in [BD07], where a
36× 42-matrix representation was computed for the same example.

Example 16. Example 11 of [KD06] is similar to Example 10 but an additional term is added, which
transforms the point (1, 1) into a non-LCI base point. The parametrization is

f1 = (t+ t2)(s− 1)2 + (1 + st− s2t)(t − 1)2 + (t+ st+ st2)(s− 1)(t − 1)

f2 = (−t− t2)(s− 1)2 + (−1 + st+ s2t)(t − 1)2 + (t + st+ st2)(s− 1)(t − 1)

f3 = (t− t2)(s− 1)2 + (−1 − st+ s2t)(t − 1)2 + (t + st+ st2)(s− 1)(t − 1)

f4 = (t+ t2)(s− 1)2 + (−1 − st− s2t)(t − 1)2 + (t + st+ st2)(s− 1)(t − 1)

The Newton polytope has not changed, so the embedding as a toric variety and the coordinate ring A are
the same as in the previous example. Again the new map is given by g1, . . . , g4 of degree 1.
As in [KD06], the method represents (with ν0 = 1) the implicit equation of degree 5 times a linear

extraneous factor caused by the non-LCI base point. While the Chow form method represents this polynomial
as a 12×12-minor of a 15×15-matrix, our representation matrix is 9×13. Note that in this case, the method
of moving lines and quadrics fails.

Example 17. In this example, we will see that if the ring A is not Gorenstein, the correction term for ν0 is
different from indeg(Isat), unlike in the homogeneous and the unmixed bihomogeneous cases. Consider the
parametrization

f1 = (s2 + t2)t6s4 + (1 + s3t4 − s4t4)(t− 1)5(s2 − 1)

f2 = (−s2 − t2)t6s4 + (−1 + s3t4 + s4t4)(t− 1)5(s2 − 1)

f3 = (s2 − t2)t6s4 + (−1− s3t4 + s4t4)(t− 1)5(s2 − 1)

f4 = (s2 + t2)t6s4 + (−1− s3t4 − s4t4)(t− 1)5(s2 − 1)

We will consider this as a bihomogeneous parametrization of bidegree (6, 9), that is we will choose the
embedding ρ corresponding to a rectangle of length 2 and width 3. The actual Newton polytope N(f) is
smaller than the (6, 9)-rectangle, but does not allow a smaller homothety. One obtains A = K[X0, . . . , X11]/J ,
where J is generated by 43 quadratic binomials and the associated gi are of degree d = 3. It turns out that
ν0 = 4 is the lowest degree such that the implicit equation of degree 46 is represented as determinant of Zν0 ,
the matrix of the first map being of size 117×200. So we cannot compute ν0 as 2d− indeg(Isat) = 6−3 = 3,
as one might have been tempted to conjecture based on the results of the homogeneous case. This is of
course due to A not being Gorenstein, since the rectangle contains two interior points.

Let us make a remark on the computation of the representation matrix. It turns out that this is highly
efficient. Even if we choose the non-optimal bound ν = 6 as given in Theorem 13, the computation of the
247 × 518 representation matrix is computed instantaneously in Macaulay2. Just to give an idea of what
happens if we take higher degrees: For ν = 30 a 5551× 15566-matrix is computed in about 30 seconds, and
for ν = 50 we need slightly less than 5 minutes to compute a 15251× 43946 matrix.
In any case, the computation of the matrix is relatively cheap and the main interest in lowering the bound

ν0 as much as possible is the reduction of the size of the matrix, not the time of its computation. This
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reduction improves the performance of algorithmic applications of our approach, notably to decide whether
a given point lies in the parametrized surface.

Example 18. In the previous example, we did not fully exploit the structure of N(f) and chose a bigger
polygon for the embedding. Here is an example where this is necessary to represent the implicit equation
without extraneous factors. Take (f1, f2, f3, f4) = (st6 + 2, st5 − 3st3, st4 + 5s2t6, 2 + s2t6). This is a very
sparse parametrization and we have N(f) = N′(f). The coordinate ring is A = K[X0, . . . , X5]/J , where
J = (X2

3 −X2X4, X2X3 −X1X4, X
2
2 −X1X3, X

2
1 −X0X5) and the new base-point-free parametrization g

is given by (g1, g2, g3, g4) = (2X0 +X4,−3X1 +X3, X2 + 5X5, 2X0 +X5). The Newton polytope looks as
follows.

b

bb

0 1 2
0

1

2

3

4

5

6

N(f)

For ν0 = 2d = 2 we can compute the matrix of the first map of (Z•)ν0 , which is a 17 × 34-matrix. The
greatest common divisor of the 17-minors of this matrix is the homogeneous implicit equation of the surface;
it is of degree 6 in the variables T1, . . . , T4:

2809T 2
1T

4
2 + 124002T 6

2 − 5618T 3
1T

2
2 T3 + 66816T1T

4
2 T3 + 2809T 4

1T
2
3

−50580T 2
1T

2
2 T

2
3 + 86976T 4

2T
2
3 + 212T 3

1T
3
3 − 14210T1T

2
2 T

3
3 + 3078T 2

1T
4
3

+13632T 2
2T

4
3 + 116T1T

5
3 + 841T 6

3 + 14045T 3
1T

2
2 T4 − 169849T1T

4
2 T4

−14045T 4
1T3T4 + 261327T 2

1T
2
2 T3T4 − 468288T 4

2T3T4 − 7208T 3
1T

2
3 T4

+157155T1T
2
2 T

3
3 T4 − 31098T 2

1T
3
3 T4 − 129215T 2

2T
3
3 T4 − 4528T1T

4
3 T4

−12673T 5
3T4 − 16695T 2

1T
2
2 T

2
4 + 169600T 4

2T
2
4 + 30740T 3

1T3T
2
4

−433384T1T
2
2 T3T

2
4 + 82434T 2

1T
2
3 T

2
4 + 269745T 2

2T
2
3 T

2
4 + 36696T1T

3
3 T

2
4

+63946T 4
3T

2
4 + 2775T1T

2
2 T

3
4 − 19470T 2

1T3T
4
4 + 177675T 2

2T3T
3
4

−85360T1T
2
3 T

3
4 − 109490T 3

3T
3
4 − 125T 2

2T
4
4 + 2900T1T3T

4
4

+7325T 2
3T

4
4 − 125T3T

5
4

As in Example 17 we could have considered the parametrization as a bihomogeneous map either of bidegree
(2, 6) or of bidegree (1, 3), i.e. we could have chosen the corresponding rectangles instead of N(f). This leads
to more complicated coordinate rings (20 resp. 7 variables and 160 resp. 15 generators of J) and to bigger
matrices (of size 21 × 34 in both cases). Even more importantly, the parametrizations will have a non-LCI
base point and the matrices do not represent the implicit equation but a multiple of it (of degree 9). Instead,
if we consider the map as a homogeneous map of degree 8, the results are even worse: For ν0 = 6, the
28× 35-matrix Mν0 represents a multiple of the implicit equation of degree 21.
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To sum up, in this example the toric version of the method of approximation complexes works well,
whereas it fails over P1 × P1 and P2. This shows that the extension of the method to toric varieties really is
a generalization and makes the method applicable to a larger class of parametrizations.

Interestingly, we can even do better than with N(f) by choosing a smaller polytope. The philosophy is that
the choice of the optimal polytope is a compromise between two criteria:
– The polytope should be as simple as possible in order to avoid that the ring A becomes too complicated.
– The polytope should respect the sparseness of the parametrization (i.e. be close to the Newton polytope)
so that no base points appear which are not local complete intersections.

So let us repeat the same example with another polytope Q, which is small enough to reduce the size of the
matrix but which only adds well-behaved (i.e. local complete intersection) base points:

b

bb

0 1
0

1

2

3

The Newton polytope N(f) is contained in 2 ·Q, so the parametrization will factor through the toric variety
associated to Q, more precisely we obtain a new parametrization defined by

(g1, g2, g3, g4) = (2X2
0 +X3X4,−3X0X4 +X2X4, X1X4 + 5X2

4 , 2X
2
0 +X2

4 )

over the coordinate ring A = K[X0, . . . , X4]/J with J = (X2
2 − X1X3, X1X2 − X0X3, X

2
1 − X0X2). The

optimal bound is ν0 = 2 and in this degree the implicit equation is represented directly without extraneous
factors by a 12× 19-matrix, which is smaller than the 17× 34 we had before.

Example 19. As we have seen, the size of the matrix representation depends on the given parametrization
and as a preconditioning step it is often advantageous to choose a simpler parametrization of the same surface,
if that is possible. For example, approaches such as [Sc03] can be used to find a simpler reparametrization
of the given surface and optimize the presented methods.
Another important factor to consider is that all the methods we have seen represent the implicit equation

to the power of the degree of the parametrization. On one hand, it can be seen as an advantage that this
piece of geometric information is encoded in the matrix representation, but on the other hand, for certain
applications one might be willing to sacrifice the information about the parametric degree in order to obtain
smaller matrices. If this is the case, there exist (for certain surface parametrizations) algorithms to compute
a proper reparametrization of the surface, e.g. [Pe06], and in these cases it is highly advisable to do so
before computing the matrix representation, because this will allow us to represent the implicit equation
directly instead of one of its powers, and the matrices will be significantly smaller. Let us illustrate this with
Example 2 from [Pe06], which treats a parametrization f defined by

f1 = (s4t4 + 2s4t2 + 5s4 + 2t4 + 4t2 + 11)(s4 + 1)

f2 = (s4t4 + 2s4t2 + 5s4 + t4 + 2t2 + 6)

f3 =−(s4t4 + 2s4t2 + 5s4 + t4 + 2t2 + 3)(s4 + 1)

f4 = (t4 + 2t2 + 5)(s4 + 1)

This is a parametrization of bidegree (8, 4) and its Newton polytope is the whole rectangle of length 8 and
width 4, so we can apply the method of approximation complexes for P1 × P1. We obtain a matrix of size
45× 59 representing F 16

S
, where

FS = 2T1T2 − T2T3 − 3T1T4 − 2T2T4 + 3T 2
4
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is the implicit equation and deg(f) = 16. Using the algorithm presented in [Pe06] one can compute the
following proper reparametrization of the surface S :

f1 =−(11 + st− 5s− 2t)(s− 1)

f2 = 6− t− 5s+ st

f3 = (−t+ st− 5s+ 3)(s− 1)

f4 = (t− 5)(s− 1)

This parametrization of bidegree (2, 1) represents FS directly by a 6× 11-matrix.

7. Final remarks

Representation matrices can be efficiently constructed by solving a linear system of relatively small size (in
our case dimK(Aν+d) equations in 4dimK(Aν) variables). This means that their computation is much faster
than the computation of the implicit equation and they are thus an interesting alternative as an implicit
representation of the surface.
In this paper, we have extended the method of matrix representations by linear syzygies to the case of ra-

tional surfaces parametrized over toric varieties (and in particular to bihomogeneous parametrizations). This
generalization provides a better understanding of the method through the use of combinatorial commutative
algebra. From a practical point of view, it is also a major improvement, as it makes the method applicable
for a much wider range of parametrizations (for example, by avoiding unnecessary base points with bad
properties) and leads to significantly smaller representation matrices. Let us sum up the advantages and
disadvantages compared to other techniques to compute matrix representations (e.g. the ones introduced in
[KD06]). The most important advantages are:
– The method works in a very general setting and makes only minimal assumptions on the parametrization.
In particular, it works well in the presence of base points.

– Unlike the method of toric resultants, we do not have to extract a maximal minor of unknown size, since
the matrices are generically of full rank.

– The structure of the Newton polytope of the parametrization is exploited, so one obtains much better
results for sparse parametrizations, both in terms of computation time and in terms of the size of the
representation matrix. Moreover, it subsumes the known method of approximation complexes in the case
of dense homogeneous parametrizations, in which case the methods coincide.

Disadvantages of the method are the following.
– Unlike with the toric resultant or the method of moving planes and surfaces, the matrix representations
are not square.

– The matrices involved are generally bigger than with the method of moving planes and surfaces.
It is important to remark that those disadvantages are inherent to the choice of the method: A square matrix
built from linear syzygies does not exist in general and it is an automatic consequence that if one only uses
linear syzygies to construct the matrix, it has to be bigger than a matrix which also uses entries of higher
degree. The choice of the method to use depends very much on the given parametrization and on what one
needs to do with the matrix representation.

Appendix: Implementation in Macaulay2 In this appendix we show how to compute a matrix represen-
tation with the method developed in this paper, using the computer algebra system Macaulay2 [M2]. As
it is probably the most interesting case from a practical point of view, we restrict our computations to
bi-homogeneous parametrizations of a certain bi-degree (e1, e2). However, the method is easily adaptable to
the toric case, or more precisely to a given fixed Newton polytope N(f) and, where it is appropriate, we
will give hints on what to change in the code. Moreover, we are not claiming that our implementation is
optimized for efficiency; anyone trying to implement the method to solve computationally involved examples
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is well-advised to give more ample consideration to this issue. For example, in the toric case there are better
suited software systems to compute the generators of the toric ideal J , see [4ti2].
Let us start by defining the parametrization f given by (f1, . . . , f4).

S=QQ[s,u,t,v];

e1=4;

e2=2;

f1=s^4*t^2+2*s*u^3*v^2

f2=s^2*u^2*t*v-3*u^4*t*v

f3=s*u^3*t*v+5*s^4*t^2

f4=2*s*u^3*v^2+s^2*u^2*t*v

F=matrix{{f1,f2,f3,f4}}

The reader can experiment with the implementation simply by changing the definition of the polynomials
and their degrees, the rest of the code being identical. We first set up the list st of monomials sitj of bidegree
(e′1, e

′
2). In the toric case, this list should only contain the monomials corresponding to points in the Newton

polytope N′(f).
st={};

l=-1;

d=gcd(e1,e2)

ee1=numerator(e1/d);

ee2=numerator(e2/d);

for i from 0 to ee1 do (

for j from 0 to ee2 do (

st=append(st,s^i*u^(ee1-i)*t^j*v^(ee2-j));

l=l+1

)

)

We compute the ideal J and the quotient ring A. This is done by a Gröbner basis computation which works
well for examples of small degree, but which should be replaced by the matrix formula in (8) for more
complicated examples. In the toric case, there exist specialized software systems such as [4ti2] to compute
the ideal J .
SX=QQ[s,u,t,v,w,x_0..x_l,MonomialOrder=>Eliminate 5]

X={};

st=matrix {st};

F=sub(F,SX)

st=sub(st,SX)

te=1;

for i from 0 to l do ( te=te*x_i )

J=ideal(1-w*te)

for i from 0 to l do (

J=J+ideal (x_i - st_(0,i))

)

J= selectInSubring(1,gens gb J)

R=QQ[x_0..x_l]

J=sub(J,R)

A=R/ideal(J)

Next, we set up the list ST of monomials sitj of bidegree (e1, e2) and the list X of the corresponding elements
of the quotient ring A. In the toric case, this list should only contain the monomials corresponding to points
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in the Newton polytope N(f).
use SX

ST={};

for i from 0 to e1 do (

for j from 0 to e2 do (

ST=append(ST,s^i*u^(e1-i)*t^j*v^(e2-j));

)

)

X={};

for z from 0 to length(ST)-1 do (

f=ST_z;

xx=1;

is=degree substitute(f,{u=>1,v=>1,t=>1});

is=is_0;

it=degree substitute(f,{u=>1,v=>1,s=>1});

it=it_0;

iu=degree substitute(f,{t=>1,v=>1,s=>1});

iu=iu_0;

iv=degree substitute(f,{u=>1,t=>1,s=>1});

iv=iv_0;

ded=0;

while ded < k do (

for mm from 0 to l do (

js=degree substitute(st_(0,mm),{u=>1,v=>1,t=>1});

js=js_0;

jt=degree substitute(st_(0,mm),{u=>1,v=>1,s=>1});

jt=jt_0;

ju=degree substitute(st_(0,mm),{t=>1,v=>1,s=>1});

ju=ju_0;

jv=degree substitute(st_(0,mm),{u=>1,t=>1,s=>1});

jv=jv_0;

if is>=js and it>=jt and iu>=ju and iv>=jv then (

xx=xx*x_mm;

ded=ded+1;

is=is-js;

it=it-jt;

iv=iv-jv;

iu=iu-ju; )));

X=append(X,xx); )

We can now define the new parametrization g by the polynomials g1, . . . , g4.
X=matrix {X};

X=sub(X,SX)

(M,C)=coefficients(F,Variables=>

{s_SX,u_SX,t_SX,v_SX},Monomials=>ST)

G=X*C

G=matrix{{G_(0,0),G_(0,1),G_(0,2),G_(0,3)}}

G=sub(G,A)

In the following, we construct the matrix representation M . For simplicity, we compute the whole module
Z1, which is not necessary as we only need the graded part (Z1)ν0 . In complicated examples, one should
compute only this graded part by directly solving the linear system given by (1) in degree ν0. Remark that
the best bound nu = ν0 depends on the parametrization.
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use A

Z1=kernel koszul(1,G);

nu=2*d-1

S=A[T1,T2,T3,T4]

G=sub(G,S);

Z1nu=super basis(nu+d,Z1);

Tnu=matrix{{T1,T2,T3,T4}}*substitute(Z1nu,S);

lll=matrix {{x_0..x_l}}

lll=sub(lll,S)

ll={}

for i from 0 to l do { ll=append(ll,lll_(0,i)) }

(m,M)=coefficients(Tnu,Variables=>

ll,Monomials=>substitute(basis(nu,A),S));

M;

The matrix M is the desired matrix representation of the surface S .
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[Pe06] Pérez-Dı́az, S., 2006. On the problem of proper reparametrization for rational curves and surfaces.
Comput. Aided Geom. Design 23 (4), 307–323.

[Sc03] Schicho, Josef, Simplification of surface parametrizations—a lattice polygon approach, J. Symbolic
Comput. 36, 2003, 3-4, 535–554

[SC95] T. Sederberg and F. Chen. Implicitization using moving curves and surfaces. Computer Graphics
Annual Conference Series, pages 301–308, 1995.

[SGD97] Sederberg, T., Goldman, R., and Du, H., Implicitizing rational curves by the method of moving
algebraic curves, J. Symbolic Comput. 23, 1997, pp. 153–175.

[SSQK94] Sederberg, T.W., Saito, T., Qi, D.X., and Klimaszewski, K.S., Curve implicitization using moving
lines, Comput. Aided Geom. Design 11, 1994, pp. 687–706.

[Su06] S. Sullivant, Combinatorial Symbolic Powers. Available at http://arxiv.org/abs/math/0608542v3,
2006.

[Va94] W. V. Vasconcelos. Arithmetic of blowup algebras, volume 195 of London Mathematical Society
Lecture Note Series. Cambridge University Press, Cambridge, 1994.

20

http://tel.archives-ouvertes.fr/tel-00294484/en
http://www.math.uiuc.edu/Macaulay2/
http://www.mfo.de
http://arxiv.org/abs/math/0608542v3

	Introduction
	Toric embeddings
	The combinatorial structure of the ring A

	Homological tools
	Overview of approximation complexes
	Bounds on local cohomology

	The representation matrix
	The special case T=P1P1
	Examples
	Final remarks

