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Abstract

Minkowski Pythagorean hodograph curves are polynomial curves with polynomial speed, measured with respect to
Minkowski norm. Curves of this special class are particularly well suited for representing medial axis transforms of
planar domains. In the present paper we generalize this polynomial class to a rational class of curves in Minkowski 3-
space. We show that any rational Minkowski Pythagorean hodograph curve can be obtained in terms of its associated
planar rational Pythagorean hodograph curve and an additional rational function. Moreover, both in the original
polynomial and new rational case, we investigate the close relationship between these associated curves in Euclidean
plane and Minkowski space.
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1. Introduction

Approximation and interpolation algorithms based on planar Pythagorean hodograph (PH) curves provide elegant
solutions to many problems that arise when dealing with offsets. PH curves were originally introduced by Farouki and
Sakkalis (1990) as a special class of planar polynomial curves. Although a generalization to a rational class followed
in Pottmann (1995), the limitations of techniques dealing with rational PH curves still persist. This is due to the fact
that for planar rational PH curves only formulas reflecting their dual representations are available. Even though both
planar polynomial and rational PH curves have rational offsets, they differ significantly with respect to their arc-length
functions. Polynomial PH curves possess polynomial arc-lengths. On the other hand, arc-length functions of rational
PH curves may consist of not only rational but also transcendental terms, see Farouki (2008) and the references cited
therein.

Even though both planar polynomial and rational Pythagorean hodograph curves admit rational offsets, the usually
most demanding part of offset construction is the so called trimming. In practice, not the whole offset but its suitable
parts only are used. Details about offset curves trimming can be found e.g. in Elber et al. (1998); Maekawa (1999);
Pekerman et al. (2008); Seong et al. (2006). Hence, an alternative approach to the problem based on the medial axis
transform of a planar domain plays a crucial role. Using medial axis transform representation makes the trimming
procedure of inner offsets very simple – only those parts of the transform where the corresponding circle radiusr
is less than the offset distanceδ have to be trimmed, cf. Fig. 1. This gives a very strong foundation for studying
the so called Minkowski Pythagorean hodograph (MPH) curvesintroduced in Moon (1999), originally as polynomial
curves only. Indeed, if a part of the medial axis transform ofa planar domain is a Minkowski Pythagorean hodograph
curve, then the corresponding domain boundary segments andall their offsets possess rational parameterizations. This
construction naturally associates planar PH curves with spatial MPH curves.

Polynomial PH and MPH curves were thoroughly investigated (see e.g. Choi et al. (2002); Farouki (2002, 2008);
Kim and Ahn (2003); Kosinka and Jüttler (2006a);Šı́r and Kosinka (2010) and the references cited therein) and
subsequently used in various algorithms, cf. Farouki et al.(2002, 2004); Jüttler and Mäurer (1999); Kosinka and
Jüttler (2006b, 2009); Kosinka andŠı́r (201x);Šı́r and Jüttler (2005, 2007). However, a closed-form characterization
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Preprint submitted to Computer Aided Geometric Design May 26, 2010



r < δ
r = δ

r = δ
r > δ

Figure 1: Trimming of inner offsets.

of all spatial rational PH and MPH curves remains an open problem. This is due to two main reasons. First, the dual
approach taken in Pottmann (1995) and successfully used on planar rational PH curves is not applicable in space since
curves are not hyperplanes in higher dimensions. Second, most of the known characterizations of polynomial PH and
MPH curves are based on their hodographs, i.e., first derivative vectors. While this approach works very well in the
polynomial case, it cannot be used in a straightforward way in the rational setting. Indeed, starting with a rational
hodograph one may arrive at not only rational but also transcendental terms in the parameterization of the curve itself.

The already mentioned close relation between spatial MPH curves and associated planar PH curves motivates us
to study the interplay of these special classes of curves in more detail. Pythagorean hodograph algorithms both in
Euclidean plane and Minkowski space share many common goals, the main one being rationality of offsets of planar
shapes. Since it could be advantageous for better understanding of various approximate/interpolate techniques, it is
the purpose of the present paper to address the PH–MPH interconnection thoroughly.

In the next section we recall some basic facts concerning planar PH and spatial MPH curves. Our new contributions
are presented in Section 3. Among other results we show that all rational MPH curves in Minkowski 3-space can be
obtained in terms of planar rational PH curves and an extra rational function. This approach overcomes the limitations
of hodograph representation for MPH curves. We also introduce a modified version of Moon’s formula, which turns
out to be very advantageous for relating rational and polynomial MPH curves. Moreover, we investigate the close
relationship of associated PH and MPH curves and derive formulas that pertain to their respective curvatures and
speeds. As a special case, our results apply to planar rational PH curves and their offsets. Finally, we conclude the
paper.

2. Preliminaries

In this section we briefly review fundamentals of curves withPythagorean hodographs in Euclidean plane and
Minkowski space.

2.1. Planar rational curves with rational offsets

Given a regularC1 parametric curvex(t) = (x1(t), x2(t))
>, theoffsetof x(t) is the set of all points inR2 that lie

at a perpendicular distanceδ fromx(t). The two branches of the offset are given by

γδ(t) = x(t)± δ n(t), n(t) =
x′(t)⊥

‖x′(t)‖
, (1)

where‖x′(t)‖ =
√

x′1(t)
2 + x′2(t)

2 andx′(t)⊥ = (−x′2(t), x
′
1(t))

>, i.e.,v⊥ denotes the rotation ofv ∈ R
2 about

the origin by the angleπ
2

.
Offset curves are used mainly in numerically controlled machining. They describe the trajectory of a round cutting

tool, which is parallel to the cut by a constant distance in the direction normal to the cut at every point. However, even
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for rationalx(t) the rationality of its offsets is generally not guaranteed.A study of offset rationality led to the class
of planarPythagorean hodograph(PH) curves. These curves are defined as rational curvesx(t) = (x1(t), x2(t))

>

fulfilling the distinguishing condition

x′(t) · x′(t) = x′1(t)
2 + x′2(t)

2 = σ(t)2, (2)

whereσ(t) is a rational function, i.e., an element ofR(t), and ’·’ is the standard Euclidean inner product. Since the
rationality of aδ-offset curveγδ(t) of a rational curve only depends on the rationality of the unit normal fieldn(t),
cf. (1), planar PH curves posses (piece-wise) rational offsets.

Pythagorean hodograph curves were originally introduced by Farouki and Sakkalis (1990) asplanar polynomial
curves. It was proved (Farouki and Sakkalis, 1990; Kubota, 1972) that the coordinates of hodographs of polynomial
PH curves andσ(t) form the following Pythagorean triples

x′1(t) = w(t)
(

u2(t)− v2(t)
)

,
x′2(t) = 2w(t)u(t)v(t),
σ(t) = w(t)(u2(t) + v2(t)),

(3)

whereu(t), v(t), w(t) ∈ R[t] are any non-zero polynomials andu(t), v(t) are relatively prime. Hence, the simplest
non-trivial example of a planar polynomial PH curve is the socalled Tschirnhausen cubicwith parameterization
x(t) = (t3/3− t, t2)> obtained foru(t) = t, v(t) = 1, w(t) = 1.

Remark 1. In order to avoid working with piece-wise representations,we consider only curves for whichσ(t) > 0
in the interval of interest for the remainder of the paper. Then,σ(t) will be calledspeedof x(t). This is merely a
technical assumption not affecting generality. In cases whenσ(t) < 0, one can either substitute−w(t) for w(t) in (3)
or consider|σ(t)| instead ofσ(t).

A generalization of polynomial PH curves to rational ones was introduced and studied by Pottmann (1995). This
approach uses the dual representation of a plane curve considered as an envelope of its tangents

n1(t)x1 + n2(t)x2 = h(t), n1(t), n2(t), h(t) ∈ R(t). (4)

In order to guarantee the rationality of (1), the unit normalfield n(t) must rationally parameterize the unit circle.
Hence, there must exist relatively prime polynomialsk(t), l(t) such that

n1(t) =
2k(t)l(t)

k2(t) + l2(t)
, n2(t) =

k2(t)− l2(t)

k2(t) + l2(t)
. (5)

For the sake of lucidity we omit the dependence on parametert and write simplyx instead ofx(t), k instead of
k(t), etc., whenever no confusion is likely to arise. In addition, to simplify further computations we setg = h(k2+l2),
i.e., the dual representation of an arbitrary PH curve in terms of line coordinates is

(2kl : k2 − l2 : −g). (6)

Consequently, a parametric representation of all planar rational PH curves is obtained as the envelope of their
tangents given by (6) in the form

x1 =
2(ll′ − kk′)g + (k2 − l2)g′

2(k2 + l2)(kl′ − k′l)
, x2 =

(k′l+ kl′)g − klg′

(k2 + l2)(kl′ − k′l)
. (7)

Differentiating (7) we obtain
x′1(t) = n2(t)σ(t), x′2(t) = −n1(t)σ(t), (8)

whereσ(t), cf. (2), is given by

σ =
2g(k′l′′ − k′′l′) + g′(k′′l− kl′′) + g′′(kl′ − k′l)

2(kl′ − k′l)2
+
g(k′2 + l′2)− 2g′(kk′ + l′l)

2(k2 + l2)(kl′ − k′l)
. (9)

Furthermore, the representation of offsets can be easily obtained by translating the tangents by a distanceδ, i.e., it
is sufficient to replaceg(t) = h(t)(k(t)2 + l(t)2) by g(t) = (h(t)± δ)(k(t)2 + l(t)2) in (7).

We remark that the concept of planar polynomial PH curves wasgeneralized to 3-dimensional Euclidean space by
Farouki and Sakkalis (1994). However, this subject falls beyond the scope of the present paper.
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Figure 2: A domainΩ, its maximal inscribed discs,MA(Ω) (light grey) andMAT(Ω) (dark grey).

2.2. Medial axis transforms with rational domain boundaries

Consider a planar domainΩ ⊂ R
2 and the family of all inscribed discs inΩ partially ordered with respect to

inclusion, see Fig. 2. An inscribed disc is called maximal ifit is not contained in any other inscribed disc. Then the
medial axisMA(Ω) is the locus of all centers(y1, y2)> of maximal inscribed discs and themedial axis transform
MAT(Ω) is obtained by appending the corresponding disc radiiy3 to the medial axis, i.e.,MAT consists of points
y = (y1, y2, y3)

>. We introduce the projection

R
2,1 → R

2 : y = (y1, y2, y3)
> 7→

O

y = (y1, y2)
>, (10)

which naturally relatesMAT toMA.
For a given geometric object there is a uniqueMAT. Conversely, the boundary of an object can be reconstructed

from itsMAT as the envelope of the one-parameter family of discs. In other words, there is a one-to-one correspon-
dence between theMAT and the domain boundary.

The notion ofMAT can be generalized to non-closed shapes. For example for twocurve segments (see Fig. 2),
we replace maximal discs with discs touching both segments.We will use the notionsMA andMAT in this broader
sense.

For aC1 segmenty(t) = (y1, y2, y3)
> of MAT(Ω) we can compute the corresponding boundary ofΩ using the

envelope formula (Choi et al., 1999; Moon, 1999) in the form

x± =
O

y −
y3

y′1
2 + y′2

2

(

y′3
O

y
′

±

√

y′1
2 + y′2

2 − y′3
2 O

y
′⊥

)

. (11)

Definition 1. Let y ⊂ R
2,1 be a curve considered as theMAT of a planar domain and letx± ⊂ R

2 be given by
the envelope formula(11). Then we say thatx+ andx− are associatedwith y. Moreover,x+ andx− will be called
conjugated.

Remark 2. The property ofx± being associated withy can be generalized to the family of translated copies ofy

in the y3-direction and the correspondingδ-offsets ofx±. We note thatx± are also known as components of the
cyclographic image ofy in the context of Laguerre geometry, see e.g. Peternell and Pottmann (1998); Pottmann and
Peternell (1998).

Furthermore, as the pointsx+ andx− are symmetric along the tangent of the medial axis
O

y at the point(y1, y2)>,
cf. Fig. 3, we obtain the following relation for conjugated envelope branchesx+, x− associated withy

x− = x+ − 2

O

y
′⊥

· (x+−
O

y)

y′1
2 + y′2

2

O

y
′⊥

. (12)
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A study of rationality of envelopes (11) led to the class ofMinkowski Pythagorean hodograph(MPH) curves
introduced as polynomial curves by Moon (1999). We define MPHcurves asrational curvesy = (y1, y2, y3)

> in
three-dimensional space fulfilling the condition

y′1
2
+ y′2

2
− y′3

2
= %2, (13)

where% ∈ R(t). The PH condition (2) is now fulfilled with respect to the indefinite Minkowski inner product

〈u,v〉 = u1v1 + u2v2 − u3v3. (14)

This fact makes theMinkowski spaceR2,1 the natural ambient space for MPH curves.
Thesquared normof a vectoru ∈ R

2,1, defined by〈u,u〉, can be positive, negative or zero. Hence, we distinguish
three types of vectors: a vectoru is calledspace–likeif 〈u,u〉 > 0, time-likeif 〈u,u〉 < 0, andlight-like (or isotropic)
if 〈u,u〉 = 0.

Analogously to the Euclidean case, a necessary and sufficient condition for aspatial polynomialcurve to possess
a Minkowski Pythagorean hodograph can be expressed in the form

y′1 = U2 − V 2 + P 2 −Q2,
y′2 = 2UV − 2PQ,
y′3 = 2UP − 2V Q,
% = U2 + V 2 − P 2 −Q2,

(15)

whereU, V, P,Q ∈ R[t], see Theorem 3.1 of Moon (1999). Again, as in the case of PH curves (cf. Remark 1), we,
without loss of generality, restrict ourselves to%(t) > 0 only. Then,%(t) will be calledMinkowski speed.

We emphasize that (15) as well as its planar Euclidean counterpart (3) do not extend in a natural way to rational
(M)PH curves. This is due to the fact that we need to integratethe hodograph to obtain the curve itself. Indeed,
integrating a general rational function does not yield a rational result.

For later use we recall some basic facts from differential geometry of curves inR2,1. Lety(s) = (y1, y2, y3)
> be

a sufficiently smooth space-like curve parameterized by arclength and letT = y′(s) be its unit (space-like) tangent
vector, i.e.,〈T,T〉 = 1. Then the Frenet formulas take the form (i) for space-/time-like T′, or (ii) for T′ being
light-like:

(i)
T′ = κN,
N′ = −〈N,N〉κT+ τB,
B′ = τN,

or (ii)
T′ = κN,
N′ = τN,
B′ = −κT− τB.

(16)

The vectorsN andB are the unitnormalandbinormalvectors, respectively, andκ andτ are theMinkowski curvature
andtorsionof y(s).

Analogously to Euclidean space, the Minkowski curvature ofa (generally non-unit speed) space-like curvey can
be computed using the formula

κ =

√

|〈y′ on y′′,y′ on y′′〉|
√

〈y′,y′〉3
, (17)

whereon denotes thecross-productin R
2,1 given by

u on v = (u2v3 − u3v2, u3v1 − u1v3,−u1v2 + u2v1)
>. (18)

In addition, letκ+, κ− be the signed curvatures ofx± at the contact points with theMAT disc centered at
O

y = (y1, y2)
> with radiusy3 andψ = ∠(x+,

O

y,x−), see Fig. 3. Then, as shown in Proposition 2 of Kosinka and
Jüttler (2006b), it holds

〈T′,T′〉 =
κ+κ−

(1 + y3κ+)(1 − y3κ−) sin
2 ψ

2

, (19)

wheresin2 ψ
2

can be computed using the relation

sin2
ψ

2
= 1− cos2

ψ

2
= 1− tan2 φ =

y′1
2
+ y′2

2
− y′3

2

y′1
2 + y′2

2
, (20)
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Figure 3: A spatial curvey considered asMAT(Ω), its projection
O

y and the associated boundary curvesx+ andx−.

cf. Section 3.2 of Choi et al. (1999) and Fig. 3. Consequently, if 〈T′,T′〉 6= 0, thenκ =
√

|〈T′,T′〉| and thus

κ
4 =

(κ+κ−)
2

(1 + y3κ+)2(1− y3κ−)2 sin
4 ψ

2

. (21)

3. PH and MPH curves inseparable

In this section we investigate the close relationship between planar PH curves and spatial MPH curves in both the
polynomial and rational case.

3.1. Polynomial MPH curves

In order to simplify our further computations, we substitute

a = V − P, b = U −Q, c = V + P, d = U +Q (22)

in (15). Thus we obtain the following

Lemma 1. A polynomial curvey = (y1, y2, y3)
> ⊂ R

2,1 is an MPH curve (i.e.,y′1
2
+ y′2

2
− y′3

2
= %2 for some

polynomial%) if and only if there exist four polynomialsa, b, c, d ∈ R[t] such that the components of the hodograph
y′ fulfill

y′1 = bd− ac,
y′2 = bc+ ad,
y′3 = bc− ad,
% = bd+ ac.

(23)

Using (23), the envelope formula for polynomial MPH curves simplifies significantly.

Lemma 2. Lety be a polynomial MPH curve given by(23). Then the two envelope curves(11)associated withy are

x+ =
O

y +
y3

a2 + b2

(

2ab
a2 − b2

)

, x− =
O

y −
y3

c2 + d2

(

2cd
c2 − d2

)

. (24)
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In addition, formula (23) yields another interesting result. By computing(x′
+)

⊥/σ+ and(x′
−)

⊥/σ− or simply

consideringn± = (
O

y − x±)/y3, see Fig. 3, we obtain compact expressions for the unit normal vectors of PH curves
x+ andx− associated withy given by (23) in the form

n+ = −

(

2ab

a2 + b2
,
a2 − b2

a2 + b2

)>

, n− =

(

2cd

c2 + d2
,
c2 − d2

c2 + d2

)>

. (25)

Let us recall the following observation (Choi et al., 1999; Moon, 1999): LetΩ be a planar domain. IfMAT(Ω) is
a polynomial MPH curvey, then the boundary curvesx± of Ω associated withy are (piece-wise) rational. Moreover,
all offsets of the boundary possess this property as well.

Now we take this observation one step further. In order to obtain δ-offsets it is enough to sety3 ± δ instead ofy3
in the envelope formula (24). Hence, we conclude that for anypolynomial MPH curvey ⊂ R

2,1, the curvesx± ⊂ R
2

associated withy are rational PH curves. However, since being PH is a propertyof parameterizations, one may still
ask whether the parameterizations in (24) fulfill this property. The answer is given in the following

Lemma 3. The parameterizations(24)associated with a polynomial MPH curve characterized by(23) fulfill the PH
condition, i.e., they are rational PH parameterizations.

PROOF. Taking into account (25), one can see that the envelope formula (24) becomes simply

x± =
O

y − y3n±. (26)

Now, sincen± are rational, parameterizationsx± satisfy the PH property.
For the sake of completeness we also provide a direct computation of σ±. Differentiatingx+(t) with respect tot

yields

σ2
+ = x′

+ · x′

+ =
[(a2 + b2)(ac+ bd) + 2y3(a

′b− ab′)]2

(a2 + b2)2
. (27)

An analogous computation for the conjugated curvex− completes the proof. �

We would like to note that the results of this section generalize the theory of polynomial PH curves and their
δ-offsets. This can be easily seen by settingy3(t) = δ, or equivalently by imposingc(t) = w(t)a(t) andd(t) =
w(t)b(t).

3.2. Rational MPH curves

Starting with a spatial polynomial MPH curvey considered asMAT(Ω), we have shown that the boundary ofΩ
is a planar PH curve. Moreover, we have proved that the curvesx± associated withy fulfill the PH property.

Now we turn our attention to rational MPH curves. By the same argument as for polynomial MPH curves, it is
obvious that spatial rational MPH curves possess planar rational PH curves as their associated curves. Later, we will
also show that the associated curvesx± are already given in their rational PH parameterizations.

As a natural question one may ask whether these considerations can be ’reversed’. In other words, given a planar
rational PH curvex, can we construct all rational MPH curvesy such thatx is associated withy? In what follows, we
show that such a construction is possible. Moreover, we introduce an approach to rational MPH curves overcoming
the limitations of hodograph representations.

Definition 2. Letx = (x1, x2)
> in R

2 be a rational PH curve described by(7) and(9). Letr be an arbitrary rational
function. Then we define the curvey(x, r) ⊂ R

2,1 as

y(x, r) = (x1 + rn1, x2 + rn2, r)
>
, (28)

where(n1, n2)
> = x′⊥/σ.
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Remark 3. Turning back to Definition 1, we see thatx is associated withy(x, r). Indeed,x plays the role ofx−. We
note that using(n1, n2)

> = −x′⊥/σ in Definition 2 would provide an alternative definition ofy(x, r), in this case
with respect tox+. Moreover, recalling Remark 1, one can observe thatσ < 0 would simply swap the roles ofx+

andx−.

Now we present a crucial result concerning rational MPH curves.

Theorem 1. Any rational MPH curve inR2,1 can be expressed in the form of(28).

PROOF. Differentiatingy(x, r) given by (28) yields

%2 = σ2(1− rκ)2, (29)

whereσ(t)2 = x′1(t)
2 + x′2(t)

2 andκ(t) = [x′1(t)x
′′
2 (t)− x′′1 (t)x

′
2(t)]/σ(t)

3 is the curvature ofx. Therefore,y(x, r)
is a rational MPH curve inR2,1.

It remains to show that any rational MPH curve can be expressed in the form (28). To this end we denoteM the
set of all rational MPH curves inR2,1 andN the set of all parametric curvesy(x, r) given by (28). Since ally fulfill
the MPH condition, we have thatN ⊂ M . On the other hand, lety(x, r) ∈ M be a rational MPH curve. Then
the associated boundary curvesx± are rational PH curves. By settingx = x− along withr = y3 one can construct
y(x, r) in the form of elements ofN . ThusM ⊂ N . This completes the proof. �

Summing up, using Theorem 1 and (7), we obtained

Proposition 1. A curvey ∈ R
2,1 is an MPH curve if and only if there exist two polynomialsk, l and two rational

functionsg, r such that




y1
y2
y3



 =
1

2(k2 + l2)(kl′ − k′l)





2(ll′ − kk′)g + (k2 − l2)g′

2(k′l + kl′)g − 2klg′

0



+
r

k2 + l2





2kl
k2 − l2

k2 + l2



 . (30)

This characterization can be considered as a rational alternative to Moon’s formula (15) or its simplified ver-
sion (23). For the sake of completeness we also give a formulafor % in terms ofk, l, g, r:

%2 =
1

4(kl′ − k′l)4(k2 + l2)2

(

g′′(k2 + l2)(kl′ − k′l) + g′[(k′′l − kl′′)(k2 + l2) + 2(kk′ + ll′)(k′l − kl′)]+

+ 2g[(k′l′′ − k′′l′)(k2 + l2) + (kl′ − k′l)(k′2 + l′2)] + 4r(kl′ − k′l)3
)2

.

(31)

Remark 4. We recall a concept of the so calledisotropic surfacein R
2,1 (Krasauskas and Mäurer, 2000; Peternell

and Pottmann, 1998; Pottmann and Peternell, 1998) studied in connection with Laguerre geometry and cyclographic
mapping. Starting from a curvex(t) ⊂ R

2, the correspondingisotropic surfaceΓ ⊂ R
2,1 is described as

Γ : y(t, s) =
M

x(t) + sñ(t), (32)

with
M

x = (x1, x2, 0)
> andñ = (n1, n2, 1)

>, wheren = (n1, n2)
> is the unit normal vector ofx. Since it holds

〈y(t, s) −
M

x,y(t, s) −
M

x〉 = s2〈ñ, ñ〉 = s2(‖n‖2 − 1) = 0, (33)

Γ is a ruled surface consisting of straight lines throughx given by light-like vectorsy(t, s) −
M

x(t).
Furthermore, ifx(t) is a PH curve thenΓ is a (piece-wise) rational surface. Hence, we can conclude that all

MPH curvesy(t) given by (28) are rational curves on the rational surface (32) obtained by settings = r(t) ∈ R(t).
Starting from conjugated PH curvesx+(t) andx−(t), the corresponding isotropic surfacesΓ+ andΓ− intersect in the
associated MPH curvey(t), cf. Fig. 4. Furthermore, planar sections ofΓ± lead toδ-offsets of the associated domain
boundaries.

In addition, we would like to note that analogous observations were made for PN and MOS surfaces inR
3,1

in Peternell (2010). It was proved that MOS surfaces possessrational isotropic normal vector fields and can be
characterized as two-dimensional rational subvarieties of rational isotropic hypersurfaces inR3,1.
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Figure 4: Isotropic surfaceΓ ⊂ R
2,1 corresponding tox ⊂ R

2 andy ⊂ R
2,1.

With the help of (28), one can determine the degree of the resulting MPH curve depending on the degree ofx(t)
andr(t).

Lemma 4. Letx be a rational PH curve of degreed1 andr be of degreed2. Then the degree of the associatedy is at
most5d1+d2−1. In the case of polynomialx andr the degree ofy amounts to at most(d1−1+max(d1, d2))/(d1−1).

For an arbitrary rational MPH curve, analogously to Lemma 3,we obtain

Lemma 5. The parameterizations(11)of curvesx± associated with a rational MPH curve(28) fulfill the PH condi-
tion, i.e., they are rational PH parameterizations.

PROOF. Applying the envelope formula (11) to the MPH curvey(x, r) given by (28), we arrive at

x± =
O

y −
r

%2 + r′2

(

r′
O

y
′

± %
O

y
′⊥

)

. (34)

Using (29) we see that either% = σ(1 − rκ) or % = −σ(1 − rκ) holds. Since the latter case only swapsx+ andx−

and produces insignificant sign changes in the formulas below, we consider for the sake of simplicity the former case
only. Then, (34) simplifies to

x− = x, (35)

x+ = x+
2r%

σ(r′2 + %2)

(

r′x′1 − %x′2
%x′1 + r′x′2

)

, (36)

whereσ(t)2 = x′1(t)
2 + x′2(t)

2 and%(t) is as in (29), or (31). The result forx− is obvious. Thus, it remains to show
thatx+ also fulfills the PH condition. Differentiatingx+(t) given by (36) yields

x′

+ · x′

+ =

(

σr′
2
+ 2r′

2
%+ σ%2 − 2r%r′′ + 2%3

r′2 − %2

)2

. (37)

This completes the proof. �

Obviously,polynomialMPH curves, given by (15) or (23), must form a proper subset ofthe set of rational MPH
curves described by (30). A natural question arises: How do we chooseg(t) andr(t) in Proposition 1 in order to
obtain a polynomial MPH curve? It turns out that we can efficiently adapt the approach for relating planar rational
and polynomial PH curves used in Farouki and Pottmann (1994), as shows the following

9



Theorem 2. Any polynomial MPH curve inR2,1 can be obtained using(30)by setting

g(t) = 2kl

∫

(km− ln) dt− (k2 − l2)

∫

(kn+ lm) dt− (k2 + l2)

∫

(lm− kn) dt,

r(t) =

∫

(lm− kn) dt,
(38)

wherek(t), l(t),m(t), n(t) are arbitrary polynomials.

PROOF. For the sake of brevity we do not go into details and refer thereader interested in the derivation of the given
expressions to Farouki and Pottmann (1994). Considerg andr in the form (38). Substitutingg andr into (30) yields

y1(t) =

∫

(km− ln) dt, y2(t) = −

∫

(kn+ lm) dt, y3(t) =

∫

(lm− kn) dt. (39)

These expressions give a polynomial MPH curve of type (23) for a = l, b = −k, c = n andd = −m. The fact that
(23) describesall polynomial MPH curves completes the proof. �

3.3. Curvatures of associated curves

Motivated by a potentialG2 Hermite interpolation scheme for MPH curves, we focus on some relations between
the Minkowski curvature of an MPH curve and the curvatures ofits associated planar PH curves. Let us emphasize
that the results discussed in the following paragraphs (including formula (29)) hold also for general MATs and the
associated curvesx±, i.e., without the assumption of rationality of%, σ±, κ andκ±.

Let x+ andx− be two conjugated PH curves with curvaturesκ+, κ− and speedsσ+, σ−, respectively. Defining
y(x−, r) we obtained the relation%2− = σ−

2(1−rκ−)
2, cf. (29). On the other hand, usingx+, cf. Remark 3, we arrive

at%2+ = σ+
2(1 + rκ+)

2. Sincex+, x− are conjugated, the associated MPH curves coincide, i.e.,y(x−) = y(x+).
Consequently, the Minkowski speeds are equal%− = %+ and

σ2
+(1 + rκ+)

2 = σ2
−(1− rκ−)

2. (40)

If we multiply %2+ and%2− and compare the result with (21) we arrive at

(σ+κ+)
2(σ−κ−)

2 =

(

%κ sin
ψ

2

)4

, (41)

which holds for MPH curves with space- or time-like vectorT′. Otherwise,κ = 0 or κ = 1, see Section 2.4
of Kosinka and Jüttler (2006b). Usingsin2 ψ

2
= %2/(%2 + r′

2
), cf. (20), we obtain

(σ+κ+)
2(σ−κ−)

2 =

(

%4κ2

%2 + r′2

)2

. (42)

Furthermore, computingr and its derivative using (40) and then substituting into (42), one can derive a relation for
only curvaturesκ+, κ−,κ and parametric speedsσ+, σ−, % of the conjugated PH curvesx+, x− and their associated
MPH curvey.

Now we apply our results to the special case whenr ≡ δ is constant. Theny = (y1, y2, δ)
> is a planar PH curve

satisfying%2 = y′21 + y′22 andx± areδ-offsets of its orthogonal projection
O

y, which are rational PH curves as well.
Clearly,y and

O

y are only translated versions of the same PH curve. Sincer′ ≡ 0, (42) simplifies to

(σ+κ+)
2(σ−κ−)

2 = %4κ4, (43)

yielding an interesting relation between a planar (rational) PH curve and its both-sided offsets.
We investigate this special case in more detail. Letκ be the (signed Euclidean) curvatureκ = (y′1y

′′
2 − y′′1y

′
2)/%

3

of
O

y (this can differ from the Minkowski curvature (17) ofy by its sign only). Moreover, letR = 1/κ,R± = 1/κ± be
10
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x+

x−

δ

cR

σ+

σ−

%

Figure 5: A PH curve
O

y with its δ-offsetsx±, their speeds%, σ±, and the corresponding concentric osculating circles (thin grey)
with radii R, R± δ and with the centerc lying on the common evolute (thick grey).

the signed (oriented) radii of curvature of
O

y andx±, respectively. It is well known (see e.g. Farouki and Neff (1990);
Farouki (2008)) that offsets share a common evolute, i.e., the locus of all centers of curvature, see Fig. 5. Therefore,
R± = R ∓ δ andκ± = κ/(1 ∓ κδ). This in turn gives1 ± κ±δ = κ±/κ. Comparing the last equation with (29)
and (40) yields

σ2
+κ

2
+ = %2κ2 = σ2

−κ
2
−, (44)

which is a stronger result than (43).

4. Conclusion

In the present paper we introduced a novel approach for studying MPH curves. Since this approach overcomes
the limitations of hodograph representation, it was successfully applied to rational MPH curves. Using the concept
of associated planar PH and spatial MPH curves, we showed that any rational MPH curve inR2,1 can be obtained in
terms of a rational PH curve inR2 and an extra rational function. We also studied relations between the Minkowski
curvature of MPH curves and the curvatures of the associatedplanar PH curves. As a special case, our results can be
applied to planar rational PH curves and their offsets.

The techniques presented in this paper might stimulate further research in the topic of Pythagorean hodograph
curves and help to improve the understanding of these special classes of curves both in Euclidean plane and Minkowski
space. In the literature there exist many efficient, yet separate techniques for various types of geometric interpolation
designed either for polynomial/rational PH or MPH curves. Therefore, our approach can serve as a first step for
formulating new interpolation algorithms based on the sameunifying principle.

As we already mentioned in Remark 4, our study of associated PH and MPH curves inR2,1 is analogous to the
characterization of MOS surfaces via PN surfaces inR

3,1 by Peternell (2010). Nevertheless, the approach to MPH
curves used in the present paper, based mainly on symbolic manipulations, led to new interesting results relating
curvatures of involved PH and MPH curves (see Section 3.3). This fact might be helpful in formulating potential G2

interpolation algorithms. However, it still remains a challenge to discover whether similar relations hold for associated
PN and MOS surfaces as well.
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