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Abstract

Minkowski Pythagorean hodograph curves are polynomialesiwith polynomial speed, measured with respect to
Minkowski norm. Curves of this special class are partidylawell suited for representing medial axis transforms of
planar domains. In the present paper we generalize thisipolial class to a rational class of curves in Minkowski 3-
space. We show that any rational Minkowski Pythagorean i@gih curve can be obtained in terms of its associated
planar rational Pythagorean hodograph curve and an additiational function. Moreover, both in the original
polynomial and new rational case, we investigate the clelsgionship between these associated curves in Euclidean
plane and Minkowski space.
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1. Introduction

Approximation and interpolation algorithms based on ptahahagorean hodograph (PH) curves provide elegant
solutions to many problems that arise when dealing withetétsPH curves were originally introduced by Farouki and
Sakkalis (1990) as a special class of planar polynomialesinlthough a generalization to a rational class followed
in Pottmann (1995), the limitations of techniques dealintipwational PH curves still persist. This is due to the fact
that for planar rational PH curves only formulas reflectingit dual representations are available. Even though both
planar polynomial and rational PH curves have rationaktfsthey differ significantly with respect to their arc-ggim
functions. Polynomial PH curves possess polynomial angtles. On the other hand, arc-length functions of rational
PH curves may consist of not only rational but also transeatad terms, see Farouki (2008) and the references cited
therein.

Even though both planar polynomial and rational Pythagohealograph curves admit rational offsets, the usually
most demanding part of offset construction is the so catiethting. In practice, not the whole offset but its suitable
parts only are used. Details about offset curves trimminglmafound e.g. in Elber et al. (1998); Maekawa (1999);
Pekerman et al. (2008); Seong et al. (2006). Hence, an atteerapproach to the problem based on the medial axis
transform of a planar domain plays a crucial role. Using ralkealkis transform representation makes the trimming
procedure of inner offsets very simple — only those partdhefttansform where the corresponding circle radius
is less than the offset distanéehave to be trimmed, cf. Fig. 1. This gives a very strong fotiotafor studying
the so called Minkowski Pythagorean hodograph (MPH) cumvigeduced in Moon (1999), originally as polynomial
curves only. Indeed, if a part of the medial axis transforra pfanar domain is a Minkowski Pythagorean hodograph
curve, then the corresponding domain boundary segmentighdir offsets possess rational parameterizationss Thi
construction naturally associates planar PH curves wigtigidMPH curves.

Polynomial PH and MPH curves were thoroughly investigaseg (e.g. Choi et al. (2002); Farouki (2002, 2008);
Kim and Ahn (2003); Kosinka and Jiittler (2006&)r and Kosinka (2010) and the references cited thereid) an
subsequently used in various algorithms, cf. Farouki e{24102, 2004); Juttler and Maurer (1999); Kosinka and
Juttler (2006b, 2009); Kosinka ar (201x);éir and Juttler (2005, 2007). However, a closed-form attarization
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Figure 1: Trimming of inner offsets.

of all spatial rational PH and MPH curves remains an openlprobThis is due to two main reasons. First, the dual
approach taken in Pottmann (1995) and successfully usethnanrational PH curves is not applicable in space since
curves are not hyperplanes in higher dimensions. Seconst,afithe known characterizations of polynomial PH and
MPH curves are based on their hodographs, i.e., first derdvaectors. While this approach works very well in the
polynomial case, it cannot be used in a straightforward wathé rational setting. Indeed, starting with a rational
hodograph one may arrive at not only rational but also trandental terms in the parameterization of the curve itself.

The already mentioned close relation between spatial MRWesuand associated planar PH curves motivates us
to study the interplay of these special classes of curvesarerdetail. Pythagorean hodograph algorithms both in
Euclidean plane and Minkowski space share many common,ghalsnain one being rationality of offsets of planar
shapes. Since it could be advantageous for better unddistpof various approximate/interpolate techniques, it is
the purpose of the present paper to address the PH—-MPHadntezction thoroughly.

Inthe next section we recall some basic facts concerninggpRaH and spatial MPH curves. Our new contributions
are presented in Section 3. Among other results we show lihatianal MPH curves in Minkowski 3-space can be
obtained in terms of planar rational PH curves and an extiayal function. This approach overcomes the limitations
of hodograph representation for MPH curves. We also inttedumodified version of Moon’s formula, which turns
out to be very advantageous for relating rational and patyigbMPH curves. Moreover, we investigate the close
relationship of associated PH and MPH curves and derive dtasnthat pertain to their respective curvatures and
speeds. As a special case, our results apply to planar aaffdh curves and their offsets. Finally, we conclude the

paper.

2. Preliminaries

In this section we briefly review fundamentals of curves vidtfthagorean hodographs in Euclidean plane and
Minkowski space.

2.1. Planar rational curves with rational offsets

Given a regulaC’ parametric curve(t) = (x1(t), z2(t)) ", theoffsetof x(t) is the set of all points ifiR? that lie
at a perpendicular distanédrom x(t). The two branches of the offset are given by

w®) =x(®) £on(t),  n(t) = U o
o= IO |

where||x'(t)|| = /2| (#)2 + 24,(1)? andx’ ()t = (—a4(t), 2, (¢))T, i.e., v+ denotes the rotation of € R? about
the origin by the angl€ .
Offset curves are used mainly in numerically controlled himing. They describe the trajectory of a round cutting
tool, which is parallel to the cut by a constant distance endinection normal to the cut at every point. However, even
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for rationalx(t) the rationality of its offsets is generally not guarante&dstudy of offset rationality led to the class
of planarPythagorean hodograp{PH) curves. These curves are defined as rational curfi@s= (z;(t), z2(t)) "
fulfilling the distinguishing condition

x'(1) - X/ (1) = 21 (1) + 25(t)* = o (t)?, (2)

wherec () is a rational function, i.e., an elementRft), and ' is the standard Euclidean inner product. Since the
rationality of ad-offset curvey;(t) of a rational curve only depends on the rationality of thet normal fieldn(t),
cf. (1), planar PH curves posses (piece-wise) rationaétdfs

Pythagorean hodograph curves were originally introdugeBarouki and Sakkalis (1990) adanar polynomial
curves. It was proved (Farouki and Sakkalis, 1990; Kubda@2) that the coordinates of hodographs of polynomial
PH curves and (t) form the following Pythagorean triples

zi(t) = w(t)(u?(t) —v*(1)),
wy(t) = 2w(t)ut)o(t), (3)
o(t) = wt)(w?(t)+v*(t)),

whereu(t), v(t), w(t) € R[t] are any non-zero polynomials andt), v(¢) are relatively prime. Hence, the simplest
non-trivial example of a planar polynomial PH curve is thecstled Tschirnhausen cubiwith parameterization
x(t) = (t*/3 —t,1?) " obtained foru(t) = ¢, v(t) = 1, w(t) = 1.

Remark 1. In order to avoid working with piece-wise representatioms,consider only curves for which(t) > 0
in the interval of interest for the remainder of the paperedlr(¢) will be calledspeedof x(¢). This is merely a
technical assumption not affecting generality. In casesnwiit) < 0, one can either substitutew(t) for w(t) in (3)
or consideto(¢)| instead ofr(¢).

A generalization of polynomial PH curves to rational onesiwdroduced and studied by Pottmann (1995). This
approach uses the dual representation of a plane curvadenedias an envelope of its tangents

ni(t)z1 +n2(t)ze = h(t),  ni(t),n2(t), h(t) € R(?). 4
In order to guarantee the rationality of (1), the unit norfiigld n(¢) must rationally parameterize the unit circle.
Hence, there must exist relatively prime polynomials), /(¢) such that
0UG) CEA(t) - 12(1)

For the sake of lucidity we omit the dependence on parameted write simplyx instead ofx(¢), k instead of
k(t), etc., whenever no confusion s likely to arise. In additirsimplify further computations we set= h(k2+1?),
i.e., the dual representation of an arbitrary PH curve im$eof line coordinates is

(2kl - k* — 1% : —g). (6)

Consequently, a parametric representation of all plartaara PH curves is obtained as the envelope of their
tangents given by (6) in the form

201" — kk')g + (k* —1?)g’ (K'l+El)g —Kklg
TNETRRIEE - T Rk k) 0
Differentiating (7) we obtain
'y (t) = na(t)o(t), z5(t) = —n1(t)o(t), (8)

whereo (t), cf. (2), is given by

- 2g(/€ll” _ k”ll) —i—g’(k”l _ kl”) —i—g”(kl’ _ k/l) N g(k/2 +l/2) _ 29/(kk/ + l/l) (9)
7= 2kl — K1)2 2(k2 + 12) (kI — K1)
Furthermore, the representation of offsets can be easiyjiradd by translating the tangents by a distandee., it
is sufficient to replace(t) = h(t)(k(t)? + 1(t)?) by g(t) = (h(t) £ 8)(k(t)* + I(t)?) in (7).
We remark that the concept of planar polynomial PH curvesgeaeralized to 3-dimensional Euclidean space by

Farouki and Sakkalis (1994). However, this subject fallgdmel the scope of the present paper.
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Figure 2: A domairt2, its maximal inscribed disc3[A(Q) (light grey) andVIAT(2) (dark grey).

2.2. Medial axis transforms with rational domain boundarie

Consider a planar domain ¢ R? and the family of all inscribed discs i partially ordered with respect to
inclusion, see Fig. 2. An inscribed disc is called maxima i$ not contained in any other inscribed disc. Then the
medial axisMA (Q) is the locus of all center&y;,y2) " of maximal inscribed discs and tmeedial axis transform
MAT() is obtained by appending the corresponding disc ragdio the medial axis, i.eMAT consists of points
y = (y1,¥2,y3) . We introduce the projection

R* SR y=(y1,92,03) —y=(y,12)", (10)

which naturally related3IAT to MA.

For a given geometric object there is a uniqdaT. Conversely, the boundary of an object can be reconstructed
from its MAT as the envelope of the one-parameter family of discs. Inratioeds, there is a one-to-one correspon-
dence between thel AT and the domain boundary.

The notion ofMAT can be generalized to non-closed shapes. For example faruwe segments (see Fig. 2),
we replace maximal discs with discs touching both segmé&kiéswill use the notiond31A andMAT in this broader
sense.

For aC' segmeny(t) = (y1,v2,y3) ' of MAT(Q2) we can compute the corresponding boundar§ afsing the
envelope formula (Choi et al., 1999; Moon, 1999) in the form

v Y3 v/ 2 2 2 7'+
Xt =Y~ —5 3 (yéy Ve R R T 4 ) (11)

Yo Ty

Definition 1. Lety c R%*! be a curve considered as thAéAT of a planar domain and lex. C R? be given by
the envelope formuléll). Then we say that, andx_ are associateavith y. Moreoverx, andx_ will be called
conjugated

Remark 2. The property ofx being associated witlp can be generalized to the family of translated copieg of
in the ys-direction and the correspondingoffsets ofx,.. We note thatk, are also known as components of the
cyclographic image of in the context of Laguerre geometry, see e.g. Peternell attthBnn (1998); Pottmann and
Peternell (1998).

Furthermore, as the points. andx_ are symmetric along the tangent of the medial axé the point(y;,y2) ",
cf. Fig. 3, we obtain the following relation for conjugatead/elope branches, , x_ associated witly

VIJ- v
Vo (xie—y) ot

(12)
y/12 + y/22

X_ =X4 —2



A study of rationality of envelopes (11) led to the classMihkowski Pythagorean hodogragiMPH) curves
introduced as polynomial curves by Moon (1999). We define MRHes agational curvesy = (y1,v2,y3) "
three-dimensional space fulfilling the condition

2 2 2
vty —yy =07 (13)
wherep € R(¢). The PH condition (2) is now fulfilled with respect to the ifidée Minkowski inner product
(u,v) = ujv1 + ugve — ugvs. (14)

This fact makes thiinkowski spac®?! the natural ambient space for MPH curves.
Thesquared nornof a vectora € R*1, defined by(u, u), can be positive, negative or zero. Hence, we distinguish
three types of vectors: a vectais calledspace—likéf (u,u) > 0, time-likeif (u, u) < 0, andlight-like (or isotropic)
if (u,u) =0.
Analogously to the Euclidean case, a necessary and suffamenlition for aspatial polynomiaturve to possess
a Minkowski Pythagorean hodograph can be expressed in the fo

yi — UQ—V2+P2—Q2,

Y, = 20UV —2PQ,

y, = 2UP-2VQ, (15)
0 = U2+V2—P2—Q2,

whereU, V, P,Q € R[t], see Theorem 3.1 of Moon (1999). Again, as in the case of Piesucf. Remark 1), we,
without loss of generality, restrict ourselvesdg@) > 0 only. Then,o(¢) will be calledMinkowski speed

We emphasize that (15) as well as its planar Euclidean couartg(3) do not extend in a natural way to rational
(M)PH curves. This is due to the fact that we need to integitedehodograph to obtain the curve itself. Indeed,
integrating a general rational function does not yield are result.

For later use we recall some basic facts from differentiahgetry of curves iR?!. Lety(s) = (y1, y2,y3) ' be
a sufficiently smooth space-like curve parameterized byeargth and lefl’ = y’(s) be its unit (space-like) tangent
vector, i.e.,(T,T) = 1. Then the Frenet formulas take the form (i) for space-/tiike-T’, or (ii) for T’ being
light-like:

T = xN, T = xN,
0] Ni = —(N,N)»T+ 7B, or (ii) N: = 7N, (16)
B’ = 7N, B = —»T-7B.

The vector&N andB are the uninormalandbinormalvectors, respectively, andandr are theMinkowski curvature
andtorsionof y(s).

Analogously to Euclidean space, the Minkowski curvatura ¢generally non-unit speed) space-like cuyvean
be computed using the formula

! 1! ! 1!
VI )y y )y an

= N
y',y')?

wherex denotes theross-productn R2:! given by
uNxXv= (u2v3 — U3V2,U3V] — U1V3, —UIV2 + Uz’l}l)T. (18)

In addition, letxy, x_ be the signed curvatures af. at the contact points with thBIAT disc centered at
y = (y1,92) " with radiusys andy = 4(x+,§r,x_), see Fig. 3. Then, as shown in Proposition 2 of Kosinka and
Juttler (2006b), it holds

TI, T — kth— , 19
T = g (= o ) 49
wheresin? ”’ can be computed using the relation
Y 0 i’ + s’ —
sin? 9= 1 — cos? 3= 1 —tan?¢p =21 22 73 (20)

R
YT+ s
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Figure 3: A spatial curve considered aBIAT (), its projectiongr and the associated boundary curxesandx .

cf. Section 3.2 of Choi et al. (1999) and Fig. 3. ConsequegifitiT’, T') # 0, thens = /[(T/, T')| and thus

%4 _ (K+l€_)2 ) (21)

(1+ yar)?(1 — yor_)?sin”

[N13SH

3. PH and MPH curves inseparable

In this section we investigate the close relationship betwdanar PH curves and spatial MPH curves in both the
polynomial and rational case.

3.1. Polynomial MPH curves
In order to simplify our further computations, we subsgtut

a=V-P b=U-Q, ¢c=V+P, d=U+Q (22)
in (15). Thus we obtain the following

Lemma 1. A polynomial curvey = (y1,42,43) C R2!is an MPH curve (i.e.y}> + v3> — 34> = 0> for some
polynomialp) if and only if there exist four polynomials b, ¢, d € R[t] such that the components of the hodograph
y’ fulfil

¥y = bd—ac,

yy, = bc+ ad,

ys = be—ad, (23)
o = bd+ac.

Using (23), the envelope formula for polynomial MPH curviesifies significantly.

Lemma 2. Lety be a polynomial MPH curve given 1§23). Then the two envelope curvdd) associated witly are

v Y3 2ab v Y3 2cd
X+:}’+m(a2_b2>a X_:y_c2+d2<02—d2)' (24)




In addition, formula (23) yields another interesting résty computing(x’,)* /o and(x’_)*/o_ or simply

consideringn4 = (§r — x4 )/ys, see Fig. 3, we obtain compact expressions for the unit norecdors of PH curves
x4 andx_ associated witly given by (23) in the form

2ab  a? — b? T 2ed 2 — d? T
ny=— (o L0 (2 ) (25)
a? + b2 a? + b2 c24+d?’ ¢4 d?

Let us recall the following observation (Choi et al., 199%d, 1999): Lef2 be a planar domain. FIAT () is
a polynomial MPH curvey, then the boundary curves. of 2 associated witly are (piece-wise) rational. Moreover,
all offsets of the boundary possess this property as well.

Now we take this observation one step further. In order taioldtoffsets it is enough to sei; + 6 instead ofy;
in the envelope formula (24). Hence, we conclude that for@olynomial MPH curvey ¢ R%!, the curvescy C R?
associated witly are rational PH curves. However, since being PH is a propénparameterizations, one may still
ask whether the parameterizations in (24) fulfill this pmbyperhe answer is given in the following

Lemma 3. The parameterization@4) associated with a polynomial MPH curve characterized28) fulfill the PH
condition, i.e., they are rational PH parameterizations.

PROOF Taking into account (25), one can see that the envelopeuiar(@4) becomes simply

X+ = }v’ — Yysng. (26)

Now, sincen.. are rational, parameterizatiors satisfy the PH property.
For the sake of completeness we also provide a direct computs o . Differentiatingx . (¢) with respect ta
yields
[(a® + b?)(ac + bd) + 2y3(a’b — ab’)]?
(a2 + b2)2 '

An analogous computation for the conjugated cucvecompletes the proof. O

(27)

2 _ !
0L =X X =

We would like to note that the results of this section geneeahe theory of polynomial PH curves and their
J-offsets. This can be easily seen by settiagt) = J, or equivalently by imposing(t) = w(t)a(t) andd(t) =
w(t)b(t).

3.2. Rational MPH curves

Starting with a spatial polynomial MPH curgeconsidered adIAT(£2), we have shown that the boundary(of
is a planar PH curve. Moreover, we have proved that the cwyesssociated witly fulfill the PH property.

Now we turn our attention to rational MPH curves. By the samgiaent as for polynomial MPH curves, it is
obvious that spatial rational MPH curves possess plananatPH curves as their associated curves. Later, we will
also show that the associated curxesare already given in their rational PH parameterizations.

As a natural question one may ask whether these considesatim be 'reversed’. In other words, given a planar
rational PH curvex, can we construct all rational MPH curvesuch thai is associated witly? In what follows, we
show that such a construction is possible. Moreover, wedhice an approach to rational MPH curves overcoming
the limitations of hodograph representations.

Definition 2. Letx = (z1,x2) " in R? be a rational PH curve described Iy) and(9). Letr be an arbitrary rational
function. Then we define the curyéx, r) C R?! as

y(x,7) = (z1 + rny, za + rng,r) |, (28)

where(ny,ng) " = x'* /0.



Remark 3. Turning back to Definition 1, we see thais associated witly (x, r). Indeedx plays the role ok_. We

note that usingny,n2) " = —x'* /o in Definition 2 would provide an alternative definition pfx, r), in this case
with respect tax . Moreover, recalling Remark 1, one can observe that 0 would simply swap the roles of .

andx_.

Now we present a crucial result concerning rational MPH esrv

Theorem 1. Any rational MPH curve irR%! can be expressed in the form (#8).
ProoF Differentiatingy(x, r) given by (28) yields
0? = o*(1 —rk)?, (29)

whereo (t)? = 2/ (t)? + 24 (t)? andk(t) = [} (t)z4 (t) — 27 (t)zh(t)] /o (t)? is the curvature ok. Thereforey(x, )
is a rational MPH curve ifiR?!,

It remains to show that any rational MPH curve can be expdeissthe form (28). To this end we denaité the
set of all rational MPH curves iR%! and N the set of all parametric curvesx, r) given by (28). Since aly fulfill
the MPH condition, we have thdf C M. On the other hand, let(x,r) € M be a rational MPH curve. Then
the associated boundary curees are rational PH curves. By setting= x_ along withr = y3 one can construct
y(x,r) in the form of elements aV. ThusM C N. This completes the proof. O

Summing up, using Theorem 1 and (7), we obtained

Proposition 1. A curvey € R%*! is an MPH curve if and only if there exist two polynomiald and two rational
functionsg, r such that

Y1 . 20l — kkg + (K> — 1?)g' . 2kl

2 2
Y2 = 3 3 — 2(1€IZ + kll)g - 2I€lgl + 79 112 k*—1 . (30)
o 2(k2 + 12)(kl' — K1) 0 RAE\ G2 p

This characterization can be considered as a rationahalige to Moon'’s formula (15) or its simplified ver-
sion (23). For the sake of completeness we also give a forfoulain terms ofk, [, g, r:
9 1

O = TR TR (g”(k2 + P2k = K1) + g [(K'1 = k") (K +12) + 2(kk 4+ 1) (KT — kU))+

2 (31)
+ 2g[(K'1" — KUY (K* 4+ 12) 4+ (K" — K'D)(K? + 1)) + 4r(kl' — k’l)3) .

Remark 4. We recall a concept of the so call@btropic surfacdn R?! (Krasauskas and Maurer, 2000; Peternell
and Pottmann, 1998; Pottmann and Peternell, 1998) studieahinection with Laguerre geometry and cyclographic
mapping. Starting from a cureg(t) C R?, the correspondingotropic surfacd” ¢ R?! is described as

L y(t,s) = x(t) + sn(t), (32)
with x = (z1,22,0) " andii = (n1,n2,1)", wheren = (ny,n,)" is the unit normal vector of. Since it holds
<y(ta S) - >A(7Y(t7 S) - )A(> = S2<ﬁa ﬁ> = SQ(HHHQ - 1) = 07 (33)

I" is a ruled surface consisting of straight lines throwmggiven by light-like vectors/ (¢, s) — S‘c(t).

Furthermore, ifx(¢) is a PH curve thed' is a (piece-wise) rational surface. Hence, we can conclodeall
MPH curvesy(t) given by (28) are rational curves on the rational surfacé @®2ained by setting = r(¢) € R(¢).
Starting from conjugated PH curves (¢) andx_ (¢), the corresponding isotropic surfades andI"_ intersect in the
associated MPH curve(t), cf. Fig. 4. Furthermore, planar sectionslof lead tod-offsets of the associated domain
boundaries.

In addition, we would like to note that analogous observetiorere made for PN and MOS surfacesRin!
in Peternell (2010). It was proved that MOS surfaces possdgmal isotropic normal vector fields and can be
characterized as two-dimensional rational subvariefieatmnal isotropic hypersurfacesi®!.

8



Figure 4: Isotropic surfacE C R%! corresponding tx C R? andy C R?1.

With the help of (28), one can determine the degree of thdtiegMPH curve depending on the degreexdt)
andr(¢).

Lemma 4. Letx be a rational PH curve of degref andr be of degree,. Then the degree of the associages at
mostsd, +ds—1. In the case of polynomialandr the degree of amounts to at mogtl; —1+max(d;, d2))/(d1 —1).

For an arbitrary rational MPH curve, analogously to Lemma@ pbtain

Lemma 5. The parameterizationd 1) of curvesx. associated with a rational MPH cur@8) fulfill the PH condi-
tion, i.e., they are rational PH parameterizations.

PROOF Applying the envelope formula (11) to the MPH curyéx, r) given by (28), we arrive at

v r s v/ v/l
Xe =Y am ry foy . (34)
Using (29) we see that either= o(1 — rx) or ¢ = —o(1 — r«) holds. Since the latter case only swapsandx_

and produces insignificant sign changes in the formulasp&le consider for the sake of simplicity the former case
only. Then, (34) simplifies to

X_ = X

: (39)

2rp 'zl — oxh )
Xy = X+ —F5—— , 36
+ O'(T/2 + Qg) ( Qxll +T/ZZT/2 ( )

whereo (t)? = /()2 + x4 (t)? andp(t) is as in (29), or (31). The result far_ is obvious. Thus, it remains to show
thatx, also fulfills the PH condition. Differentiating . (¢) given by (36) yields

(37)

2
o or'? + 21"’29 +00% = 2ror’” +20°
Xy Xy = 2 g2

This completes the proof. O

Obviously,polynomialMPH curves, given by (15) or (23), must form a proper subs¢hefet of rational MPH
curves described by (30). A natural question arises: How dahooseg;(t) andr(¢) in Proposition 1 in order to
obtain a polynomial MPH curve? It turns out that we can effitticadapt the approach for relating planar rational
and polynomial PH curves used in Farouki and Pottmann (1284hows the following



Theorem 2. Any polynomial MPH curve ilR%! can be obtained using0) by setting

(t) = 2kl [ (km —In)dt— (k* —1%) [ (kn+1m)dt — (k* +1%) [ (Im — kn) dt,
i = f / /
r(t) = /(lm — kn)dt,
wherek(t),1(t), m(t), n(t) are arbitrary polynomials.

PrROOFE For the sake of brevity we do not go into details and referdéagler interested in the derivation of the given
expressions to Farouki and Pottmann (1994). Congi@erdr in the form (38). Substituting andr into (30) yields

yi(t) = /(km —In)dt, y2(t) = — /(kn +im)dt, ys(t) = /(lm — kn)dt. (39)
These expressions give a polynomial MPH curve of type (28)fe [, b = —k, ¢ = n andd = —m. The fact that
(23) describesll polynomial MPH curves completes the proof. O

3.3. Curvatures of associated curves

Motivated by a potentialy> Hermite interpolation scheme for MPH curves, we focus onesoghations between
the Minkowski curvature of an MPH curve and the curvaturesofissociated planar PH curves. Let us emphasize
that the results discussed in the following paragraphsuiieg formula (29)) hold also for general MATs and the
associated curvest, i.e., without the assumption of rationality of o, >z andx-..

Letx, andx_ be two conjugated PH curves with curvatures x_ and speeds., o_, respectively. Defining
y(x_,7) we obtained the relatios? = o_2(1—7rx_)?, cf. (29). Onthe other hand, usirg , cf. Remark 3, we arrive
ato? = o4%(1 + rk4)?. Sincexy, x_ are conjugated, the associated MPH curves coincideyi®.,) = y(x.).
Consequently, the Minkowski speeds are equak ¢ and

ot (1+rkp)? =02 (1 —rk_)? (40)

If we multiply 0% ande? and compare the result with (21) we arrive at

4
(o1k) (oK ) = (g%sin %) ) (41)

which holds for MPH curves with space- or time-like vectBt. Otherwise,»» = 0 or »» = 1, see Section 2.4
of Kosinka and Juttler (2006b). Usisgn® ¥ = 0%/(0® + %), cf. (20), we obtain

4,2 2
(oo = (25 ) (42)

Furthermore, computing and its derivative using (40) and then substituting into)(42e can derive a relation for
only curvatures:, x_, > and parametric speeds., o_, ¢ of the conjugated PH curves,, x_ and their associated
MPH curvey.

Now we apply our results to the special case when é is constant. They = (y1,y2,9) " is a planar PH curve
satisfyingo? = y7? + y? andx. ared-offsets of its orthogonal projection, which are rational PH curves as well.
Clearly,y andy are only translated versions of the same PH curve. Sihee0, (42) simplifies to

(0 h4)?(0-k-)? = 0", (43)

yielding an interesting relation between a planar (ratipRB curve and its both-sided offsets.
We investigate this special case in more detail. k&t the (signed Euclidean) curvatuee= (viyy — v{y5)/0®
of y (this can differ from the Minkowski curvature (17) gy its sign only). Moreover, leR = 1/3, Ry = 1/k4 be
10



Figure 5: A PH curvgvr with its §-offsetsx .+, their speed®, o+, and the corresponding concentric osculating circles (gney)
with radii R, R 4 § and with the centee lying on the common evolute (thick grey).

the signed (oriented) radii of curvaturepfandx ., respectively. It is well known (see e.g. Farouki and Ne§qQ);
Farouki (2008)) that offsets share a common evolute, he.|dcus of all centers of curvature, see Fig. 5. Therefore,
Ry = RF¥dandky = /(1 F »0). Thisin turn givesl + k1§ = k/». Comparing the last equation with (29)
and (40) yields

aimi = 0% =02K?, (44)

which is a stronger result than (43).

4. Conclusion

In the present paper we introduced a novel approach for stgdyiPH curves. Since this approach overcomes
the limitations of hodograph representation, it was susfadlg applied to rational MPH curves. Using the concept
of associated planar PH and spatial MPH curves, we showeédnlyaational MPH curve ilR?! can be obtained in
terms of a rational PH curve iR? and an extra rational function. We also studied relatiorie/éen the Minkowski
curvature of MPH curves and the curvatures of the associd#etdr PH curves. As a special case, our results can be
applied to planar rational PH curves and their offsets.

The techniques presented in this paper might stimulatdduresearch in the topic of Pythagorean hodograph
curves and help to improve the understanding of these dptasaes of curves both in Euclidean plane and Minkowski
space. In the literature there exist many efficient, yet gpdechniques for various types of geometric interpotati
designed either for polynomial/rational PH or MPH curvedeniefore, our approach can serve as a first step for
formulating new interpolation algorithms based on the samifying principle.

As we already mentioned in Remark 4, our study of associaktedri®l MPH curves ilR?! is analogous to the
characterization of MOS surfaces via PN surfaceRrt by Peternell (2010). Nevertheless, the approach to MPH
curves used in the present paper, based mainly on symbohdumiations, led to new interesting results relating
curvatures of involved PH and MPH curves (see Section 3.8js flict might be helpful in formulating potentiaPG
interpolation algorithms. However, it still remains a deabe to discover whether similar relations hold for assted
PN and MOS surfaces as well.
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