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bCentre de mathématiques, INSA de Rennes, 20 avenue des Buttes de Coësmes, CS
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Abstract

The aim of this paper is to investigate, in a bounded domain of R
3, two blend-

ing sums of univariate and bivariate C1 quadratic spline quasi-interpolants.
The main problem consists in constructing the coefficient functionals as-

sociated with boundary generators, i.e. generators with supports not entirely
inside the domain. In their definition, these functionals involve data points
lying inside or on the boundary of the domain. Moreover, the weights of
these functionals must be chosen so that the quasi-interpolants have the best
approximation order and a reasonable infinite norm.

We give their explicit constructions, infinite norms and error estimates.
In order to illustrate the approximation properties of the proposed quasi-
interpolants, some numerical examples are presented and compared with
those obtained by some other trivariate quasi-interpolants given recently in
the literature.
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1. Introduction

The reconstruction of volume data is an active area of research, due to
its relevance to many applications, such as scientific visualization, medical
imaging and computer graphics (see e.g. Nürnberger et al. 2005 and the ref-
erences therein). These reconstructions require an appropriate non discrete
model of the given gridded volume data. Standard approaches use trivari-
ate tensor-product of splines (see e.g. Barthe et al. 2002; Meissner et al.
2000), like trilinear continuous splines and triquadratic and tricubic smooth
splines. Other approaches, proposed in the last years, consist in trivariate
macro-elements (see e.g. Lai and Le Méhauté 2004, Lai and Schumaker 2007,
Chap.18, Schumaker and Sorokina 2005; Schumaker et al. 2009 and the ref-
erences therein), in the local reconstruction of volume data by using splines
given in Bernstein-Bézier form (BB-form) (see e.g. Nürnberger et al. 2005;
Rössl et al. 2004; Sorokina and Zeilfelder 2007) or in trivariate box splines
(see e.g. Entezari and Möller 2006; Entezari et al. 2008, 2009; Kim et al.
2008; Remogna 2010b,c).

In this paper, following the method proposed in Delvos and Schempp
(1989, Chap.6), we investigate blending sums of univariate and bivariate C1

quadratic spline quasi-interpolants (abbr. QIs) whose data points are inside
or on the boundary of the domain Ω of R

3. In Sablonnière (2003a,b) the
author proposes a blending sum of univariate and bivariate C1 quadratic
QIs using different types of B-splines, with multiple knots and with supports
included in Ω. Instead, here we use generators of one type, which is an
advantage from a computational point of view, and with supports overlapping
Ω. The main problem consists in finding the coefficient functionals associated
with boundary generators involving, in their definition, data points inside or
on the boundary of the domain.

First, in Section 2 we define the blending sum of a univariate QI and
a bivariate one, and, in Section 3 we present several ways of constructing
quasi-interpolants on bounded domains of R and R

2. Then, in Section 4 and
5 we introduce three different types of quadratic QIs on uniform meshes of a
bounded interval of the real line and on a uniform criss-cross triangulation of
a bounded rectangle, respectively. In Section 6, we study trivariate blending
sums of univariate and bivariate QIs defined in the previous sections. In
order to define these trivariate blending sums, special tensor products of
univariate and bivariate C1 quadratic B-splines are used and they yield to
C1 trivariate piecewise polynomials of degree four. Finally, in Section 7, we

2



present some numerical examples illustrating the approximation properties
of the proposed trivariate quasi-interpolants.

2. Construction of trivariate blending sums of quasi-interpolants

In this section we define the blending sum of a univariate QI and a bi-
variate one.

Let Ω
′′
⊂ R and Ω

′
⊂ R

2 be bounded domains. Let {Bα(x, y), α ∈ F},
F ⊂ Z

2, be an appropriate set of bivariate B-spline functions spanning a
space of bivariate splines of degree ρ defined on a uniform triangulation of Ω

′

of mesh size h > 0, and let {Bα(z), α ∈ F̄}, F̄ ⊂ Z, be an appropriate set
of B-spline functions in one dimension, spanning a space of splines of degree
ρ̄ defined on a uniform partition of Ω

′′
of step-length h.

We consider bivariate and univariate quasi-interpolants (see e.g. de Boor
2001, Chap.12, Lyche and Schumaker 1975, for the univariate case and de
Boor et al. 1993, Chap.3, for the bivariate case), Pf(x, y) and P̄ f(z), of the
form

Pf(x, y) =
∑

α∈F

µα(f)Bα(x, y) =
∑

(i,j)∈F

µ(i,j)(f)B(i,j)(x, y), (1)

P̄ f(z) =
∑

k∈F̄

µ̄k(f)Bk(z). (2)

where the coefficients {µα, α ∈ F} and {µ̄k, k ∈ F̄} are local linear func-
tionals which are combinations of values of f at some points lying in a neigh-
bourhood of the support of the corresponding B-spline. More specifically,
given the sets of data points {Mα, α ∈ FM} and {uk, k ∈ F̄u} (FM ⊂ Z

2,
F̄u ⊂ Z finite sets of indices), we consider coefficient functionals of type

µα(f) =
∑

β∈Fα

σα(β)f(Mβ), σα(β) ∈ R, (3)

µ̄k(f) =
∑

β∈F̄k

σ̄k(β)f(uβ), σ̄k(β) ∈ R, (4)

where Fα ⊂ FM and F̄k ⊂ F̄u. Furthermore, the QIs P and P̄ are exact on
some polynomial space Pp[x, y] and Pp̄[z], respectively.

From the expressions (1) and (2), after some algebra, we get the following
expressions for P and P̄

Pf(x, y) =
∑

(i,j)∈FM

f(M(i,j))L(i,j)(x, y), P̄ f(z) =
∑

k∈F̄u

f(uk)(f)L̄k(z),
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where L(i,j)(x, y) and L̄k(z) are called quasi-Lagrange functions associated
with P and P̄ respectively, and given by linear combinations of B-splines.
This form is more convenient for the definition of the trivariate blending
sum and it is useful to compute the infinite norm of the QIs. Indeed, the
infinite norms of P and P̄ are equal to the Chebyshev norms of their Lebesgue
functions respectively defined by:

Λ =
∑

(i,j)∈FM

|Li,j|, Λ̄ =
∑

k∈F̄u

|Lk|

and ‖P‖∞ = ‖Λ‖∞, ‖P̄‖∞ =
∥

∥Λ̄
∥

∥

∞
.

Furthermore, according to classical results in approximation theory (see
e.g. DeVore and Lorentz 1993, Chap.5, Lyche and Schumaker 1975 for the
univariate case and de Boor et al. 1993, Chap.3, Dagnino and Lamberti 2001;
Foucher and Sablonnière 2008; Lyche and Schumaker 1975 for the bivariate
one) and, in view of the exactness of P on Pp[x, y] and P̄ on Pp̄[z], we have
that the rate of convergence is O(hp) for the two-dimensional case and O(hp̄)
for the univariate case, i.e.

‖f − Pf‖∞ ≤ K hp
∥

∥f (p)
∥

∥

∞
,

∥

∥f − P̄ f
∥

∥

∞
≤ K̄ hp̄

∥

∥f (p̄)
∥

∥

∞
,

for some positive constants K, K̄ and sufficiently smooth functions f .
We define the trivariate extensions (Delvos and Schempp, 1989, Chap.6)

of the QIs P and P̄ in the following way

Pf(x, y, z) =
∑

(i,j)∈FM

f(M(i,j), z)L(i,j)(x, y),

P̄ f(x, y, z) =
∑

k∈F̄u

f(x, y, uk)(f)L̄k(z).

Now we construct the trivariate blending sum. Let Ω = Ω′ × Ω′′, and
let Bi,j,k(x, y, z) = Bi,j(x, y)Bk(z), (i, j) ∈ F , k ∈ F̄ be the tensor product
B-splines of degree ρ+ ρ̄ spanning the tensor product spline space defined on
Ω on a partition obtained from the univariate and the bivariate ones.

We consider two bivariate QIs P1 and P2 exact on the spaces Pp1
[x, y] and

Pp2
[x, y], respectively

P1f(x, y, z) =
∑

(i,j)∈FM

f(M(i,j), z)L
(1)
(i,j)(x, y),

P2f(x, y, z) =
∑

(i,j)∈FM

f(M(i,j), z)L
(2)
(i,j)(x, y),
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with p1 < p2 and two univariate QIs P̄1 and P̄2 exact on the spaces Pp̄1
[z]

and Pp̄2
[z], respectively

P̄1f(x, y, z) =
∑

k∈F̄u

f(x, y, uk)L̄
(1)
k (z), P̄2f(x, y, z) =

∑

k∈F̄u

f(x, y, uk)L̄
(2)
k (z),

with p̄1 < p̄2 and we define (Delvos and Schempp, 1989) the trivariate blend-
ing sum

R = P1P̄2 + P2P̄1 − P1P̄1.

It is a piecewise polynomial of degree ρ + ρ̄ and it can be written in the
following form

Rf(x, y, z) =
∑

(i,j,k)∈FM×F̄u

f(M(i,j), uk)L(i,j,k)(x, y, z) (5)

where the trivariate quasi-Lagrange functions are defined by

Li,j,k(x, y, z) = L
(1)
i,j (x, y)L̄

(2)
k (z) + L

(2)
i,j (x, y)L̄

(1)
k (z) − L

(1)
i,j (x, y)L̄

(1)
k (z).

We recall that the operator R can be also expressed in terms of tensor product
B-splines Bi,j,k(x, y, z).

We can state the following important properties of R.

Theorem 1. The operator R is exact on the subspace PR = (Pp1
[x, y] ⊗

Pp̄2
[z]) ⊕ (Pp2

[x, y] ⊗ Pp̄1
[z]) of the space Pp2

[x, y] ⊗ Pp̄2
[z]. Moreover the

infinite norm of R is bounded by

‖R‖∞ ≤ ‖P1‖∞
∥

∥P̄2

∥

∥

∞
+ ‖P2‖∞

∥

∥P̄1

∥

∥

∞
+ ‖P1‖∞

∥

∥P̄1

∥

∥

∞
.

Proof. Following the same logical scheme used in Theorem 4.1 of Sablonnière
(2003a), the exactness of R on the space PR follows from the definition (5)
and from the exactness properties of each operator P1, P2, P̄1, P̄2.

Moreover, since PR ⊂ Pq[x, y, z], with q = min{p2, p̄2}, standard results
in approximation theory (see also Demichelis and Sablonnière 2007, 2010 for
the case of trivariate blending sums of univariate and bivariate quadratic
QIs) allow us to deduce the following theorem, where

- ω(ϕ, t) = max{|ϕ(x) − ϕ(y)|; x, y ∈ Ω, ‖x − y‖ ≤ t} is the usual
modulus of continuity of ϕ ∈ C(Ω);
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- Dβ = Dβ1β2β3 = ∂|β|

∂xβ1∂yβ2∂zβ3
, with β1 + β2 + β3 = |β|;

- ω(Drf, h) = max{ω(Dβf, h), |β| = r}.

Theorem 2. Let f ∈ Cr(Ω), r = 0, 1, . . . , q. Then there exist constants
Kr > 0 such that

‖f − Rf‖∞ ≤ Krh
rω(Drf, h).

If in addition f ∈ Cq+1(Ω) then there exists a constant Kq+1 > 0 such that

‖f − Rf‖∞ ≤ Kq+1h
q+1 max

|β|=q+1

∥

∥Dβf
∥

∥

∞
.

We also introduce the concept of superconvergence. If we have a quasi-
interpolant P (P̄ for the univariate case) exact on Pp[x, y] (Pp̄[z]), then (f −
Pf) is O(hp) ((f − P̄ f) is O(hp̄)) for sufficiently smooth functions. We say
that the QI satisfies superconvergence properties at a specific point M if
(f − Pf)(M) = O(hp+1) ((f − P̄ f) is O(hp̄+1)).

Therefore, if we suppose that the operators P2 and P̄2 show superconver-
gence properties respectively at the sets of points {M s

α} ⊂ {Mα, α ∈ FM}
and {us

k} ⊂ {uk, k ∈ F̄u}, then the operator R presents superconvergence
properties on the tensor product grid of the points considered in the univari-
ate case and the points of the bivariate case, i.e. the set of points {(M s

α, us
k)},

and we have the following result.

Theorem 3. At the points {(M s
α, us

k)}, the operators R is exact on the sub-
space (Pp1

[x, y] ⊗ Pp̄2+1[z]) ⊕ (Pp2+1[x, y] ⊗ Pp̄1
[z]) of the space Pp2+1[x, y] ⊗

Pp̄2+1[z].

In Section 6, we apply the technique proposed in this section for the
construction of trivariate blending sums to the univariate and bivariate C1

quadratic QIs introduced in Sections 4 and 5, respectively, and constructed
using the methods proposed in Section 3.

3. On the construction of quadratic spline quasi-interpolants

In this section we introduce general methods that will be applied in Sec-
tions 4 and 5 for the construction of univariate and bivariate quadratic QIs,
respectively (for the bivariate case see Remogna 2010a).

The construction of such coefficient functionals is related to the differ-
ential quasi-interpolants (abbr. DQIs) Q̂, Q̃ exact on P2[x, y] and P2[z],
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respectively, defined by (Sablonnière 2003a, Schoenberg 1973, Chap.2 for the
univariate case and Sablonnière 1982, Chap.6, for the bivariate case)

Q̂f(x, y) =
∑

α∈Z2

(

f(α) −
h2

8
∆f(α)

)

Bα(x, y), (6)

Q̃f(z) =
∑

k∈Z

(

f(k) −
h2

8
f ′′(k)

)

Bk(z). (7)

By convenient discretisations of (partial) derivatives in (6) and (7), some
quasi-interpolants based only on function values are proposed in Sablonnière
(2003a,b).

If we use these QIs in a bounded domain, the coefficient functionals as-
sociated with boundary generators (i.e. B-splines with supports not entirely
inside Ω) make use of data points outside Ω (see Foucher and Sablonnière
2008 for d = 2). In order to use only data points inside or on the boundary
of Ω we have to define new coefficient functionals for boundary B-splines.

Thus, we propose two different methods of constructing boundary func-
tionals: one method leads to an operator called near-best and the other leads
to an operator that exhibits superconvergence properties at some specific
points of the domain.

3.1. Near-best quasi-interpolation operators

The near-best quasi-interpolation operators are obtained by minimizing
upper bounds of their infinite norms. This method is described and used in
Barrera et al. (2003, 2008, 2009); Ibáñez (2003); Remogna (2010a,c).

From (3) (similarly for the univariate case (4)), it is clear that, for ‖f‖∞ ≤
1 and α ∈ F, |µα(f)| ≤ ‖σα‖1 where σα is the vector with components σα(β),
from which we deduce immediately

|Pf | ≤
∑

α∈F

|µα(f)|Bα ≤ max
α∈F

|µα(f)| ≤ max
α∈F

‖σα‖1,

therefore
‖P‖∞ ≤ max

α∈F
‖σα‖1.

Now we try to find a solution σ∗
α ∈ R

card(Fα) of the minimization problem
(see e.g. Barrera et al. 2003, Ibáñez 2003, Chap.3)

‖σ∗
α‖1 = min

{

‖σα‖1; σα ∈ R
card(Fα), Vασα = bα

}

,
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where Vασα = bα is a linear system expressing that P is exact on P2[x, y]. In
our case we require that the coefficient functional coincides with the differ-
ential one for f ∈ P2[x, y]. This problem is a l1-minimization problem and
there are many well-known techniques for approximating the solutions, not
unique in general (see e.g. Watson 1980, Chap.6). Since the minimization
problem is equivalent to a linear programming one, here we use the simplex
method.

3.2. Quasi-interpolation operators with superconvergence properties

These quasi-interpolants are constructed in such a way that a phenomenon
of superconvergence occurs at some specific points of the domain.

If we construct an operator P exact on P2[x, y], then f −Pf is O(h3) for
sufficiently smooth functions. If we want superconvergence, i.e. f − Pf =
O(h4) at some specific points, we have to require that, for f ∈ P3[x, y],
the quasi-interpolant Pf interpolates the function f at those points. So we
impose Pf(M) = f(M) for f ∈ P3[x, y]\P2[x, y] and M specific point of the
domain.

This leads to a system of linear equations with free parameters which are
determined by minimizing the infinite norm of the functional and solving the
corresponding l1-minimization problem.

The same technique is used for a univariate QI P̄ exact on P2[z].

4. Quadratic spline quasi-interpolants on a bounded interval

Let Ω′′ = [0,m3h] be a bounded interval of the real line endowed with
a partition Tm3

into m3 subintervals of length h. We denote by S2(Ω
′′, Tm3

)
the space of C1 quadratic splines on this uniform partition. This space is
generated by the (m3 + 2) quadratic B-splines {Bk, k ∈ A′′} (de Boor, 2001,
Chap.9), (Chui, 1988, Chap.1), where A′′ = {k, 0 ≤ k ≤ m3+1}, with simple
knots {kh, −2 ≤ k ≤ m3 + 2}.

We use the set of (m3 + 2) data points {uk, k ∈ A′′} defined by

u0 = 0, uk =

(

k −
1

2

)

h, k = 1, . . . ,m3, um3+1 = m3h, (8)

and we denote the values of a function f at these points by fk = f(uk).
In this space we consider three distinct univariate operators. The first

one, S̄1, is related to the well-known Schoenberg-Marsden operator (see e.g.
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Marsden 1975). The other two operators Q̄1 and Q̄2 are related to the uni-
variate operator S2 proposed in Sablonnière (2003a), exact on P2[z] and de-
duced from (7) by replacing the second derivative by a second order divided
difference based on three consecutive points. It has the form

Q∗∗f =
∑

k∈Z

(

5

4
fk −

1

8
(fk−1 + fk+1)

)

Bk. (9)

Using the two different strategies introduced in Section 3, we construct
boundary functionals associated with the B-splines whose supports are not
entirely inside the interval Ω′′.

In the interior of the domain, i.e. for k = 2, . . . ,m3 − 1, the quasi-
interpolants Q̄1 and Q̄2 make use of the same inner functionals given in (9).

4.1. The Schoenberg-Marsden-like operator S̄1

The Schoenberg-Marsden-like operator is defined by

S̄1f =
∑

k∈A′′

γ̄k(f)Bk =
∑

k∈A′′

fkLk,

with coefficient functionals

γ̄0(f) = 2f0 − f1, ‖γ̄0‖∞ = 3, γ̄m3+1(f) = 2fm3+1 − fm3
, ‖γ̄m3+1‖∞ = 3

γ̄k(f) = fk, ‖γ̄k‖∞ = 1, k = 1, . . . ,m3,

ensuring the exactness on P1[z] and quasi-Lagrange functions given by

L0 = 2B0, L1 = B1 − B0,

Lk = Bk, k = 2, . . . m3 − 1,
Lm3

= Bm3
− Bm3+1, Lm3+1 = 2Bm3+1.

4.2. The near-best operator Q̄1

Now we define a QI exact on P2[z]

Q̄1f =
∑

k∈A′′

µ̄k(f)Bk =
∑

k∈A′′

fkL
(1)
k ,

where the boundary functionals are functionals of near-best type (see Section
3.1). For example, in order to construct the coefficient functional µ̄0, we
consider a 4-point linear functional of the form

µ̄0(f) = a1f0 + a2f1 + a3f2 + a4f3.

9



We impose µ̄0(f) ≡ (f − h2

8
f ′′)(−h

2
), for f ≡ 1, z, z2, obtaining the exactness

on the space P2[z]. This leads to the system:

a1 + a2 + a3 + a4 = 1, a2 + 3a3 + 5a4 = −1, a2 + 9a3 + 25a4 = 0,

whose solution depends on the parameter a4

a1 =
7

3
−

8

3
a4, a2 = −

3

2
+ 5a4, a3 =

1

6
−

10

3
a4.

Minimizing the norm ‖µ̄0‖∞ we obtain

a1 =
23

15
, a2 = 0, a3 = −

5

6
, a4 =

3

10
,

with ‖µ̄0‖∞ ≈ 2.67.
Following the same logical scheme we construct the other coefficient func-

tionals:

µ̄0(f) = 23
15

f0 −
5
6
f2 + 3

10
f3, ‖µ̄0‖∞ = 8

3
≈ 2.67

µ̄1(f) = 7
8
f1 + 1

4
f2 −

1
8
f3, ‖µ̄1‖∞ = 5

4
= 1.25

µ̄m3
(f) = 7

8
fm3

+ 1
4
fm3−1 −

1
8
fm3−2, ‖µ̄m3

‖∞ = 5
4

= 1.25
µ̄m3+1(f) = 23

15
fm3+1 −

5
6
fm3−1 + 3

10
fm3−2, ‖µ̄m3+1‖∞ = 8

3
≈ 2.67.

For k = 2, . . . ,m3 − 1, the µ̄k’s are defined by (9), i.e.

µ̄k(f) =
5

4
fk −

1

8
(fk−1 + fk+1), ‖µ̄k‖∞ =

3

2
= 1.5.

The quasi-Lagrange functions L
(1)
k are

L
(1)
0 = 23

15
B0, L

(1)
1 = 7

8
B1 −

1
8
B2, L

(1)
2 = −1

8
B3 + 5

4
B2 + 1

4
B1 −

5
6
B0,

L
(1)
3 = −1

8
B4 + 5

4
B3 −

1
8
B2 −

1
8
B1 + 3

10
B0,

L
(1)
k = 5

4
Bk −

1
8
(Bk−1 + Bk+1), k = 4, . . . ,m3 − 3,

L
(1)
m3−2 = −1

8
Bm3−3 + 5

4
Bm3−2 −

1
8
Bm3−1 −

1
8
Bm3

+ 3
10

Bm3+1,

L
(1)
m3−1 = −1

8
Bm3−2 + 5

4
Bm3−1 + 1

4
Bm3

− 5
6
Bm3+1,

L
(1)
m3

= 7
8
Bm3

− 1
8
Bm3−1, L

(1)
m3+1 = 23

15
Bm3+1.
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4.3. The operator Q̄2 with superconvergence properties

The second QI exact on P2[z], is defined by Foucher and Sablonnière
(2009)

Q̄2f =
∑

k∈A′′

λ̄k(f)Bk =
∑

k∈A′′

fkL
(2)
k ,

where the boundary functionals are choosing to induce superconvergence at
the knots Tm3

and the midpoints {uk, k ∈ A′′} defined by (8) (see Section

3.2). The corresponding quasi-Lagrange functions L
(2)
k are

L
(2)
0 = −2

5
B1 + 12

5
B0, L

(2)
1 = −1

8
B2 + 13

8
B1 −

13
8
B0,

L
(2)
2 = −1

8
B3 + 5

4
B2 −

1
4
B1 + 1

4
B0, L

(2)
3 = −1

8
B4 + 5

4
B3 −

1
8
B2 + 1

40
B1 −

1
40

B0,

L
(1)
k = 5

4
Bk −

1
8
(Bk−1 + Bk+1), k = 4, . . . ,m3 − 3,

L
(2)
m3−2 = −1

8
Bm3−3 + 5

4
Bm3−2 −

1
8
Bm3−1 + 1

40
Bm3

− 1
40

Bm3+1,

L
(2)
m3−1 = −1

8
Bm3−2 + 5

4
Bm3−1 −

1
4
Bm3

+ 1
4
Bm3+1,

L
(2)
m3

= −1
8
Bm3−1 + 13

8
Bm3

− 13
8
Bm3+1, L

(2)
m3+1 = −2

5
Bm3

+ 12
5
Bm3+1.

For the operators above introduced, the following results are immediate:

• the infinite norms of S̄1, Q̄1 and Q̄2 satisfy

∥

∥S̄1

∥

∥

∞
= 1,

∥

∥Q̄1

∥

∥

∞
=

19

12
≈ 1.58,

∥

∥Q̄2

∥

∥

∞
=

73

48
≈ 1.52;

• in view of the exactness of Q̄v, v = 1, 2, on P2[z], we have that the rate
of convergence is O(h3), i.e. for a function f ∈ C3(Ω′′) then there exist
positive constants K̄v, v = 1, 2, such that

∥

∥f − Q̄vf
∥

∥

∞
≤ K̄vh

3
∥

∥f (3)
∥

∥

∞
, v = 1, 2.

5. Quadratic spline quasi-interpolants on a bounded rectangle

Let Ω′ = [0,m1h] × [0,m2h] be a rectangular domain divided into m1m2

squares, each of them subdivided into 4 triangles by its diagonals. We denote
by S2(Ω

′, Tm1m2
) the space of C1 quadratic splines on the triangulation Tm1m2

of Ω′ obtained in this way. This space is generated by the (m1 + 2)(m2 +
2) scaled translates of the classical Zwart-Powell quadratic box spline (ZP-
element) {Bi,j, (i, j) ∈ A′} (de Boor et al. 1993, Chap.1, Chui and Wang 1984,
Chui 1988, Chap.3), where A′ = {(i, j), 0 ≤ i ≤ m1 + 1, 0 ≤ j ≤ m2 + 1}.
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The set of data points {Mi,j, (i, j) ∈ A′} is formed by the centers of the
squares (m1m2 points), the midpoints of boundary segments (2(m1 + m2)
points) and the four vertices of Ω′. These points are defined by Mi,j = (si, tj)
where

s0 = 0, si = (i − 1
2
)h, 1 ≤ i ≤ m1, sm1+1 = m1h,

t0 = 0, tj = (j − 1
2
)h, 1 ≤ j ≤ m2, tm2+1 = m2h.

(10)

The values of the function f at those points are denoted by fi,j = f(Mi,j).
As in the univariate case, we define three different quasi-interpolants.

The simplest one, S1, is a bivariate extension of the Schoenberg-Marsden
operator (Chui and Wang, 1984; Sablonnière, 2003a,b). The other two kinds
of operators, constructed in Remogna (2010a), are related to the operator S2,
proposed in Sablonnière (2003a,b), exact on P2[x, y] and obtained from (6)
by replacing the Laplacian ∆ by its five points discretisation. The operator
S2 has the form

Q∗f =
∑

(i,j)∈Z2

(

3

2
fi,j −

1

8
(fi−1,j + fi+1,j + fi,j−1 + fi,j+1)

)

Bi,j. (11)

Using the two different strategies introduced in Section 3, we have con-
structed in Remogna (2010a) the boundary functionals, associated with the
box splines whose supports overlap with Ω′.

5.1. The Schoenberg-Marsden-like operator S1

The first operator is defined by

S1f =
∑

(i,j)∈A′

γi,j(f)Bi,j =
∑

(i,j)∈A′

fi,jLi,j,

with γi,j(f) = fi,j, ‖γi,j‖∞ = 1 for i = 1, . . . ,m1, j = 1, . . . ,m2 and

γ0,0(f) = 4f0,0 − 2(f1,0 + f0,1) + f1,1, ‖γ0,0‖∞ = 9
γi,0(f) = 2fi,0 − fi,1, ‖γi,0‖∞ = 3 i = 1, . . . ,m1.

For the three other edges and vertices of Ω′ we have analogous formulas.
These coefficient functionals are constructed in order to ensure the exactness
on the space of bilinear polynomials, P11[x, y] spanned by {1, x, y, xy}.
We can express the quasi-interpolant S1f by means of the quasi-Lagrange
functions Lα. After some algebra, we get in the neighbourhood of the origin

L0,0 = 4B0,0, L1,0 = 2B1,0 − 2B0,0, L1,1 = B1,1 + B0,0 − B1,0 − B0,1.
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Along the lower edge, for i = 2, . . . ,m1 − 1, we get:

Li,0 = 2Bi,0, Li,1 = Bi,1 − Bi,0,

and analogous formulas for the three other edges and vertices of Ω′. For the
pairs (i, j) with i = 2, . . . ,m1 − 1 and j = 2, . . . ,m2 − 1 we have Li,j = Bi,j.

Studying directly the Chebyshev norm of its Lebesgue function defined
by Λ =

∑

(i,j)∈A′ |Li,j|, we obtain

‖S1‖∞ = ‖Λ‖∞ = 1.

5.2. The near-best operator Q1

Now we define a QI exact on P2[x, y]

Q1f =
∑

(i,j)∈A′

µi,j(f)Bi,j =
∑

(i,j)∈A′

fi,jL
(1)
i,j ,

where the boundary functionals are of near-best type (see Remogna 2010a
for detail). By the functional definitions, after some algebra, we get the

quasi-Lagrange functions L
(1)
α , with

L
(1)
i,j =

3

2
Bi,j −

1

8
(Bi,j−1 + Bi,j+1 + Bi−1,j + Bi+1,j)

for the pairs (i, j) with i = 4, . . . ,m1 − 3 and j = 4, . . . ,m2 − 3. The other

L
(1)
i,j -splines have particular definitions. In the neighbourhood of the origin

we have

L
(1)
0,0 = 22

9
B0,0 + 38

45
(B1,0 + B0,1), L

(1)
1,0 = 0,

L
(1)
2,0 = −1

9
B0,0 + 23

15
B2,0 −

1
2
B0,1 + 19

18
B1,0, L

(1)
3,0 = 23

15
B3,0 + 3

10
B0,1 −

11
30

B1,0,

L
(1)
1,1 = 3

4
B1,1 −

3
2
B0,0, L

(1)
2,1 = −1

8
B0,2 + 7

8
B2,1 + 1

4
B1,1 −

1
8
B2,2 −

1
16

B1,2 −
1
3
B0,1,

L
(1)
3,1 = −1

8
B1,1 + 7

8
B3,1 −

1
8
B3,2 −

1
16

B1,2,

L
(1)
2,2 = − 7

12
(B0,2 + B2,0) −

1
16

(B3,1 + B1,3) + 3
8
(B1,2 + B2,1) + 5

18
B0,0

−1
8
(B0,3 + B3,0) −

1
8
(B2,3 + B3,2) + 3

2
B2,2,

L
(1)
3,2 = 3

2
B3,2 −

1
8
B3,3 −

1
8
B4,0 −

1
8
B2,0 −

1
16

B2,1 + 3
8
B3,1 −

1
16

B1,3 + 3
10

B0,2

−1
8
B4,2 −

7
12

B3,0 −
1
16

B4,1 −
1
8
B2,2,

L
(1)
3,3 = −1

8
(B3,2 + B2,3) + 3

10
(B3,0 + B0,3) −

1
16

(B1,2 + B2,1) + 3
2
B3,3

− 1
16

(B1,4 + B4,1) −
1
8
(B3,4 + B4,3).
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Along the lower edge, for i = 4, . . . ,m1 − 3, we have:

L
(1)
i,0 = 23

15
Bi,0, L

(1)
i,1 = 7

8
Bi,1 −

1
8
Bi,2,

L
(1)
i,2 = − 7

12
Bi,0 −

1
8
(Bi−1,0 + Bi+1,0) + 3

8
Bi,1 −

1
16

(Bi−1,1 + Bi+1,1)
+3

2
Bi,2 −

1
8
(Bi−1,2 + Bi+1,2) −

1
8
Bi3,

L
(1)
i,3 = 3

10
Bi,0 −

1
16

(Bi−1,1 + Bi+1,1) −
1
8
Bi,2 + 3

2
Bi,3

−1
8
(Bi−1,3 + Bi+1,3) −

1
8
Bi,4,

and analogous formulas for the three other edges and vertices.

5.3. The operator Q2 with superconvergence properties

The third QI, exact on P2[x, y], is defined by

Q2f =
∑

(i,j)∈A′

λi,j(f)Bi,j =
∑

(i,j)∈A′

fi,jL
(2)
i,j ,

where we choose boundary functionals inducing superconvergence at some
specific points (see Remogna 2010a for detail). Using the notations given
in (10) these specific points are (see Fig. 1): the vertices of squares Vr,l =
(rh, lh), r = 0, . . . ,m1, l = 0, . . . ,m2, the centers of squares Mr,l = (sr, tl),
r = 1, . . . ,m1, l = 1, . . . ,m2, the midpoints Cr,l = (sr, lh) of horizontal
edges Vr−1,lVr,l, r = 1, . . . ,m1, l = 0, . . . ,m2, the midpoints Dr,l = (rh, tl)
of vertical edges Vr,l−1Vr,l, r = 0, . . . ,m1, l = 1, . . . ,m2. We remark that if
A′ = Z

2 the quasi-interpolant defined by (11) is superconvergent at these
points (Foucher and Sablonnière, 2007).
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• • •

• • •

Vr−1,l−1 Cr,l−1 Vr,l−1

Dr−1,l Mr,l Dr,l

Vr−1,l Cr,l Vr,l

Figure 1: Points where the operator Q2 shows superconvergence properties.
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We can express the quasi-interpolant Q2f by means of the quasi-Lagrange
functions L

(2)
α with

L
(2)
i,j =

3

2
Bi,j −

1

8
(Bi,j−1 + Bi,j+1 + Bi−1,j + Bi+1,j)

for the pairs (i, j) with i = 4, . . . ,m1 − 3 and j = 4, . . . ,m2 − 3. The other

L
(2)
i,j -splines have particular definitions. In the neighbourhood of the origin

we have

L
(2)
0,0 = 1403

504
B0,0 −

4
15

B1,1, L
(2)
1,0 = 131

60
B1,0 −

173
300

B0,1 −
1
12

B2,1,

L
(2)
2,0 = − 397

1440
B0,0 −

2
15

B1,1 + 12
5
B2,0 −

1
12

B3,1 −
7
30

B2,1 + 9
40

B1,0,

L
(2)
3,0 = − 1

12
B4,1 + 3

20
B0,1 + 12

5
B3,0 −

1
12

B2,1 −
7
30

B3,1,

L
(2)
4,0 = 11

224
B0,0 + 12

5
B4,0 −

1
120

B1,0 −
7
30

B4,1 −
1
12

B3,1 −
1
12

B5,1,

L
(2)
1,1 = −63

32
B0,0 −

13
40

(B1,0 + B0,1) + 33
20

B1,1 −
1
4
(B2,0 + B0,2),

L
(2)
2,1 = −47

60
B1,0 −

9
8
B2,0 −

1
4
B3,0 −

1
20

B1,1 + 13
8
B2,1 + 1

8
B0,2 −

1
24

B1,2 −
1
8
B2,2,

L
(2)
3,1 = 3

50
B1,0 −

1
4
B2,0 −

9
8
B3,0 −

1
4
B4,0 −

7
40

B0,1 + 1
40

B1,1 + 13
8
B3,1 −

1
8
B3,2,

L
(2)
2,2 = 317

288
B0,0 + 1

4
(B0,1 + B1,0) + 1

8
(B3,0 + B0,3) −

1
15

B1,1 −
1
6
(B1,2 + B2,1)

− 1
24

(B1,3 + B3,1) −
1
8
(B2,3 + B3,2) + 3

2
B2,2,

L
(2)
3,2 = − 37

160
B0,0 + 1

8
B2,0 + 1

8
B4,0 −

1
24

B2,1 −
1
24

B4,1 −
1
6
B3,1 −

1
40

B0,2

+ 1
40

B1,2 −
1
8
B2,2 −

1
8
B4,2 + 3

2
B3,2 −

1
8
B3,3,

L
(2)
3,3 = − 1

40
(B3,0 + B0,3) + 1

40
(B3,1 + B1,3) −

1
8
(B3,2 + B2,3) + 3

2
B3,3

−1
8
(B3,4 + B4,3).

Along the lower edge, for i = 5, . . . ,m1 − 4, we have:

L
(2)
i,0 = 12

5
Bi,0 −

7
30

Bi,1 −
1
12

(Bi−1,1 + Bi+1,1),

and for i = 4, . . . ,m1 − 3:

L
(2)
i,1 = −9

8
Bi,0 −

1
4
(Bi−1,0 + Bi+1,0) + 13

8
Bi,1 −

1
8
Bi,2,

L
(2)
i,2 = 1

8
(Bi−1,0 + Bi+1,0) −

1
6
Bi,1 −

1
24

(Bi−1,1 + Bi+1,1) + 3
2
Bi,2

−1
8
(Bi−1,2 + Bi+1,2) −

1
8
Bi,3,

L
(2)
i,3 = − 1

40
Bi,0 + 1

40
Bi,1 −

1
8
Bi,2 + 3

2
Bi,3 −

1
8
(Bi−1,3 + Bi+1,3) −

1
8
Bi,4.

Analogous formulas exist for the three other edges and vertices.

For the operators above introduced, the following results are valid:
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• the value of the infinite norm of Q1 is less than 2, and that of Q2 is less
than 3 (see Remogna 2010a);

• in view of the exactness of Qv, v = 1, 2, on P2[x, y], we have that the
rate of convergence is O(h3), i.e. for a function f ∈ C3(Ω′) then there
exist positive constants Kv, v = 1, 2, such that

‖f − Qvf‖∞ ≤ Kvh
3 max
|β|=3

∥

∥Dβf
∥

∥

∞
, v = 1, 2.

6. Trivariate blending sums of C
1 quadratic spline quasi-interpolants

In this section, we apply the technique and the results of Section 2 to
study trivariate QIs on a parallelepiped Ω = [0,m1h] × [0,m2h] × [0,m3h]
which are blending sums of trivariate extensions of univariate and bivariate
QIs defined in Sections 4 and 5.

We divide Ω into m1m2m3 equal cubes (see Fig. 2(a)) and each cube
is subdivided into 4 vertical prisms with triangular horizontal sections (see
Fig. 2(b)). Thus, we obtain the partition Pm, m = (m1,m2,m3), that is the
tensor product of a uniform criss-cross triangulation of [0,m1h] × [0,m2h]
and a uniform partition of the segment [0,m3h].

(a)
(b)

Figure 2: The parallelepiped Ω divided into equal cubes (a) and the subdivision of a cube
into 4 vertical prisms with triangular horizontal sections (b).

For the projection Ω′ = [0,m1h] × [0,m2h] of Ω on the xy−plane we use
the notations of Section 5, and for the projection Ω′′ = [0,m3h] of Ω on the
z−axis we use the notations of Section 4.

The set of data points is given by {(Mi,j, uk) (i, j) ∈ A′, k ∈ A′′}, where
(Mi,j, uk) = (si, tj, uk), with si, tj defined by (10) and uk by (8).
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We consider the two families of univariate B-splines {Bk, k ∈ A′′}, defined
in Section 4, and of bivariate box splines {Bi,j, (i, j) ∈ A′}, defined in Section
5. Therefore the spline space S2,2(Ω,Pm) is generated by the (m1 + 2)(m2 +
2)(m3 + 2) tensor product B-splines

Bi,j,k(x, y, z) = Bi,j(x, y)Bk(z), ν ∈ A,

with A = {(i, j, k), 0 ≤ i ≤ m1 + 1, 0 ≤ j ≤ m2 + 1, 0 ≤ k ≤ m3 + 1}.
Their properties are immediate consequences of properties of bivariate and
univariate B-splines; in particular they are positive and form a partition of
unity on Ω.

Given the trivariate extensions of bivariate and univariate QIs

S̄1f(x, y, z) =
∑

k∈A′′

f(x, y, uk)Lk(z),

Q̄vf(x, y, z) =
∑

k∈A′′

f(x, y, uk)L
(v)
k (z), v = 1, 2

S1f(x, y, z) =
∑

(i,j)∈A′

f(si, tj, z)Li,j(x, y),

Qvf(x, y, z) =
∑

(i,j)∈A′

f(si, tj, z)L
(v)
i,j (x, y), v = 1, 2

we define the trivariate blending sums

Rv = S1Q̄v + QvS̄1 − S1S̄1, v = 1, 2

which are trivariate piecewise polynomials of degree four. Setting

L
(v)
i,j,k(x, y, z) = Li,j(x, y)L

(v)
k (z) + L

(v)
i,j (x, y)Lk(z) − Li,j(x, y)Lk(z)

we obtain
Rvf =

∑

(i,j,k)∈A

f(si, tj, uk)L
(v)
i,j,k.

From Theorems 1, 3 and 2, we can state the following results

Theorem 4. The operators Rv, v = 1, 2, are exact on the 16-dimensional
subspace (P11[x, y] ⊗ P2[z]) ⊕ (P2[x, y] ⊗ P1[z]), spanned by monomials {1,
x, y, z, x2, y2, z2, xy, xz, yz, x2z, xz2, y2z, yz2, xyz, xyz2}, of the 18-
dimensional space P2[x, y] ⊗ P2[z]. Moreover their infinite norms satisfy

‖R1‖∞ ≤
55

12
≈ 4.58 and ‖R2‖∞ ≤

265

48
≈ 5.52.
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According to the superconvergence properties of the univariate and bi-
variate operators Q̄2 and Q2, the operator R2 presents superconvergence
properties on the tensor product grid of the three points of each interval
considered in the univariate case (see Section 4) and the nine points of each
square of the bivariate case (see Section 5), i.e. the operator R2 presents
superconvergence properties at the points

(Vi,j, kh) = (ih, jh, kh), 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, 0 ≤ k ≤ m3;

(Vi,j, uk) = (ih, jh, uk), 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, 1 ≤ k ≤ m3;

(Mi,j, kh) = (si, tj, kh), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, 0 ≤ k ≤ m3;

(Mi,j, uk) = (si, tj, uk), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, 1 ≤ k ≤ m3; (12)

(Ci,j, kh) = (si, jh, kh), 1 ≤ i ≤ m1, 0 ≤ j ≤ m2, 0 ≤ k ≤ m3;

(Ci,j, uk) = (si, jh, uk), 1 ≤ i ≤ m1, 0 ≤ j ≤ m2, 1 ≤ k ≤ m3;

(Di,j, kh) = (ih, tj, kh), 0 ≤ i ≤ m1, 1 ≤ j ≤ m2, 0 ≤ k ≤ m3;

(Di,j, uk) = (ih, tj, uk), 0 ≤ i ≤ m1, 1 ≤ j ≤ m2, 1 ≤ k ≤ m3.

Theorem 5. At the points defined by (12), the operators R2 is exact on the
28-dimensional subspace (P11[x, y]⊗P3[z])⊕ (P3[x, y]⊗P1[z]) spanned by {1,
x, y, z, x2, y2, z2, xy, xz, yz, x3, y3, z3, x2y, xy2, x2z, xz2, y2z, yz2,
xyz, x3z, xz3, y3z, yz3, x2yz, xy2z, xyz2, xyz3} of the 40-dimensional space
P3[x, y] ⊗ P3[z].

Moreover we deduce the following theorem.

Theorem 6. Let f ∈ Cr(Ω), r = 0, 1, 2. Then there exist constants Kv,r > 0,
v = 1, 2, such that

‖f − Rvf‖∞ ≤ Kv,rh
rω(Drf, h).

If in addition f ∈ C3(Ω) then there exist constants Kv,3 > 0, v = 1, 2, such
that

‖f − Rvf‖∞ ≤ Kv,3h
3 max
|β|=3

∥

∥Dβf
∥

∥

∞
.

7. Numerical Results

In this section we present some numerical results obtained by a computa-
tional procedure developed in a Matlab environment. These procedures are
constructed by extending those proposed in The MathWorks (2002), Dagnino
and Lamberti (2000a,b). We approximate the following functions:
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1. the smooth trivariate test function of Franke type

f1(x, y, z) =
1

2
e−10((x− 1

4
)2+(y− 1

4
)2) +

3

4
e−16((x− 1

2
)2+(y− 1

4
)2+(z− 1

4
)2)

+
1

2
e−10((x− 3

4
)2+(y− 1

8
)2+(z− 1

2
)2) −

1

4
e−20((x− 3

4
)2+(y− 3

4
)2),

on the cube [−1
2
, 1

2
]3,

2. f2(x, y, z) = 1
9
tanh(9(z − x − y) + 1), on the cube [−1

2
, 1

2
]3,

3. the Marschner-Lobb function (Marschner and Lobb, 1994)

f3(x, y, z) =

1

2(1 + β1)

(

1 − sin
πz

2
+ β1

(

1 + cos

(

2πβ2 cos

(

π
√

x2 + y2

2

))))

β1 = 1
4

and β2 = 6, on the cube [−1, 1]3,

4. f4(x, y, z) =
πyexy

40(e − 2)
sin πz, on the cube [0, 1]3.

For each test function, using a 130×130×130 uniform three-dimensional
grid G of points in the domain, we compute the maximum absolute error
Ef = max(u,v,w)∈G |f(u, v, w) − Qf(u, v, w)|, for Q = R1, R2, for increasing
values of m1, m2 and m3, see Table 1. In the table we also report an estimate
of the approximation order, rf , obtained by the logarithm to base 2 of the
ratio between two consecutive errors.

In Nürnberger et al. (2005) the authors propose a quasi-interpolation
method for quadratic piecewise polynomials in three variables in BB-form
and give some numerical results using the test functions f1, f2, f3. We denote
their quasi-interpolating spline by sqf and, in the fourth column of Table 1,
we report the corresponding maximum absolute error and the approximation
order estimate.

Furthermore, in Sorokina and Zeilfelder (2007) the authors propose a local
quasi-interpolation method based on cubic C1 splines on type-6 tetrahedral
partition in three variables in BB-form and give some numerical results with
the test functions f1 and f3. We denote their quasi-interpolating spline by scf

and, in the fifth column of Table 1, we report the corresponding maximum
absolute error and the approximation order estimate.

We can notice that the overall smallest error is obtained with the operator
R2, although the bound for its infinite norm (and maybe also the infinite
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R1f R2f sqf scf

m1 = m2 = m3 Ef rf Ef rf Ef rf Ef rf

f1

16 6.5(-3) 3.3(-3) 4.3(-2) 4.3(-2)
32 8.1(-4) 3.0 2.3(-4) 3.8 1.1(-2) 2.0 1.1(-2) 2.0
64 9.5(-5) 3.1 1.8(-5) 3.7 2.8(-3) 2.0 2.8(-3) 2.0
128 8.4(-6) 3.5 1.9(-6) 3.2 6.9(-4) 2.0 6.9(-4) 2.0

f2

16 6.2(-3) 2.8(-3) 8.8(-3)
32 1.1(-3) 2.5 3.0(-4) 3.2 2.4(-3) 1.9
64 1.7(-4) 2.7 2.7(-5) 3.5 6.3(-4) 1.9
128 1.7(-5) 3.3 1.9(-6) 3.8 1.6(-4) 2.0

f3

16 1.9(-1) 2.1(-1)
32 1.5(-1) 0.4 1.3(-1) 0.7 1.8(-1) 1.8(-1)
64 3.2(-2) 2.2 2.0(-2) 2.7 1.2(-1) 0.5 1.2(-1) 0.5
128 4.6(-3) 2.8 1.5(-3) 3.7 4.0(-2) 1.6 4.0(-2) 1.6

f4

16 1.6(-4) 2.2(-5)
32 2.0(-5) 3.0 2.3(-6) 3.3
64 2.6(-6) 3.0 2.1(-7) 3.4
128 3.2(-7) 3.0 3.1(-8) 2.8

Table 1: Maximum absolute errors and numerical convergence orders.

norm itself) is greater than that of R1. Furthermore, we observe that for
these quasi-interpolants, the error decreases faster than for the quadratic
and cubic C1 piecewise polynomials proposed in Nürnberger et al. (2005),
Sorokina and Zeilfelder (2007), respectively, but the computation time is
larger.
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