
Accepted Manuscript

Optimization approach for 3D model watermarking by linear binary
programming

Yu-Ping Wang, Shi-Min Hu

PII: S0167-8396(10)00024-5
DOI: 10.1016/j.cagd.2010.02.003
Reference: COMAID 1208

To appear in: Computer Aided Geometric Design

Received date: 17 July 2008
Revised date: 24 January 2009
Accepted date: 12 February 2010

Please cite this article as: Y.-P. Wang, S.-M. Hu, Optimization approach for 3D model watermarking by
linear binary programming, Computer Aided Geometric Design (2010), doi:
10.1016/j.cagd.2010.02.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cagd.2010.02.003


AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Optimization Approach for 3D Model Watermarking by

Linear Binary Programming

Yu-Ping Wanga,b, Shi-Min Hua,b

aTsinghua National Laboratory for Information Science and Technology
bDepartment of Computer Science and Technology, Tsinghua University, China 100084

Abstract

Watermarking algorithms provide a way of hiding or embedding some bits of information in
a watermark. In the case of watermarking a 3D model, many algorithms employ a so-called
indexed localization scheme. In this paper, we propose an optimization framework with two
new steps for such watermarking algorithms to improve their capacity and invisibility. The
first step is to find an optimal layout of invariant units to improve capacity. The second
step is to rearrange the correspondence between the watermark units and the invariant units
to improve invisibility. Experimental tests show that by using this framework, the capacity
and invisibility of watermarking algorithms can be greatly improved.

Key words: 3D model watermarking, Linear binary programming

1. Introduction and related works

With the development of CAD, biomedical imaging, 3D animation and other applica-
tions, 3D models play an important role in a wide variety of fields. Meanwhile, increas-
ing network bandwidths coupled with compression techniques for 3D triangle meshes have
brought 3D models to the public via the Internet. Copyright protection of 3D models is nec-
essary. As an effective method of protecting copyright, 3D model watermarking algorithms
have been researched in recent years.

Although there is no unified criterion to decide which algorithm is better, watermarking
algorithms are usually characterized by the four following properties:

1. Validation: it should be possible to fully extract the watermark from an un-attacked
model. Authentication can be decided by whether extraction is successful or not.

2. Invisibility: the watermarked model should look similar to the original model, otherwise
watermarked models are useless in practice. This property is particularly important
when watermarking CAD-oriented models.

Email addresses: wyp05@mails.tsinghua.edu.cn (Yu-Ping Wang), shimin@tsinghua.edu.cn
(Shi-Min Hu)

Preprint submitted to Computer Aided Geometric Design February 18, 2010



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

3. Capacity: this corresponds to the amount of information that can be embedded into
the model. Larger capacity will broaden possible usage of the data hiding algorithm,
and make the authentication decision more reliable.

4. Robustness: the watermark should survive different types of attacks.

The main difference between watermarking a 3D model and watermarking an image is
the type of attacks. In the 3D model case, re-ordering attacks should be resisted first. Such
attacks arise because no implicit order exists for the vertices of 3D models, unlike pixels
for image data. An image watermarking algorithm could embed some bits of watermark in
every pixel of a 2D image, and simply recompose the information by using the order of the
pixels during extraction. But this can not be done when dealing with 3D models since the
extraction procedure may obtain bits of the watermark without order. Thus, some way to
index the vertices must be considered by any 3D model watermarking algorithm. We call
this localization following Cayre et al. (2004).

In the first article on 3D model watermarking in 1997 Ohbuchi et al. (1997b), one solution
to the localization problem called indexed localization was given, and this has also been
employed by many later 3D model watermarking algorithms such as Yeo and Yeung (1999);
Benedens and Busch (2000); Benedens (2000); Cayre et al. (2004); Chou and Tseng (2006);
Wang and Hu (2009). Methods of this kind divide the watermark into several parts, give
each part of the watermark a subscript, and embed each part the of watermark together with
its subscript and a marker. During the extraction procedure, the subscript determines the
order of the extracted watermark parts and the marker determines whether the extracted
watermark parts are valid. Although information capacity is wasted by adding subscripts,
it is a robust way to solve the localization problem.

Another solution to the localization problem can be called global localization, and is
employed by Praun et al. (1999); Li et al. (2004); Uccheddu et al. (2004); Wu and Kobbelt
(2005). Methods of this kind attempt to recover the order of model vertices after a re-
ordering attack. Most algorithms employing this scheme are spectral algorithms. Algo-
rithms employing principal component analysis (PCA) or spherical parameterization can be
considered to be of this kind. However, the order recovered by this scheme depends on the
integrity of the model. If the watermarked model is cropped, the order can have a break
in the middle, or may be destroyed if the first vertex is lost. Advanced algorithms use
the registration technique introduced in Besl and McKay (1992); Chen and Medioni (1992);
Alekseyev (2003), which aligns the attacked model with the un-attacked watermarked model
(or the original model in Kanai et al. (1998)). After successful registration, the vertex order
can be recovered even if the model is cropped. But using the un-attacked model or the
original model (for simplicity, the reference model) limits applicability of such algorithms.

A compromise scheme is called local localization by Ohbuchi et al. (1997b). This scheme
divides the vertices into groups, acting as global localization within each group, and acting
as indexed localization between groups. However, this scheme does not perform well and
few papers employ it in practice.

Most 3D model watermarking algorithms, including all spectral algorithms, employ a
global localization scheme. One reason is that there is no spectral domain if the order of

2



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Watermark
Unit 1

Watermark

...
Watermark

Unit i

Watermark
Unit n

...

Invariant
Unit 1

...
Invariant

Unit i
...

Invariant
Unit n

Invariants

Find a new
invariant unit with
no used vertices

Embed the next
watermark unit

Loop until all the
watermark units
are embedded

Embedding
process end

Start Original
Model

Watermarked
Model

Figure 1: Typical watermarking algorithm flow chart

vertices is not determined first. Another reason is that by using the reference model, global
localization schemes can provide greater capacity and better robustness than indexed local-
ization schemes. However, global localization schemes are vulnerable under the counterfeit
original attack introduced in Craver et al. (1998). In this paper, we thus focus on water-
marking algorithms employing indexed localization schemes, and we will show that indexed
localization schemes can be much improved.

As noted, indexed localization schemes first divide the watermark into several parts and
give each part of a watermark a subscript. A watermark unit is defined as a triple (W, S, M),
where W is the watermark part, S is its subscript and M is the marker. In order to embed
these bits into a 3D model, algorithms of this kind always look for some invariants. Different
algorithms choose different invariants, and the robustness of algorithms is determined by the
properties of the invariants. If the invariants remain unchanged after the model is modified
by various kinds of attack, the watermarking algorithm is said to be robust against such
attacks. By modifying the coordinates of various vertices, these invariants are set to a new
value as a watermark unit is embedded. An invariant unit is defined as the smallest set of
vertices that may be modified in order to embed a watermark unit.

Algorithms repeatedly look for an invariant unit that shares no vertices with the valid
invariant units used in prior iterations, and embed a watermark unit into it. An invariant
unit is valid if it is (or going to be) used to embed a watermark unit. After embedding each
watermark unit, the vertices in the invariant unit are flagged as used to avoid being traversed
again by the following iterations. By doing so, it is guaranteed that the valid invariant units
do not share vertices with each other, otherwise modification of one invariant unit may
change other invariant units too, and destroy watermark units embedded in prior loops.
Thus, a typical flow chart of a watermarking algorithm is as shown in figure 1.

Algorithms cannot, however, obtain the largest set of valid invariant units by simply

3



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Invariant
Unit 1

...
Invariant

Unit i
...

Invariant
Unit n

Invariants

Optimize the
correspondence

Loop until all the
watermark parts
are embedded

Embedding
process end

Start

O
ptim

ized
R

earran
gem

en
t

Original
Model

Watermarked
Model

Watermark
Unit 1

Watermark

...
Watermark

Unit i

Watermark
Unit m

...

Optimize the
layout of

invariant units

Figure 2: The optimized watermarking algorithm flow chart

traversing all vertices. Since having more valid invariant units will provide a larger capacity,
that it is useful to find an optimal layout of invariant units to improve the capacity.

On the other hand, there is an implicit rule within the flow chart shown in figure 1: the
watermark unit indexed i is embedded into the ith invariant unit. However, this implicit
rule is not necessary. If we break this rule, we can rearrange the correspondence between
watermark units and invariant units to improve the invisibility.

Therefore, we change the flow chart of existing watermarking algorithms from that in
figure 1 to the one shown in figure 2; the extraction procedure remains the same. The
key problem is to optimize the layout of invariant units and the correspondence between
watermark units and invariant units. As we will show later, these two problems are instances
of linear binary programming problems.

For convenience, we call existing watermarking algorithms un-optimized algorithms, and
algorithms acting like figure 2 optimized algorithms.

The rest of this paper is organized as follows. In section 2, we explain the optimization
framework in detail. In section 3, we explain how the optimization framework works on
several watermarking algorithms, and further terminology will be clarified using examples.
In section 4, we show experimental results. Finally, in section 5, we summarize our work
and discuss its limitations.

2. Optimization framework

As mentioned, we convert the flow chart of existing watermarking algorithms from one
like figure 1 into one like figure 2. As figure 2 shows, there are two steps before the core
embedding procedure. The first step optimizes the layout of invariant units to improve ca-
pacity; the second step optimizes the correspondence between watermark units and invariant

4



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

units to improve invisibility.
The first step provides the valid invariant units which act as input of the second step.

After the second step, the correspondence between watermark units and invariant units is
determined, which allows execution of the core embedding procedure. The latter is the
core of existing watermarking algorithms, which describes how to modify the vertices of an
invariant unit when embedding a watermark unit. Our optimization framework leaves the
core embedding procedure unchanged.

The rest of this section explains these two optimization steps.

2.1. Improving capacity

As explained, valid invariant units should share no vertices with each other; they are
a subset of all possible invariant units. Our purpose is to maximize the number of valid
invariant units. This can be transformed into a maximum independent set problem:

max{x|Ax ≤ 1, x ∈ {0, 1}n} (1)

where x is a vector with n rows and A is a matrix with m rows and n columns, where m
is the number of mesh vertices and n is the number of possible invariant units. The ith
element of x is 1 or 0, representing whether the ith possible invariant unit is valid or not,
respectively. The element in the jth row and the ith column of A is 1 or 0 representing
whether the jth vertex is included in the ith possible invariant unit or not.

For a given problem, A is an input which can be obtained from the model and the
watermarking algorithm, while x is the output which is the layout of invariant units we are
seeking. Producing matrix A relies on properties of invariant units. Rather than flagging
the vertices of the valid invariant units as used, we traverse all possible invariant units and
record the vertices included in them using the matrix A.

This kind of maximum independent set problem is known to be NP complete, but it can
be approximately solved using various modern optimization technique such as ant colony
optimization algorithms Leguizamon and Michalewicz (2001). For this problem, we first
construct a graph of possible invariant units. In this graph, each node represents a possible
invariant unit, and if two possible invariant units share at least one vertex, there is an edge
between the two corresponding nodes. Thus, the problem is converted to the one of finding
the maximum node set such there is no edge between any pair of nodes in this set. As a
heuristic rule, a node is selected with a higher probability if it has a lower degree in the
graph. The complexity for this algorithm is O(nm) as is the space complexity for matrix
A. The first step to improve the capacity relies on its result. In practice, we find that if we
always add nodes with lowest degree, the result is good enough.

2.2. Improving invisibility

Invisibility generally refers to how little the appearance of the model is changed by
watermarking. It is hard to define, and many researchers have consider it. Cignoni et al.
(1998) and Aspert et al. (2002) consider geometric errors based on Hausdorff distance which
do not correlate well with human perception. The two methodologies in Corsini et al.

5



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

(2007) are better in this aspect. Lavoué et al. (2006) propose a method named MSDM
which extended a 2D similarity method introduced in Wang et al. (2004).Bian et al. (2009)
evaluated visibility using strain energy, but there is still no standard method.

Although the invisibility evaluation function plays an important role in the following
optimization step, we make some coarse assumptions: if any evaluation function become
standard, the function used in the following step can be replaced by this new standard. Our
coarse assumption is that smaller local vertex movement causes a smaller local appearance
change. Local here means the vertices around one invariant unit. We can get a coarse local
evaluation function by measuring local vertex movement.

If invisibility is defined as the sum of all local changes, the optimization problem for
maximizing invisibility can be written as:

min
∑n

i=1

∑n
j=1 cijxij (2)

such that
∑n

j=1 xij = 1,
∑n

i=1 xij = 1, xij ∈ {0, 1}.
where c and x are matrices with n rows and n columns, c is the input and x is the output,
cij is the value of the local evaluation function if the jth watermark unit is embedded in the
ith invariant unit, and xij is 1 or 0, representing whether the jth watermark unit embeds
the ithe invariant unit or not. There must be exactly one 1 in each row and column of x,
because each watermark unit can be embedded only once, and only one watermark unit can
be embedded into each invariant unit.

∑n
j=1 cijxij represents the local change in the ith

invariant unit, and the goal of this optimization is to minimize the sum of all local changes.
This is an assignment problem which can be solved using the Hungarian algorithm. The
complexity for this algorithm is O(n3), but it can run much faster in practice.

Otherwise, if the invisibility is defined as the maximum of all local changes, the opti-
mization problem can be as:

min max
∑n

j=1 cijxij (3)

such that
∑n

j=1 xij = 1,
∑n

i=1 xij = 1, xij ∈ {0, 1}.
where c and x have the same meaning as in equation 2. The only difference is the goal, which
is to minimize the maximum of all local changes, not the sum. This problem is much easier
than the previous one. It can be solved with a greedy version of the Hungarian algorithm:

1) Sort the n2 elements in matrix c in ascending order. Let the sorted array be C.

2) Let L = n and R = n2.

3) Pick the first K = (L + R)/2 elements in C, and try to find an assignment with the
chosen elements. If it cannot be done, let L = K, otherwise let R = K.

4) Repeat until L = R − 1.

The complexity of this algorithm is determined by the first step, sorting an array with n2

elements, and is thus O(n2log(n)).
Note that the n here represents the number of valid invariant units which is determined

in the first step, and it is usually much less than the number of vertices (and the number of
possible invariant units). Thus, both cases of problem can be solved in reasonable time.

6



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

The experimental tests in section 4 use the Hausdorff distance in Cignoni et al. (1998)
to evaluate invisibility, which is a widely used method. Since the Hausdorff distance can be
expressed as the maximum geometric error, the formulation in equation 3 is suitable.

3. Working with existing algorithms

From Section 2, we can summarize the main framework of optimized algorithms as having
the following steps:

1. First traverse all possible invariant units, and record the relationship between the in-
variant units and the vertices in the matrix A in equation 1.

2. Using A, the invariant units graph is constructed and the first optimization step is
performed. After the first step, the set of valid invariant units is determined.

3. Next, the optimized algorithm traverses all valid invariant units and all watermark
units, and local changes to invisibility that each pair may cause is recorded in matrix c
in equation 3.

4. Using c, the second optimization step is performed, giving the relationship between
valid invariant units and watermark units.

5. Finally, the core embedding procedure is performed.

In existing watermarking algorithms, the method used to create watermark units from a
watermark is always the same. A watermark with W bits is split into w bit pieces, of which
there are p = �W/w�. A watermark unit includes an m bit marker, an s bit subscript, and
a w bit watermark, altogether m+ s+w bits. The marker is used to determine whether the
watermark unit is valid: a valid watermark unit should include an m bit previously chosen
marker. The subscript is used to determine the order of watermark units. We require that
2s ≥ p, i.e. the number of watermark units must be no greater than the maximum number
the s bit subscript can express.

The only differences when optimizing different algorithms are the characters of invariant
units. Different watermarking algorithms may employ different invariants. In order to con-
vert an existing algorithm to an optimized algorithm, the methods used to create invariant
units should be considered.

In the following of this section, we will explain how our optimization framework operates
with three existing watermarking algorithms as examples: the TSQ (Triangle Similarity
Quadruple embedding) algorithm, the AIE (Affine Invariant Embedding) algorithm and the
IIE (Integral Invariant Embedding) algorithm. Since we do not change the core embedding
method in which a watermark unit is embedded into a invariant unit, we omit details of
these algorithms; references are given below.

3.1. Using the TSQ algorithm

The TSQ algorithm was introduced by Ohbuchi et al. (1997a,b, 1998a,b). It was the
first watermarking algorithm dealing with 3D models, and has influenced almost all other
algorithms. Therefore we apply our optimization framework to it first.

7



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

M
D2D1

S

Figure 3: The invariant unit of the TSQ algorithm

An invariant unit for the TSQ algorithm is called an MEP in Ohbuchi et al. (1997a)It
includes the vertices associated with four triangles shown in figure 3.

Each invariant unit has triangles named M , S, D1 and D2. Triangle M embeds the
marker, S embeds the subscript, and D1 and D2 embed the watermark data. For each
triangle, two ratios are used to embed data: the ratio of the height to the opposite edge
length, and the ratio of the other two edges lengths. These two ratios can be easily obtained
from a triangle, and as they determine a set of similar triangles, are invariant under similarity
transforms.

As can be seen, an invariant unit for the TSQ algorithm is determined by the triangle M .
The un-optimized algorithm traverses all the facets of the original model, and tests if the
invariant unit determined by the facet is valid. Once a valid invariant unit has been found,
the algorithm picks the next watermark unit to carry out the core embedding procedure:
the marker is first embedded into the triangle M by moving the three vertices of triangle M .
Then the subscript and the data are embedded by moving the vertex that the corresponding
triangle does not share with the triangle M .

Thus, the optimized algorithm can consider all possible invariant units by considering
all the facets of the original model. Since the invariant unit includes only 6 vertices, the
first optimization step can be quickly finished. But the set of valid invariant units sets may
contain over 1000-3000 valid invariant units (depending on the model size), which can cause
the second optimization step to take more time.

3.2. Using the AIE algorithm

The AIE algorithm was introduced by Benedens and Busch (2000). This watermarking
algorithm focuses on providing robustness against affine transforms by using as an invariant
the Nielson-Foley norm introduced in Nielson and Foley (1989). It directly describes how the
watermark bits are divided into parts and embedded into vertices with a bit-level description.

The invariant unit for AIE algorithm is called an embedding primitive in Benedens and
Busch (2000), and comprises the vertices shared by two adjacent triangles T1 and T2, as
shown in figure 4.

The four vertices of the two triangles T1 and T2 may be used to determine affine co-
ordinates which work as the basis of the Nielson-Foley norm. Thus, for each vertex other
than these four vertices, a norm value can be calculated which is an affine invariant. The
algorithm embeds the watermark into this norm value, and thus the watermark can survive
under affine transform attacks.

8



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

T1

T2

Figure 4: Invariant unit of the AIE algorithm

The invariant unit for the AIE algorithm can be determined by the edge that triangle
T1 and triangle T2 share. The un-optimized algorithm traverses all edges of the original
model, and tests if the invariant unit determined by the edge is valid. Once a valid invariant
unit has been found, the algorithm picks the next watermark unit to carry out the core
embedding procedure. During embedding, the vertices of an invariant unit next to the four
vertices of triangle T1 and T2 are divided into four groups. 6 bits are embedded into the
vertices of each group, representing index or data, by moving the norm value to the middle
of the nearest interval numbered by these 6 bits.

Therefore, the optimized algorithm can consider all possible invariant units by consid-
ering all edges of the original model. As in the TSQ algorithm, the invariant unit of AIE
algorithm includes no fewer than 8 vertices, so the first optimization step is quick, but the
second optimization step takes longer.

3.3. Using the IIE algorithm

The IIE algorithm was introduced by Wang and Hu (2009). It is a semi-fragile water-
marking algorithm that provides authentication and has a certain extent of robustness.

The invariant unit is called a neighborhood ball, and includes a center vertex and those
vertices within a certain distance of it, as shown in figure 5.

The IIE algorithm employs two kinds of integral invariants introduced by Yang et al.
(2006): an area invariant and a volume invariant. By moving the vertices within the neigh-
borhood ball, these two integral invariants can be set to any value desired by the algorithm.

Figure 5: Invariant unit of the IIE algorithm

9



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

These integral invariants are robust against noise, giving the IIE algorithm good robustness
against noise.

The invariant unit for the IIE algorithm can be determined by the vertex p at the
center. The un-optimized algorithm traverses all vertices of the original model, and tests if
the invariant unit determined by the vertex is valid. Once a valid invariant unit has been
found, the algorithm picks the next watermark unit and embeds it. During the embedding
procedure, the vertices within the neighborhood ball are moved on the surface of the sphere
to set the value of the area invariant, and are moved along the normal vector to set the value
of the volume invariant. The area invariant is used to embed the index, and the volume
invariant is used to embed the data.

Thus, the optimized algorithm can consider all possible invariant units by considering
all vertices of the original model. The invariant units used in the IIE algorithm may include
about 100-200 vertices (depending on the radius of the ball), so the first optimization step is
slower in this case, but since there are only about 100-400 valid invariant units (depending
on the model size), the second optimization step is quicker.

4. Experimental results

In this section, we show some experimental test results. With each of the three algorithms
above, we show the original model, a watermarked model obtained using the un-optimized
algorithm and a watermarked model obtained using the optimized algorithm. The timings
were measured on a 2.8GHz Pentium 4 running Windows XP. We used the following 3D
models: Max Planck (11370 vertices, 22658 facets), the Armadillo (23201 vertices, 46398
facets) and the Bunny (34834 vertices, 69451 facets).

As stated, the first step of our optimization method improves the capacity and the second
step improves the invisibility. Capacity is measured by the number of valid invariant units,
and invisibility is measured by the Hausdorff distance between the original model and the
watermarked model which is computed using Metro, Cignoni et al. (1998).

4.1. Results using the TSQ algorithm

Table 1 shows comparative results between the un-optimized TSQ algorithm and the
optimized TSQ algorithm. The “No.” and “Opt No.” rows show the number of valid
invariant units in the un-optimized algorithm and the optimized algorithm respectively.
The “Dis” and “Opt Dis” rows show the Hausdorff distance between the original model and
the watermarked models. The “Time” row shows the time cost of the two optimization
steps.

Figure 6 shows the visual results for the Max Planck model; from (a) to (c) are the
original model, the watermarked model using the TSQ algorithm and the watermarked model
using the optimized TSQ algorithm. In (b) and (c), the shaded triangles were modified by
watermarking.

As can be seen in Figure 6, neither the un-optimized algorithm nor the optimized al-
gorithm can arrange the invariant units tightly. This is because the embedding procedure

10



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Table 1: Optimization using TSQ.
Model Maxplanck Armadillo Bunny

No. 593 1124 1741
Opt No. 1702 3462 5337

Improvement 187% 208% 206%
Time 1.17s 3.52s 4.46s

Dis 0.01256 0.00397 0.000325
Opt Dis 0.00971 0.00194 0.000170

Improvement 22.7% 51.1% 47.7%
Time 20.6s 85.1s 176s

(a) Original model (Max
Planck)

(b) Watermarked model
(un-optimized algorithm)

(c) Watermarked model
(optimized algorithm)

Figure 6: Original model and watermarked models (using TSQ).

itself of the TSQ algorithm can cause failures. One kind of failure occurs if the two ra-
tios correspond to no real triangle, and another occurs it the longest edge of triangle M
is changed after embedding. The second kind of failure often happens when the triangles
of the original model are similar to equilateral triangles. The result shows that during the
second optimization step, the optimized algorithm can effectively avoid such failing cases.

4.2. Results using the AIE algorithm

As in the previous section, table 2 shows comparative results, and figure 7 shows the
visual results using the Armadillo model, using the AIE algorithm. In (b) and (c), the
shaded facets were modified by watermarking.

As we can see in figure 7, the optimized algorithm can tighten the arrangement of invari-
ant units. From the data in table 2, we can see that even though the optimized algorithm
has embedded more information, the overall invisibility has been increased by the second
optimization step.

4.3. Results using the IIE algorithm

Table 3 shows comparative results, and figure 8 shows the visual results for the Bunny
model, using the IIE algorithm. In (b) and (c), the shaded vertices were modified by
watermarking.

11



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

htb]

Table 2: Optimization using AIE.
Model Maxplanck Armadillo Bunny

No. 815 1710 2876
Opt No. 1049 2232 3444

Improvement 28.7% 30.5% 19.7%
Time 1.80s 5.04s 8.98s

Dis 0.00391 0.00663 0.001028
Opt Dis 0.00335 0.00513 0.000737

Improvement 14.3% 22.6% 28.3%
Time 7.75s 26.5s 80.4s

(a) Original model (Ar-
madillo)

(b) Watermarked model
(un-optimized algorithm)

(c) Watermarked model
(optimized algorithm)

Figure 7: The original model and the watermarked models (using AIE).

As for the IIE algorithm figure 8 shows that the optimized algorithm tightens the ar-
rangement of invariant units. Table 3 shows that the overall invisibility is increased by the
second optimization step.

5. Conclusion

We have presented an optimization framework with two steps that can improve the
capacity and invisibility of watermarking algorithms using indexed localization schemes. It
can easily convert any watermarking algorithm of this kind into an optimized algorithm.
By transforming the problem to a maximum independent set problem and solving it, we
obtain an optimal layout of invariant units which improves the capacity of the watermarking
algorithm. By solving an assignment problem, we obtain an optimal watermarking strategy
under which the invisibility of watermarking is improved.

When working with existing algorithms, the number of vertices in an invariant unit
greatly influences the execution time of the two optimization steps. If the number is small,
the first step is quick while the second step may take more time. However, if the number
is large, the first step may take more time while the second step is quick. If execution

12



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Table 3: Optimization using IIE.
Model Max Planck Armadillo Bunny

No. 129 208 331
Opt No. 140 287 424

Improvement 8.5% 38.0% 28.1%
Time 36.9s 34.7s 40.7s

Dis 0.01414 0.01057 0.000549
Opt Dis 0.01310 0.00847 0.000481

Improvement 7.4% 19.9% 12.4%
Time 23ms 278ms 1123ms

(a) Original model (Bunny) (b) Watermarked model
(un-optimized algorithm)

(c) Watermarked model
(optimized algorithm)

Figure 8: The original model and the watermarked models (using IIE).

time is crucial, we could omit the most expensive of these two steps in order to improve
performance.

We using a coarse invisibility evaluation function. If in future, and standard is agreed
upon for this function, it could easily be used to provide optimal results.

Furthermore, every watermarking algorithm has parameters. When deciding a set of
parameters, there is a trade-off between invisibility, capacity and robustness. Improved
capacity and invisibility allows algorithms to change the parameters to get better robustness.
Therefore the overall performance of watermarking algorithms could be improved, so we
believe that our method is a useful step for watermarking algorithms employing indexed
localization schemes.

Acknowledgements

This work was supported by the National Basic Research Project of China (Project
Number 2006CB303104) and the Natural Science Foundation of China (Project Number
60673004). The models used in this paper are the courtesy of Stanford University and
AIM@SHAPE shape repository.

13



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

References

Alekseyev, S., 2003. Volumetric Surface Reconstruction with Level Set Methods. Diploma Thesis, RWTH
Aachen University, Germany.

Aspert, N., Santa-Cruz, D., Ebrahimi, T., 2002. Mesh: Measuring error between surfaces using the hausdorff
distance. In: Proceedings of the IEEE International Conference on Multimedia and Expo. Vol. 1. pp. 705–
708.

Benedens, O., 2000. Affine invariant watermarks for 3d polygonal and nurbs based models. In: Proceedings
of the 3rd International Workshop Information Security, Wollongong. pp. 15–29.

Benedens, O., Busch, C., 2000. Towards blind detection of robust watermarks in polygonal models. In:
Proceedings of Eurographics 2000. pp. 199–208.

Besl, P., McKay, J., 1992. A method for registration of 3-d shapes. IEEE Trans. Patt. Recog. Mach. Intell.
14 (2), 239–255.

Bian, Z., Hu, S.-M., Martin, R. R., 2009. Evaluation for small visual difference between conforming meshes
on strain field. Journal of Computer Science and Technology 24 (1), 65–75.

Cayre, F., Deviller, O., Schmitt, F., Maitre, H., June 2004. Watermarking 3d triangle meshed for authenti-
cation and integrity. INRIA Research Report RR-5223.

Chen, Y., Medioni, G., Apr. 1992. Object modelling by registration of multiple range images. Image and
Vision Computing 10 (3), 145–155.

Chou, C.-M., Tseng, D.-C., 2006. A public fragile watermarking scheme for 3d model authentication.
Computer-Aided Design 38 (11), 1154–1165.

Cignoni, P., Rocchini, C., Scopigno, R., 1998. Metro: Meaturing error on simplified surfaces. Computer
Graphics Forum 17 (2), 167–174.

Corsini, M., Gelasca, E. D., Ebrahimi, T., Barni, M., 2007. Watermarked 3-d mesh quality assessment.
IEEE Transactions on Multimedia 9 (2), 247–256.

Craver, S., Memon, N., Yeo, B.-L., Yeung, M.-M., 1998. Resolving rightful ownerships with invisible water-
marking techniques: Limitations, attacks, and implications. IEEE Journal on Selected Areas in Commu-
nications 16 (4), 573–586.

Kanai, S., Date, H., Kishinami, T., 1998. Digital watermarking for 3d polygons using multiresolution wavelet
decomposition. In: Proceedings of International Workshop on Geometric Modeling. pp. 296–307.

Lavoué, G., Gelasca, E. D., Duport, F., Baskurt, A., Ebrahimi, T., 2006. Perceptually driven 3d distance
metrics with application to watermarking. In: Proceedings of SPIE. Vol. 6312.

Leguizamon, G., Michalewicz, Z., 2001. A ant system for the maximum independent set problem. In: Pro-
ceedings of the VII Argentinian Congress on Computer Science, Santa Cruz, Argentina. Vol. 2. pp.
1027–1040.

Li, L., Zhang, D., Pan, Z., 2004. Watermarking 3d mesh by spherical parameterization. Computers &
Graphics 28 (6), 981–989.

Nielson, G., Foley, T., 1989. A Survey of Applications of an Affine Invariant Norm. Academic Press Profes-
sional, Inc. San Diego, CA, USA.

Ohbuchi, R., Masuda, H., Aono, M., 1997a. Embedding data in 3d mmodels. In: Proceedings of the European
Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services 97. pp. 1–10.

Ohbuchi, R., Masuda, H., Aono, M., 1997b. Watermarking three dimensional polygonal models. In: Proc-
ceedings of ACM Multimedia. pp. 261–272.

Ohbuchi, R., Masuda, H., Aono, M., 1998a. Data embedding algorithms for geometrical and on geometrical
targets in three-dimensional polygonal models. Computer Communications 21 (15), 1344–1354.

Ohbuchi, R., Masuda, H., Aono, M., 1998b. Watermarking three-dimensional polygonal models through
geometric and topological modifications. IEEE Journal on Selected Areas in Communication 16 (4), 551–
560.

Praun, E., Hoppe, H., Finkelstein, A., 1999. Robust mesh watermarking. In: ACM SIGGRAPH on Computer
Graphics Proceedings. pp. 325–334.

Uccheddu, F., Corsini, M., Barni, M., 2004. Wavelet-based blind watermarking of 3d models. In: Proceedings
of the 2004 Multimedia and Security Workshop. pp. 143–154.

14



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Wang, Y.-P., Hu, S.-M., 2009. A new watermarking method of 3d models based on integral invariants. IEEE
Transactions on Visualization and Computer Graphics 15 (2), 285–294.

Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E., 2004. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Processing 13 (4), 1C14.

Wu, J.-H., Kobbelt, L., 2005. Efficient spectral watermarking of large meshes with orthogonal basis functions.
Visual Computer 21 (8-10), 848–857.

Yang, Y.-L., Lai, Y.-K., Hu, S.-M., Pottmann, H., 2006. Robust principal curvatures on multiple scales.
In: Proceedings of 4th Eurographics Symposium on Geometry Processing, Eurographics Association. pp.
223–226.

Yeo, B.-L., Yeung, M.-M., 1999. Watermarking 3d objects for verification. IEEE Computer Graphics and
Applications 19 (1), 36–45.

15


