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Abstract

Motivated by potential applications in architecture, we study Darboux cyclides.
These algebraic surfaces of order ≤ 4 are a superset of Dupin cyclides and quadrics,
and they carry up to six real families of circles. Revisiting the classical approach
to these surfaces based on the spherical model of 3D Möbius geometry, we provide
computational tools for the identificiation of circle families on a given cyclide and
for the direct design of those. In particular, we show that certain triples of circle
families may be arranged as so-called hexagonal webs, and we provide a complete
classification of all possible hexagonal webs of circles on Darboux cyclides.

Key words: architectural geometry, Möbius geometry, geometry of webs, web
from circles, Darboux cyclide

1 Introduction

The development of Computer-Aided Geometric Design has largely been driven
by applications. Its origins trace back to the need for computationally efficient
design and processing of freeform surfaces in the automotive, airplane and ship
industry. Many other applications (industrial, medical, scientific data analysis
and visualization) shaped the development of the field. However, architecture
— which has been using CAD since decades — only very recently attracted
the attention of the Geometric Modeling community (see Pottmann et al.
(2007a)). The main reason for the growing interest of Geometric Modeling in
problems from architecture is the trend towards freeform structures which is
very clearly seen in contemporary architecture and led by star architects such
as Frank Gehry or Zaha Hadid.

While digital models of architectural freeform surfaces are easily created using
standard modeling tools, the actual fabrication and construction of architec-
tural freeform structures remains a challenge. In order to make a freeform
design realizable, an optimization process known as rationalization has to be
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applied. This means its decomposition into smaller parts, thereby meeting
two competing objectives: feasibility, and consistency with the designer’s in-
tentions. Most rationalization techniques replace smooth surfaces, possibly
with an additional curve network (of panel boundaries) on them, by other
structures like meshes with special properties. The guiding thought in all con-
siderations is the efficient manufacturing of the surface parts (panels) and their
respective necessary supporting/connecting elements. Both simple geometry
and repetition of elements contribute to this goal of efficiency (see e.g. Liu
et al. (2006); Pottmann et al. (2007b, 2008); Schiftner et al. (2009); Eigensatz
et al. (2010); Fu et al. (2010); Singh and Schaefer (2010)).

As a contribution towards rationalization of architectural freeform structures,
Bo et al. (2011) have recently studied so-called circular arc structures. A cir-
cular arc structure (CAS) is a mesh whose edges are realized as circular arcs
instead of straight line segments and which possesses congruent nodes with
well-defined tangent planes. Figure 1 shows two examples of circular arc struc-
tures with quad mesh and triangle mesh combinatorics, respectively. The nodes
are congruent and possess edge angles of 90 and 60 degrees, respectively.

Fig. 1. Circular arc structures according to Bo et al. (2011). Left: Quadrilateral CAS
with an edge angle of 90 degrees covering an architectural design. Right: Triangular
CAS (edge angle 60 degrees) on the Eindhoven Blob by M. Fuksas.

A circular arc structure (CAS) of regular quad mesh combinatorics consists of
two discrete sets of arc splines (tangent continuous curves formed by circular
arcs) which intersect each other under constant, in particular right angle. For a
triangular CAS, we have three sets of arc splines meeting in regular 60 degree
nodes. Three families of curves which are the image of a regular triangular grid
under a diffeomorphism form a so-called hexagonal web or 3-web (see Blaschke
and Bol (1938)). Thus, a triangular CAS is a special discrete 3-web.

Now we leave aside the congruence of nodes, but ask for CAS whose generating
curves are single arcs and not just arc splines. This amounts to the following
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basic questions:

(1) Which structures can be built from two families of circles (but not nec-
essarily meeting under a constant angle) and how can we design them?

(2) How can we characterize and design 3-webs formed by circles (C-webs)?

It is conjectured that a surface which carries three families of circles is a
Darboux cyclide (defined in Section 2); a proof is missing so far. However, it
seems to be reasonable to assume that the conjecture is correct; there is no
known surface different from a Darboux cyclide which carries three families
of circles. There are, however, surfaces with two families of circles which are
not Darboux cyclides: an example is furnished by a translational surface with
circles as profile curves. To keep the present paper more focused and since
we are mostly interested in webs from circles, we will only study Darboux
cyclides. Knowing that a complete answer to the first question would require
additional efforts, we may return to this topic in another publication.

In the present paper, we will lay the geometric fundamentals for an under-
standing of Darboux cyclides (which hopefully will also serve as an introduc-
tion to basic concepts of 3D Möbius geometry) and then proceed towards
design methods for Darboux cyclides, their families of circles and C-webs.
Our main result is a classification of all possible C-webs on Darboux cyclides
(Theorem 17).

1.1 Previous work

Darboux cyclides are a topic of classical geometry. Main contributions are
due to Kummer (1865) and Darboux (1880). Probably the most complete
discussion is found in the monograph by Coolidge (1916). After a long period
of silence on these surfaces, geometers again got fascinated by them, especially
since they can carry up to six families of real circles (see Blum (1980); Takeuchi
(2000)). Related studies are those which show under certain assumptions that
a surface with a higher number of circle families must be a sphere (see Takeuchi
(1985, 1987)).

In geometric modeling, Dupin cyclides and various extensions attracted a lot
of attention (see the survey by Degen (2002)), but to our best knowledge,
Darboux cyclides have not yet been studied from the geometric design per-
spective, with the noteable exception of a very recent paper by Krasauskas
and Zube (2011), whose relation to cyclides has been realized in a discussion
of our research with Rimas Krasauskas.

The problem of determining all hexagonal webs from circles in the plane (or
equivalently, on the sphere) turned out to be very difficult. A special class
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of webs from circles, initially found by Volk (1929) by analytical methods,
has soon been realized as a simple projection of webs from straight lines in
the plane onto the sphere (Strubecker (1932)). An elegant construction of a
nontrivial class of webs from circles by Wunderlich (1938) will turn out to be
an important ingredient in our study of C-webs on Darboux cyclides. Recently,
Shelekhov (2007) could classify all webs formed by pencils of circles. It is still
unknown whether the so far described instances of webs from circles are the
only possible ones.

Overview. Our paper is organized as follows. Section 2 studies Darboux cy-
clides by employing the spherical model of Möbius geometry and mostly meth-
ods of projective geometry (pencils of quadrics) to get insight into the circle
families they contain. Based on these insights, we are able to devise design
methods for Darboux cyclides (Section 3) and to characterize all C-webs on
them in Section 4. Finally, we address future research directions and open
problems in Section 5.

2 Darboux cyclides and their families of circles

We start this section with the definition of a Darboux cyclide. In Section 2.1 we
introduce the spherical model of Möbius geometry and in Section 2.2 we show
that a Darboux cyclide is represented by the carrier of a pencil of quadrics
in this model. Using this representation, we describe families of circles on a
Darboux cyclide in Section 2.3 and determine the possible number of such
families in Section 2.4. In Section 2.5 we apply polarity in the spherical model
to set up some background for design of Darboux cyclides in the next section.

A Darboux cyclide is a surface whose equation in a Cartesian coordinate system
has the form

D : λ(x2 + y2 + z2)2 + (x2 + y2 + z2)L(x, y, z) +Q(x, y, z) = 0, (1)

with a constant λ, a polynomial L = µx + νy + κz, and a polynomial Q of
degree at most 2, not vanishing simultaneously. Hereafter the coefficients and
the coordinates are real numbers unless otherwise explicitly indicated.

If the left-hand side of equation (1) factors into non-constant polynomials in
x, y, z with (possibly complex) coefficients, then the Darboux cyclide is called
reducible. A reducible cyclide either splits into a union of spheres/planes or
degenerates to a curve in R3. A cyclide of the form a(x2 + y2 + z2) + bx+ cy+
dz+ e = 0 is itself a sphere/plane and is referred as trivial hereafter. Thus, in
the following we focus only on irreducible and nontrivial cyclides.

The intersection curve of a cyclide D with a sphere S : x2 = L1(x), where
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x := (x, y, z) and L1 is a polynomial of degree at most 1, lies on the quadric

Q1 : λL1(x)2 + L1(x)L(x) +Q(x) = 0,

and thus it is in general an algebraic curve c of order at most 4, which is
common to all quadrics of the pencil spanned by S and Q1. Hence, if the
sphere S touches D at two points, the curve c has two double points and
thus it is formed by two circles (or a doubly counted circle c, in which case
the sphere touches D along c). This already indicates the presence of circles
on cyclides, which is better studied by a slightly more advanced method as
follows.

2.1 Some basic facts on the spherical model of Möbius geometry

We map points x = (x, y, z) ∈ R3 to points x̄ = (x1, . . . , x4) ∈ R4 on the
sphere Σ : x21 + . . . + x24 = 1 via the inverse stereographic projection. The
projection center shall be Z = (0, 0, 0, 1) and we embed 3-space into 4-space
via x 7→ (x, y, z, 0) ∈ R4. Corresponding points x and x̄ lie on straight lines
through Z. The mappings between x and x̄ in both directions are described
by the formulae

x̄ = (x1, . . . , x4) =
1

x2 + 1
(2x, 2y, 2z,x2 − 1), (2)

x = (x, y, z) =
1

1− x4
(x1, x2, x3). (3)

By definition, the set of points in Möbius geometry is Euclidean 3-space with
one ideal point ∞ added; the ideal point ∞ corresponds to the projection
center Z.

Unfortunately, it is hard to illustrate geometric facts involving a 4D space.
Thus, to support the reader’s imagination, Fig. 2 illustrates the lower dimen-
sional counterpart of the stereographic projection of a sphere in 3-space onto
a plane. What we are going to say below about spheres, is true for circles in
the lower dimensional counterpart.

A Möbius sphere (or M-sphere) S is the set (strictly speaking, in a complex
3-space) given by the equation λx2 +ax+ by+ cz+d = 0, where λ, a, b, c, d do
not vanish simultaneously. By definition,∞ ∈ S if and only if λ = 0. A Möbius
sphere is either a plane (λ = 0), or a Euclidean sphere (real sphere henceforth),
or a point (null sphere), or does not have real points at all (imaginary sphere).

One can work with imaginary spheres without appealing to complex numbers
as follows. The equation of a nonplanar M-sphere can be rewritten in the form
(x−m)2 = r2, where m ∈ R3 is the midpoint and r2 ∈ R is the square of the
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Fig. 2. The spherical model of planar Möbius geometry and stereographic projection:
any planar section S̄ of the sphere Σ corresponds to an M-circle S and the extended
stereographic projection maps the pole S∗ of the plane to the center m of the circle.
The projection center Z ∈ Σ corresponds to the ideal point ∞ and circles through
Z correspond to straight lines in the plane.

radius. In the case of imaginary sphere S the number r2 is negative; we can
write r2 = −ρ2 for some ρ > 0. Define the real representer Sr of the sphere
S as the sphere with center m and radius ρ. In the following, all statements
involving imaginary spheres can be easily converted to statements on their
real representers using Remark 1 below.

M-spheres correspond to intersections S̄ of Σ with hyperplanes

HS : ax1 + bx2 + cx3 + (λ− d)x4 + λ+ d = 0;

of course, the 2-surfaces S̄ are M-spheres, possibly imaginary or null. If the M-
sphere S is a plane, it contains the ideal point, i.e., HS and S̄ pass through Z.
Often one uses the polarity with respect to Σ. Using homogeneous coordinates
X := (X1, . . . , X5) in the projective extension P 4 of the 4-space, with xi =
Xi/X5, i = 1, . . . , 4, the pole S∗ of HS is given by

S∗ = (a, b, c, λ− d,−λ− d).

The coordinates of S∗ are called pentaspherical coordinates of the M-sphere S.
For an M-sphere S with center m = (mx,my,mz) and squared radius r2, we
have

λ = 1, a = −2mx, b = −2my, c = −2mz, d = m2 − r2. (4)

The stereographic projection is strictly speaking a mapping from points of the
sphere Σ ⊂ R4 to R3 ∪ {∞}. However, it is useful to also use the underlying
central projection with center Z and image space x4 = 0 for our considerations,
even if we do not apply it only to points of Σ; we will call this projection the
extended stereographic projection henceforth. From (4) we can easily verify the
well-known fact that the extended stereographic projection maps the pole S∗

onto the midpoint of S (see also Fig. 2).
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An M-circle k of 3D Möbius geometry is the intersection of two M-spheres
(strictly speaking, in the complex 3-space) and thus it is either a circle, a
straight line, a single point, or the empty set from a Euclidean perspective.
Formal definitions of real, null, and imaginary circles are left to the reader.
An M-circle is mapped to the intersection k̄ of Σ with a 2D plane, i.e., to an
M-circle in Σ. The polarity with respect to Σ maps the plane of k̄ to a straight
line k∗. The points S∗ of k∗ determine M-spheres S through k. These spheres
are said to form a pencil of spheres.

A pencil is more generally defined as the set of all M-spheres S whose cor-
responding points S∗ form a straight line k∗ in P 4. If k∗ does not intersect
Σ, we obtain an elliptic pencil, formed by all M-spheres through a real cir-
cle. If k∗ is tangent to Σ, we get a parabolic pencil, and if k∗ intersects Σ in
two points, we have a hyperbolic pencil. A parabolic pencil is formed by all
M-spheres touching a plane P at a fixed point p ∈ P . The common set of a
hyperbolic pencil is an imaginary circle; the pencil contains two null spheres,
corresponding to the points Σ ∩ k∗. Clearly, in all cases the centers of the M-
spheres lie on a straight line A, which is also the image of the line k∗ under the
extended stereographic projection. Due to the rotational symmetry of pencils,
it is sufficient to understand the planar sections through the rotational axis
A, which are pencils of circles (see Fig. 3).

Fig. 3. Pencils of circles in 2D Möbius geometry are stereographic projections of
pencils of circles S on Σ; the latter are easy to understand since they are cut out
from Σ by a pencil of planes. The poles S∗ of these planes lie on a straight line k∗.
The figure illustrates the 3 types of pencils, which by rotation about the central line
generate the 3 types of pencils of spheres.

Linear families of spheres S are those where the set of poles S∗ is a d-
dimensional subspace of P 4. Apart from the already discussed pencils (d = 1),
we still have to consider the cases d = 2 (bundles of spheres) and d = 3 (sphere
complexes).
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Before doing so, we should look at orthogonal M-spheres, i.e., those which
intersect under a right angle. Two real spheres S1, S2 with centers m1,m2 and
radii r1, r2, are orthogonal if (m1−m2)

2 = r21 +r22. Their corresponding points
S∗i (in pentaspherical coordinates) are

S∗i = (2mi,x, 2mi,y, 2mi,z,m
2
i − r2i − 1,m2

i − r2i + 1).

Two points A = (a1, . . . , a5) and B = (b1, . . . , b5) in P 4 are conjugate with
respect to Σ (one lies in the polar hyperplane of the other one) if 〈A,B〉 :=
a1b1 + . . .+ a4b4− a5b5 = 0. We see immediately that 〈S∗1 , S∗2〉 = 0 if and only
if (m1 −m2)

2 = r21 + r22. Hence, orthogonal real spheres S1, S2 are character-
ized by conjugate points S∗1 , S

∗
2 . The latter characterization allows to define

orthogonality also for null and imaginary spheres.

Remark 1 In the above discussion, it can happen that one of the spheres, say
S2, is imaginary, and thus corresponds to a point S∗2 ∈ R4 in the interior of the
3-sphere Σ. Hence, the orthogonality condition now reads (m1−m2)

2 = r21−ρ22,
where ρ22 := −r22. Then, the two spheres S1 and S2 are orthogonal if and only
if the intersection circle of S1 and Sr

2 is a great circle of Sr
2 (see Fig. 4).

Fig. 4. Orthogonality between M-spheres S1, S2 is not only defined for real spheres
(left), but also for imaginary ones. A real sphere S1 is orthogonal to an imaginary
sphere S2 (with center m2, radius iρ2), if it intersects the real representer Sr

2 (with
center m2, radius ρ2) of S2 in a great circle (right).

It is now easy to understand a linear complex of spheres. The points S∗ cor-
responding to the M-spheres of the complex lie in a hyperplane H, whose
pole shall be denoted by A∗. The point A∗ is conjugate to all points S∗ ⊂ H
and it defines a (not necessarily real) M-sphere A, which is orthogonal to all
M-spheres S of the complex (and which is seen in the spherical model as inter-
section Ā = H ∩ Σ). Hence, a complex is formed by all M-spheres orthogonal
to a fixed M-sphere A. We have again 3 types, depending on whether A is real,
imaginary or null, i.e., degenerates to a point. In the latter case, all M-spheres
of the complex pass through this point.

A bundle of spheres is defined by a 2D plane P ⊂ P 4, which may be viewed as
the intersection of two hyperplanes H1, H2. Hence, the M-spheres of a bundle
belong to two complexes and thus they are orthogonal to two (not necessar-
ily real) M-spheres A1, A2. This requires orthogonality to the (not necessarily
real) intersection M-circle A1 ∩ A2, and thus the M-spheres of a bundle have
their centers in a plane and they are all orthogonal to an M-circle k in that
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plane (note that the M-circle k is seen in the spherical model as the inter-
section M-circle k̄ = P ∩ Σ). Once again there are three types, since k may
be real, imaginary or null (see Fig. 5). The case of a imaginary circle is easy
to understand, since now all M-spheres of the bundle pass through two real
points (on the real axis of the imaginary circle). This follows for example from
the fact that in this case two hyperplanes through P are tangent to Σ (or by
observing that the polar dual to the plane P is a straight line, determining
a hyperbolic pencil of spheres which are all orthogonal to the spheres of the
bundle).

Fig. 5. The three types of sphere bundles are defined as sets of M-spheres which
intersect an M-circle k under right angle. Top left: for an elliptic bundle, k is real.
Bottom: in a hyperbolic bundle, k is imaginary, implying that the spheres pass
through 2 fixed points. Top right: a parabolic bundle is a limit case and formed by
all M-spheres centered in a plane and passing through a fixed point in that plane.

Möbius transformations (or M-transformations) act bijectively on the points
and spheres of Möbius geometry. M-transformations are the only conformal
(angle preserving) maps in Euclidean 3-space; they include Euclidean similar-
ities as special cases. In the spherical model they are seen as those projective
transformations κ : P 4 → P 4 which map Σ onto itself. Using homogeneous
coordinates, the equation of Σ is XT · J · X = 0, with the diagonal matrix
J = diag(1, 1, 1, 1,−1). A projective map κ : X 7→ A ·X in 4-space maps Σ
onto itself and thus induces an M-transformation if and only if its matrix A
satisfies

AT · J · A = λJ, (5)

for some λ 6= 0.

The basic example of an M-transformation is the inversion with respect to an
M-sphere S. In the spherical model it appears as a projective symmetry of
Σ, more precisely, a harmonic perspective collineation κ which maps Σ onto
itself. The axis of this collineation is the hyperplane Hs ⊃ S̄ and the center is
its pole S∗. Thus an inversion with respect to an imaginary sphere S is also
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defined. In this case, S∗ lies in the interior of Σ. In 3-space, such an inversion
can be realized by reflection at the (real) center of S and subsequent inversion
with respect to the real representer Sr of S. Notice that the real representer
is not M-invariant, i.e., κ(Sr) 6= (κS)r in general.

2.2 Darboux cyclides in the spherical model of Möbius geometry.

In this subsection we will elaborate on the classical result that a Darboux
cyclide D is the stereographic projection of a surface D̄ in Σ which is obtained
as the intersection of Σ with another quadric Γ (see Coolidge (1916); here by
definition the ideal point ∞ belongs to a nontrivial cyclide D if and only if
λ = 0 in equation (1)). In other words, D̄ is the common set of points, the
so-called carrier, of a pencil of quadrics which contains the sphere Σ. Deriving
this result is not hard, and it will give us important insight needed later in
our studies.

Let us first show that inverse stereographic projection maps a Darboux cyclide
D to the carrier of a pencil of quadrics. For that, we substitute from (3) into
(1). Splitting Q into homogeneous terms of degree 2, 1, and 0 as Q(x) =
q(x) + q · x + q0 and writing L = l · x yields with x̄ := (x1, x2, x3)

λ

(
x̄2

(1− x4)2

)2

+
x̄2

(1− x4)2
l · x̄

1− x4
+

q(x̄)

(1− x4)2
+

q · x̄
1− x4

+ q0 = 0.

Inserting the equation of Σ, x̄2 = 1 − x24, we finally obtain the equation of a
quadric or a plane in 4-space,

Γ : λ(1 + x4)
2 + (1 + x4)l · x̄+ q(x̄) + q · x̄(1− x4) + q0(1− x4)2 = 0.

We may assume without loss of generality that Γ is a quadric by adding a
multiple of x̄2 + x24 − 1 to the left-hand side of the equation. The quadric Γ
contains the projection center Z if and only if λ = 0, i.e., ∞ ∈ D.

Conversely, we have to show that intersection of Σ with any quadric Γ ⊂ R4

yields a surface D̄ whose stereographic image in 3-space is of the form (1), i.e.,
a Darboux cyclide. Again separating terms of different degrees and splitting
(x1, . . . , x4) as (x̄, x4), we write the equation of the quadric as

Γ : q2(x̄) + q1(x̄)x4 + q0x
2
4 + l1(x̄) + l0x4 + c0 = 0,

where q2, {q1, l1} and {q0, l0, c0} are of degrees 2, 1, and 0, respectively. Inser-
tion from (2) yields

(q0 + l0 + c0)(x
2)2 + 2x2[q1(x) + l1(x)] + 4q2(x) +Q(x) = 0,
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with

Q(x) = 2(c0 − q0)x2 + 2(l1(x)− q1(x)) + q0 − l0 + c0.

This equation is of the form (1) and thus represents a Darboux cyclide.

Transferring the study of Darboux cyclides to the study of the carriers of
pencils of quadrics which contain the sphere Σ has a lot of advantages since
we are now able to apply knowledge from projective geometry on pencils of
quadrics. The study of all possible types of cyclides, i.e., pencils of quadrics
in 4-space, can be elegantly based on the Weierstrass theory of elementary
divisors (a workaround being found in Takeuchi (2000); see also (Coolidge,
1916, p. 301) and Uhlig (1976)).

2.3 Families of circles on Darboux cyclides.

Working in the spherical model, we represent the Darboux cyclide as the
carrier D̄ of the pencil P of quadrics

XT · (A− tJ) ·X = 0, (6)

spanned by the sphere Σ : XT ·J ·X = 0, and another quadric Γ : XT ·A·X = 0.
We can work with the inhomogeneous pencil parameter t, since we do not have
to represent Σ. Obviously, given a point Y /∈ Σ (with coordinates Y), there is
a unique quadric ΓY in P which contains Y , namely the one with the pencil
parameter t = (YT · A ·Y)/(YT · J ·Y).

If the carrier D̄ of P contains a circle k̄ in a plane Pk, we can choose any
point Y /∈ k in Pk and investigate the quadric ΓY ∈ P which contains Y . The
intersection of the plane Pk with ΓY must contain the circle k̄ and the point Y
and thus the entire plane Pk must be contained in the quadric ΓY . A regular
quadric in 4-space can contain at most straight lines, but no planes. Hence,
ΓY is singular, i.e., a quadratic cone.

Hence, looking for circles of D̄, we have to search for their planes on the
quadratic cones in P . This is a well-known subject, and can be analytically
accessed as follows. A quadric in the pencil for some parameter t is a cone if

det(A− tJ) = 0.

Hence, the possible parameter values ti are the real eigenvalues of the matrix
A · J−1 = A · J . Let ti be such an eigenvalue. Then the linear system (A −
tiJ) ·X = 0 has a nontrivial solution, say Vi, which describes a point Vi, the
vertex of the cone. This implies

A ·Vi = tiJ ·Vi,
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which says that the polar hyperplanes of the point Vi with respect to the
quadric Γ ∈ P : Xt · A · X = 0 and with respect to the sphere Σ agree. In
fact, the polar hyperplanes of Vi with respect to all quadrics in P are identical,
because of

(A− tJ) ·Vi = (ti − t)J ·Vi.

We see that Vi is a vertex of the common polar simplex of the pencil P (which
needs not be a regular simplex, needs not have only real vertices and may
degenerate in various ways). In the generic case, we get 5 linearly independent
eigenvectors of the matrix A · J , determining the 5 vertices of the common
polar simplex. Only real vertices Vi are of interest to us. Connecting any of
these vertices Vi with the carrier D̄, we obtain a quadratic cone Γi which
contains D̄.

Fig. 6. A cyclide D determines a pencil of quadrics in 4-space. Each vertex Vi of
the common polar simplex of the pencil corresponds to a sphere Bi in 3-space with
respect to which D is symmetric (inversion with respect to Bi maps D onto itself).
This figure shows a cyclide D which is symmetric with respect to 5 (pairwise orthog-
onal) spheres B1, . . . , B5; since B5 is imaginary, we illustrate its real representer Br

5.

Remark 2 Any real vertex Vi /∈ Σ of the common polar simplex, together with
its polar hyperplane, define a joint projective symmetry of all quadrics in the
pencil, and thus of its carrier D̄. The vertex Vi determines an M-sphere, say
Bi, in 3-space (in the notation used above, we have B∗i = Vi) . The inversion
with respect to such a sphere Bi maps the cyclide D onto itself. Since the
vertices Vi are pairwise conjugate with respect to Σ, the spheres Bi are pairwise
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orthogonal. In the case with 5 real vertices Vi, we get cyclides D which are M-
symmetric with respect to 5 pairwise orthogonal M-spheres (see Fig. 6 and
Coolidge (1916)); note that one of the 5 points Vi must lie in the interior of
Σ and thus the corresponding sphere is imaginary (B5 in Fig. 6).

Fig. 7. A pencil of quadrics in 3-space has an algebraic curve c of order 4 as its
carrier. There are four cones Γi in this pencil; projecting c from a cone vertex Vi
onto a plane Hi results in a conic Di.

Once again we look at a lower-dimensional counterpart to visualize the situ-
ation. Fig. 7 shows a pencil of quadrics in 3-space, spanned by a sphere and
another quadric. The pencil contains four cones with the vertices at the ver-
tices of the common polar simplex. The figure also shows that the projection
of the intersection curve (algebraic curve c of order four) from a point Vi onto
a plane is a conic Di and that not all points of Di need to be projections of
real points of c.

Let us return to 4-space. We may project D̄ from a cone vertex Vi onto a
hyperplane Hi (not passing through Vi) and obtain a quadric Di ⊂ Hi. The
structure of this projection becomes clear in C4. The quadric Di appears as
“doubly covered”, i.e., each of its points is the image of two points of D̄.
However, not any real point of the quadric Di is the image of two real points
on D̄ (see Fig. 7); it can as well be the image of two conjugate complex points
of D̄. The double coverage of Di explains why it can be the image of a 2-
surface D̄ of algebraic order 4 under a central projection. Returning to R4

we get that if the cone Γi contains planes, they pass through circles on D̄
and of course through Vi and thus these planes (and the circles) are projected
onto straight lines of the quadric Di. This shows us how to obtain circles on
Darboux cyclides (see Fig. 8). We summarize our findings in the following
theorem which is a classical result, but probably not so straightforward to
extract from the classical texts (e.g., Coolidge (1916)) so that it did not get
used in later studies on cyclides (Blum (1980); Takeuchi (2000)).
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Theorem 3 In the spherical model of Möbius geometry, a Darboux cyclide D
appears as the carrier D̄ of a pencil P of quadrics which contains the sphere
Σ. Any real vertex of the (possibly degenerate) common polar simplex of the
quadrics in P is the vertex of a quadratic cone through D̄. If such a cone
contains planes, these planes intersect Σ in circles of D̄, which determine
circles or lines on D. Any circle or line on D can be found in this way.

Fig. 8. Extended stereographic projection of the situation in 4D. (Top left) Con-
necting the image point V ′i of the cone vertex Vi with the rulings of the projected
ruled quadric D′i results in planes T which carry circles of the cyclide D. (Top right)
Each plane T carries two circles and is tangent to the cyclide D at ≤ 2 points, the
common points of these two circles. (Bottom left) Each plane T is tangent to a
quadratic cone Ci with vertex V ′i which is tangent to D′i. (Bottom right) A paired
family of circles arising from the two families of rulings in D′i.

This result gives rise to several conclusions on circle families on nontrivial
irreducible Darboux cyclides (containing no spheres or planes as a whole).
There are two types of quadratic cones in the 4-space which contain planes
(but no hyperplane):

(1) The cone Γi is obtained by connecting a nonsingular ruled quadric Di in
a hyperplane Hi with a point Vi outside Hi. The ruled quadric Di carries
two families of straight lines (rulings). Each plane through a ruling of
one family intersects Di in a ruling of the second family. Connecting
with the vertex Vi and interpreting the scene from the Möbius geometric
perspective, we find two circle families on D̄ (and D). We call them paired
families, since one family determines the other one. Any sphere through
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a circle of one family intersects the cyclide D in a second circle which
belongs to the other family. This holds in particular for the plane of
such a circle: it intersects the cyclide in a circle of the other family (see
Fig. 8). We shall say that paired families are special, if Vi ∈ Σ — this is
only possible if D is the image of a quadric under an inversion (Coolidge,
1916, cf. Theorem 35 in p. 301). Paired families were called residual in
Coolidge (1916).

Fig. 9. Single families of circles are found only on those Darboux cyclides which are
envelopes of a one-parameter family of spheres. The spheres touch the cyclide D
along the circles of the single family, and the planes of the circles pass through a
fixed line v′i (image of the vertex line vi of a quadratic cone containing D̄).

(2) The cone Γi is the connection of an irreducible quadratic cone Di (with
vertex Wi) in a hyperplane Hi and a point Vi outside Hi. This is the
same as connecting a conic (on Di) in some plane P ⊂ Hi with a straight
line vi = ViWi which does not intersect P . The straight line is the vertex
line of the cone. Such a cone carries a single family of planes (through
vi) and thus we speak of a single family of circles on D̄ and on the
underlying Darboux cyclide D. Obviously, a sphere through a circle of
a single family intersects the cyclide in a circle of the same family, just
like a plane through a ruling of the quadratic cone Di intersects the cone
in another ruling. However, there are also tangent planes of the cone Di.
They lead to spheres touching the cyclide along the circles of a single
family and thus we see that a Darboux cyclide which contains a single
family is a canal surface, i.e., the envelope of a one-parameter family of
spheres (see Fig. 9). In fact, almost each such Darboux cyclide is the
image of a complex quadratic cone under a complex inversion (Coolidge,
1916, Theorem 38 in p. 302).

Proposition 4 There are two different types of circle families on nontrivial
irreducible Darboux cyclides D. (i) Paired families are two families such that
a sphere through a circle of one family intersects the cyclide in another circle,
which belongs to the second family. The planes of both circle families are ei-
ther the tangent planes of a quadratic cone or the planes of two pencils with
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intersecting axes (in the sense of projective geometry). (ii) The circles of a
single family are the characteristic circles of a generation of the cyclide as a
canal surface; a sphere through a circle of a single family either touches the
cyclide along that circle or it contains another circle of D belonging to the
same family. The planes of the circles lie in a pencil.

The statements on the planes of circles follow from the extended stereographic
projection of the plane family in the quadratic cone Γi (see Fig. 8). Indeed,
we may assume that Z 6= Vi and Z ∈ Hi. If Z 6∈ Di in type (i) then the lines
in the irreducible quadric Di are projected to tangents to a certain conic in
3-space. Joining the resulting lines with the projection of the point Vi we get
tangent planes of a quadratic cone. The case of two pencils with intersecting
axes in type (i) arises if the projection center Z, the vertex Vi, and a point of
the ruled base quadric Di are collinear. This is only possible if λ = 0 in (1);
an example is the paired family of circles in an ellipsoid (not of revolution).

Using this approach one can obtain further information about the arrangement
of circle families on Darboux cyclides. Once the quadric Di contains at least
one line, it contains a line through each point. Thus any family of circles on an
irreducible cyclide D covers the entire cyclide. Now assume that there are two
circle families on D. Then through a generic point p ∈ D one can draw circles
from both families. There are two possibilities. First, these circles may have
another common point (or touch each other). In this case they lie in one sphere.
Hence by Proposition 4 the circles belong to two paired families. Second, the
point p may be the unique transversal intersection point of the circles. In this
case any two other circles from the families have also a single intersection
point because the parity of the number of intersection points (counted with
multiplicities) does not depend on the choice of two particular circles from the
families.

Proposition 5 In nontrivial irreducible Darboux cyclides, two circles from
distinct families, which are not paired together, intersect each other transver-
sally at a single point.

Remark 6 Similarly, there are two types of families of conics in the inter-
section D̄ of two arbitrary nonsingular 3-dimensional quadrics in 4-space (D̄
containing no 2-dimensional quadrics as a whole). Paired families are such
that a hyperplane through a conic of one family intersects D̄ at another conic,
which belongs to second family. A hyperplane through a conic of a single fam-
ily either touches D̄ or intersects it in another conic of the same family. This
is proved analogously to Proposition 4.
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2.4 The number of families of real circles on a Darboux cyclide.

Let us further discuss the circle families on cyclides and start with some simple
examples. Darboux cyclides which contain two single families must be the
envelopes of two families of spheres and thus these are the Dupin cyclides
which have already found a lot of attention in Geometric Modeling (see, e.g.,
Degen (2002); Krasauskas and Mäurer (2000)). As a special case, consider a
ring torus, which obviously contains two single families (meridian circles and
the circular paths of the generating rotation); furthermore it carries a paired
family, namely the two families of Villarceau circles. Likewise any Dupin ring
cyclide carries four families of circles, since it is the image of a ring torus
under an inversion. Rotating a circle about an axis (not meeting the axis of
the circle and not contained in the plane of the circle) we may obtain a ring
shape, which is a Darboux cyclide carrying five real families of circles (two
paired ones and the single family of rotational circles; for in illustration, see
Pottmann et al. (2007a)).

However, there are also Darboux cyclides which carry six families of real circles.
This has first been pointed out by Blum (1980), at hand of a special case of
symmetric cyclides, and in a quite involved elementary proof which gives less
insight than our approach. Blum mentions that Darboux had pointed to 10
families of circles, but did not differentiate between real and complex ones.
Takeuchi (2000) provides a discussion of the real families of circles on cyclides,
similar to our approach, but he does not address the geometric relation to the
cones in the pencil of quadrics. In none of these papers, we find a figure of such
a surface, which of course is easy to generate with our approach and provided,
e.g., in Fig. 10.

We can easily obtain these results and more as follows. Without caring about
reality and looking only at the generic case, we get Darboux’s 10 families, two
families from each of the 5 quadratic cones. To determine the number of real
circle families on a cyclide we have to investigate the quadratic cones in a pencil
P of quadrics through Σ. Using the notation from equation (6), the matrices
of the quadratic cones Γi are Ci := A − tiJ , where ti is a real eigenvalue
of the matrix A · J . A quadratic cone with two families of planes (which
determines a paired family of circles) is given by a matrix Ci of signature
(0,+,+,−,−). For a cone determining a single family, the matrix has signature
either (0, 0,+,+,−) or (0, 0,+,−,−).

For brevity, let us now focus on the generic case with 5 distinct vertices of
the common polar simplex, where we also assume that all five vertices are
real. In this case, we can apply a projective map in 4-space which maps these
vertices to the origin and the ideal points of the four coordinate axes. In
other words, we have achieved that matrix A is a diagonal matrix, say with
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Fig. 10. A cyclide with 6 families of circles, shown in different colors. We will see
later that we can form eight different 3-webs from these circles (cf. Figure 18).

diagonal (a1, . . . , a5). Matrix A · J is then also diagonal with eigenvalues ti =
{a1, . . . , a4,−a5}, and so the eigenvalues of Ci are (a1− ti, . . . , a4− ti, a5 + ti).

Example 7 To give an example of a cyclide with 6 real circle families (Fig. 10),
we consider the pencil with the matrix A = diag(−2,−1, 1, 2, 0), which defines
a quadratic cone Γ1 with vertex at the origin; Γ1 contains two plane families.
Using Cartesian coordinates, our pencil is spanned by

x21 + . . .+ x24 − 1 = 0, −2x21 − x22 + x23 + 2x24 = 0.

Following the above procedure, or equivalently, eliminating one of the vari-
ables, we arrive at the following 4 additional cones (cylinders parallel to the
coordinate axes):

Γ2(ti = −2) : x22 + 3x23 + 4x24− 2 = 0, Γ3(ti = −1) : −x21 + 2x23 + 3x24− 1 = 0,

Γ4(ti = 1) : −3x21 − 2x22 + x24 + 1 = 0, Γ5(ti = 2) : −4x21 − 3x22 − x23 + 2 = 0.

We see that Γ3 and Γ4 determine paired families, while the largest and smallest
ti determine cylinders with an oval base quadric and thus do not contribute
further real circles.

Remark 8 For the smallest real eigenvalue t0 of the matrix A · J the matrix
A − t0J cannot have signature (0,+,+,−,−). Indeed, the eigenvalues of the
matrix A − tJ change continuously with decreasing t, but for t < t0 they
should have the same signs (+,+,+,+,−) as those of J . Similarly, the largest
real eigenvalue does not lead to a paired family. Thus there are at most 3
paired families. Single families may only appear for eigenvalues of multiplicity
2, hence we never have more than 6 families of real circles on a nontrivial
irreducible Darboux cyclide.
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This can easily be cast into a simple algorithm for computing the circle fam-
ilies on a given cyclide. Assuming that we have already identified the cor-
responding pencil of quadrics (6), we compute the real eigenvalues of the
matrix A · J . For each such eigenvalue ti, we compute the eigenvalues of the
matrix A − tiJ . If the eigenvalues of the matrix A − tiJ have signs either
(+,+,−,−, 0) or (+,+,−, 0, 0) or (+,−,−, 0, 0) then we bring the matrix to
the form diag(k21, k

2
2,−k23,−k24, 0) by a linear transformation κ of coordinates,

where k1, k3 > 0 and k2, k4 ≥ 0. Denote by P1(s) and P2(s), where s is a
parameter, the images of the planesk1x1 + sk2x2 − k3x3 − sk4x4 = 0,

sk1x1 − k2x2 + sk3x3 − k4x4 = 0;
and

k1x1 − sk2x2 − k3x3 − sk4x4 = 0,

sk1x1 + k2x2 + sk3x3 − k4x4 = 0;

under the transformation κ−1. In particular, the families P1(s) and P2(s) co-
incide, if either k2 = 0 or k4 = 0. Stereographic projections of P1(s) ∩ Σ and
P2(s) ∩ Σ are families of circles on the cyclide. If the eigenvalues of A − tiJ
have signs neither (+,+,−,−, 0) nor (+,+,−, 0, 0) nor (+,−,−, 0, 0) then ti
does not contribute to circle families.

2.5 The polar dual.

While not absolutely necessary to get further insight, we think that it is helpful
to also consider the polarity with respect to Σ and view the situation from this
perspective. Strictly speaking, the polarity maps points to hyperplanes, but
it defines a duality which maps spaces of dimension d to those of dimension
3− d for d = 0, . . . , 3; this is why we speak of the “polar dual”. An M-sphere
S gives rise to a point S∗, the pole of the hyperplane carrying the sphere
S̄ ⊂ Σ. An M-circle k in R3 determines a circle k̄ ⊂ Σ in some plane, whose
polar image is a straight line which we denote by k∗. Recall that the extended
stereographic projection maps the point S∗ which determines a sphere S onto
the center of S. Likewise, it maps the straight line k∗ determining a circle k
to the rotational axis of k.

A circle family of a Darboux cyclide is completely determined by a quadratic
cone Γi which carries a family of planes. We now look at the polar dual Γ∗i of
the cone, and as above distinguish the two cases.

Paired circle families. If Γi contains two families of planes and thus de-
termines two paired circle families on a cyclide, its polar image Γ∗i is a ruled
quadric in some hyperplane V ∗i (the polar hyperplane of the cone vertex Vi).
Each ruling of Γ∗i is polar to a plane in Γi and thus determines a circle on the
cyclide. The extended stereographic projection maps the ruled quadric Γ∗i to
a quadric (or a plane) Gi ⊂ R3. The axes of the circles in the paired families
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are projected to two families of lines in Gi.

The cone vertex Vi represents an M-sphere; let us call it Bi (note: B∗i = Vi) and
consider the associated complex of spheres S which are orthogonal to Bi. The
poles S∗ representing these spheres S lie in the hyperplane V ∗i . This implies
(recall Remark 2 on M-symmetries) that the cyclide is symmetric with respect
to Bi. Note that each of the circles in the two families is also symmetric with
respect to Bi, i.e., orthogonal to Bi, since it is an intersection of two spheres
of the complex.

Fig. 11. A paired family of circles on a cyclide D can be constructed as follows:
Prescribe a ruled quadric G and a sphere B, and consider all circles which are
orthogonal to B and have a rotational axis on G. This may be viewed as a trans-
formation which maps the rulings of G to circles on D.

Proposition 9 All circles of two paired families are orthogonal to a fixed M-
sphere Bi and their axes form the two families of rulings on a ruled quadric
Gi. The M-sphere Bi needs not be real and may degenerate into a point; in the
latter case, the cyclide is a ruled quadric (Bi = ∞) or the image of a ruled
quadric under an inversion. The M-sphere Bi may also be plane; in that case,
the circle axes are the tangents of a conic in Bi or a pair of pencils of lines
in Bi.

The latter case appears when the hyperplane V ∗i passes through the center Z
of the stereographic projection and thus is mapped to a plane Bi in R3. Now,
Gi, the image of Γ∗i under the extended stereographic projection, is no longer
a ruled quadric, but degenerates to the union of tangents of a conic or two
pencils of lines.

Thus we can construct paired circle families (and thus also Darboux cyclides)
in a very simple way by prescribing a non-degenerate ruled quadric G and
a sphere B (or sphere complex) and proceed according to Proposition 9 (see
Fig. 11 and 12). Note that this construction would fail in the special case
where B is a plane: prescribing a conic in a plane B is not enough to get the
cyclide, since circles whose axes are tangent to the conic are automatically
orthogonal to B.
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Fig. 12. Various shapes of Darboux cyclides: A smooth Darboux cyclide is topolog-
ically either a sphere (top), or a torus (middle), or a pair of two spheres (bottom
right); see Takeuchi (2000). A cyclide with singularities in the image of a quadric
under inversion (bottom left). Paired families of circles on the cyclides are shown.

Remark 10 For readers familiar with non-Euclidean geometry we mention
that Darboux cyclides may be obtained as follows: Take a ruled quadric in
the projective model of hyperbolic or elliptic 3-space and transfer it (through
the well-known Darboux transformation) to the respective conformal model.
All cyclides carrying two paired families of circles which are orthogonal to a
real or complex sphere can be obtained in this way; the former case is that of
hyperbolic geometry, the latter belongs to elliptic geometry.

Single circle families. If the cone Γi contains only one family of planes and
thus has a vertex line vi, its polar image is a conic Γ∗i =: ci in the following
sense: The points S∗ of the conic ci determine the spheres S which envelope
the cyclide D and the tangents of ci represent the circles along which these
spheres touch D. The plane P of ci is the polar dual v∗i of vi; it defines a bundle
of spheres. Points on the vertex line vi represent the spheres of a pencil, which
are orthogonal to the spheres of the bundle.

Recall that the spheres of a bundle which are orthogonal to an imaginary circle
pass through two fixed points; this is the case of Darboux canal surfaces which
are quadratic cones (if one of the two points is∞) or images of quadratic cones
under an inversion.

Proposition 11 A canal surface which is an irreducible Darboux cyclide (not
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Fig. 13. A cyclide D which carries a single family of circles can be constructed as
follows: Prescribe a conic g and a circle b in the same plane, and consider all spheres
S which are centered on g and orthogonal to b. The cyclide is the envelope of these
spheres. Each sphere S touches the cyclide in a circle k (of the single family), whose
axis is a tangent of g and whose plane passes through the axis of b.

of revolution) is the envelope of spheres S which are centered at a conic g and
are orthogonal to an M-circle b in the plane of g (Fig. 13). The M-circle b
may degenerate to a point and may also be imaginary; in the latter case, the
cyclide is a quadratic cylinder (b = ∞), a quadratic cone or an image of a
quadratic cone or cylinder under an inversion.

Remark 12 An exceptional case happens if the spheres are all centered on
a straight line g (i.e., if the plane of the conic ci passes through Z), i.e., the
resulting surface is a rotational surface with axis g. The surface may be defined
by rotating a circle around the axis, but only if the surface has another real
circle family. There are cyclides for which this is not the case: as an example,
take a rotational ellipsoid or the image of it under an inversion with respect
to a co-axial sphere. We are not pursuing the study of cyclides with only one
family of real circles, since we are interested in surfaces which carry at least
two families of circles.

3 Design tools for Darboux cyclides

Section 2.5 shows that we can translate design methods for ruled quadrics and
conics to design tools for paired and single circle families on Darboux cyclides.
This will be elaborated in Section 3.1 in more detail. In Section 3.2 we give an
example of circle families intersecting under constant angle and in Section 3.3
we very briefly discuss the parametric representation of Darboux cyclides.
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3.1 Designing circle families on cyclides.

Most of the following material is based on Proposition 9, which generates
paired families with help of a sphere complex and a ruled quadric. We will
now illustrate this at hand of the case where the sphere complex consists of all
spheres orthogonal to a real sphere B. It is pretty straightforward to discuss
the other cases.

The following design (input) methods for ruled quadrics will be transferred to
cyclide design based on Proposition 9:

(1) A ruled quadric is defined by three pairwise skew straight lines.
(2) A ruled quadric is determined by a skew quad (formed by rulings) and a

further point.

(1) Translating the generation of a ruled quadric G with 3 pairwise skew
rulings to cyclide design is done as follows: We prescribe a sphere B and three
circles k1, k2, k3 which are orthogonal to B. Since the rulings of G shall be
the axes of the circles, we have to prescribe the circles ki so that their axes
Ai are pairwise skew. Two circles which are orthogonal to B have skew axes
if and only if they do not lie on a common sphere. Having fixed the circles
ki, the cyclide follows easily. One just has to compute a ruled quadric from 3
pairwise skew lines A1, A2, A3. One way is to first compute the rulings of the
other family, as the set of lines intersecting A1, A2, A3. To get such a ruling,
pick a point X ∈ A1 and intersect the connecting planes X ∨A2 and X ∨A3.

It may be more intuitive to let B be a plane and let the user prescribe (half)
circles orthogonal to B. Any two such circles should not be co-spherical. Lack-
ing a direct construction in the case where B is a plane, one can first apply an
inversion to map B to a sphere, proceed as above, and finally transform back
with the (same) inversion. We will obtain a cyclide passing through the three
prescribed circles (see Fig. 14).

(2) The second type of input is closely related to the first one, but may be
more useful for practice, since we now prescribe the circular boundaries and
a point of the cyclide patch (see Fig. 15). Let us describe the case with a
plane B. To this end, we can input a quad with vertices P1, . . . , P4 and a
plane B. Each edge, say P1, P2 of the quad can be reflected at B to obtain
points P ′1, P

′
2, and now one has a unique circle passing through P1, P2, P

′
1, P

′
2;

this circle k1 is orthogonal to B. So we end up with four circular arcs, being
admissible boundaries of a cyclide patch. We may then prescribe one more
point P of the desired patch and the cyclide D is determined. This input can
be transformed into the above one by constructing a further circle k through
P : take two opposite circular boundaries, say k1, k3 and intersect the two
connecting spheres P ∨ k1 and P ∨ k3.
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Fig. 14. Paired families of circles on a Darboux cyclide can be defined by 3 circles
k1, k2, k3 which are orthogonal to a plane B (and no two of which lie on a common
sphere). The figure shows a variety of results obtained with this method.

Fig. 15. A cyclide patch can be defined by its four boundary circles (all being
orthogonal to a common sphere or plane) and a further point. Especially if B is a
horizontal plane, this can be very useful for architectural design, since one gets a
structure formed by two families of circular arcs in vertical planes.

Remark 13 Proposition 11 provides us with a transformation of conics into
single families of circles on cyclides. Thus, in a quite analogous way to the
design of paired circle families from ruled quadrics, we can transfer construc-
tions of conics into those for single circle families on cyclides. This is rather
straightforward, and thus we do not pursue it in the present paper.

3.2 Two circle families intersecting under a constant angle

Ivey (1995) proved that a surface which carries two orthogonal families of
circles is a Dupin cyclide. Apart from the orthogonal network of principal
curvature lines (circles) on a Dupin cyclide, there is also the case of the paired
families of Villarceau circles on a ring cyclide (lying in doubly tangent planes).
Villarceu circles from different families always intersect under a constant angle,
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as they intersect the principal curvature circles under a constant angle. For
specific cyclides this angle can be 90 degrees (see Fig. 16).

We see that any pair of circle families on a ring Dupin cyclide exhibits a
constant intersection angle, which implies congruent nodes in an architectural
construction. We conjecture that the Dupin cyclides are the only surfaces
which have two circle families that intersect under a constant angle.

Fig. 16. Since the Villarceau circles on a Dupin ring cyclide intersect the principal
curvature circles under a constant angle, there are several ways of extracting circle
families with a constant intersection angle. This leads to congruent nodes in an ar-
chitectural construction. We show here two different types of 3-webs with congruent
nodes, as discussed in Theorem 17.

3.3 Parametric representation of Darboux cyclides

From the point of view of complex algebraic geometry a Darboux cyclide is
a Del Pezzo surface of degree 4 (as a projection of the intersection of two
quadrics in 4-space). In particular, Darboux cyclides are rational surfaces.
However, in general they may not have a real rational parametrization. For
instance, the cyclide (x2+y2+z2−1)(x2+y2+z2−2)+1/10 = 0 is irreducible
and disconnected, hence has no proper real rational parametrization.

For an arbitrary Darboux cyclideD it is not hard to find a real parametrization
of the form

x(s, t) =
X1 +X2

√
P

W1 +W2

√
P
, y(s, t) =

Y1 + Y2
√
P

W1 +W2

√
P
, z(s, t) =

Z1 + Z2

√
P

W1 +W2

√
P
,

where X1, X2, Y1, Y2, Z1, Z2,W1,W2, P are polynomials in s and t of degree at
most 4.

Indeed, let XT ·A·X = 0 be the equation of D̄. Since the polynomial det(A−tJ)
has degree 5, it has a real root ti. Thus D̄ is the intersection of the cone
XT · (A − tiJ) · X = 0 and the sphere Σ. Depending on the position of the
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vertex Vi of the cone with respect to the sphere Σ there are the following 3
cases.

Case 1: Vi is in the “surface” of the sphere Σ. Consider the hyperplane Hi

touching the sphere Σ at the point opposite to Vi. The hyperplane Hi intersects
the cone by a quadric Di. Take a quadratic parametrization of the quadric Di.
Composing it with the inverse stereographic projection from the vertex Di

and then with the stereographic projection from the point Z we get a rational
parametrization of the cyclide D of degree a most 4.

Case 2: Vi is outside the sphere Σ. Perform a projective transformation κ of
the 4-space preserving Σ and taking Vi to the infinitely distant point in the
direction of the x1-axis. The image of the cone under the transformation κ
is a cylinder crossing the hyperplane x1 = 0 by a quadric (or a plane) Di.
Thus the quadric (or a plane) Di is the projection of κD̄ along the x1-axis.
Take a quadratic parametrization of the quadric Di. Inverting the projection,
performing the inverse transformation κ−1, and finally performing the stereo-
graphic projection from Z we get the required parametrization.

Case 3: Vi is inside the sphere Σ. Perform a projective transformation κ of
the 4-space preserving Σ and taking V to the center of the sphere Σ. The
image of the cone under the transformation intersects the hyperplane x1 = 1
by a quadric (or a plane) Di. Thus the quadric (or a plane) Di is the central
projection of the cyclide from the origin. Take a quadratic parametrization of
the quadricDi. Inverting the projection, performing the inverse transformation
κ−1, and finally performing the stereographic projection from Z we get the
required parametrization.

4 Webs from circles on Darboux cyclides

In this section we define 3-webs, give classical examples of planar C-webs, and
finally classify all possible C-webs on Darboux cyclides.

A 3-web (or hexagonal web) in a surface is 3 families of smooth curves which
are locally diffeomorphic to 3 families of lines x = const, y = const, x + y =
const in the plane Oxy. These lines for integral values of the constants form
a triangular lattice in the plane; taking the preimage of the lattice under the
diffeomorphism, we get a discrete 3-web in the surface (see Fig. 18).

A 3-web is characterized by the following closure condition (Blaschke and Bol
(1938); see also Fig. 17). Take an arbitrary point O of the surface. Draw the
curves k1, k2, k3 of the 3 families through the point O. Take an arbitrary
point A1 ∈ k1 sufficiently close to O. Draw the curve l2 of the second family
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Fig. 17. The closure condition characterizing 3-webs; see the beginning of Section 4
for explanation. This figure also illustrates an algorithm for computation of discrete
3-webs on Darboux cyclides; see the end of Section 4.

through the point A1. Set A2 = l2 ∩ k3. Draw the curve l1 of the remaining
(first) family through the point A2. Set A3 = l1 ∩ k2. Draw the curve l3 of
the remaining (third) family through A3 and set A4 = l3 ∩ k1. Continuing in
this way, construct points A5, A6, and A7. The closure condition asserts that
A7 = A1. This condition and symmetry considerations often allow to verify
that certain triple of families is indeed a 3-web.

First let us give the following known beautiful examples of 3-webs of lines
and circles in the plane needed for the sequel. In these examples by a 3-web
we mean a 3-web in an appropriate nonempty domain in the plane. Three
families of curves are crossing, if some 3 curves of distinct families have a
common point of transversal intersection.

Theorem 14 (Graf and Sauer (1924); Blaschke and Bol (1938)) Three cross-
ing families of (pairwise distinct) straight lines in the plane form a 3-web if and
only if all these lines are tangent to one curve of algebraic class 3 (including
reducible ones).

A cyclic is a curve given by equation of the form

λ(x2 + y2)2 + (x2 + y2)(µx+ νy) +Q(x, y) = 0,

where λ, µ, ν ∈ R and Q(x, y) is a polynomial of degree at most 2. (This is a
one-dimensional counterpart of a cyclide.)

Theorem 15 (Wunderlich (1938)) Three crossing families of circles doubly
tangent (in the sense of complex algebraic geometry) to a cyclic (possibly with
singularities) form a 3-web.
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Remark 16 Performing the inverse stereographic projection and then a pro-
jective transformation one gets the following corollary: the tangent planes to 3
of the 4 quadratic cones (possibly reducible) passing through the intersection c
of two oval quadrics in R3 cut a 3-web of conics in each of the oval quadrics,
once the 3 families of conics are crossing (cf. Fig. 7).

Since we have up to 6 real families of circles on a cyclide, the question arises
whether and how we can arrange triples of them into 3-webs. To this end, we
will prove the following result (see Fig. 18):

Theorem 17 Three families of circles on a nontrivial irreducible Darboux cy-
clide form a 3-web unless one takes two nonspecial paired families and another
family which has a paired one. Thus we have 5 types of 3-webs from circles on
a Darboux cyclide:

(i) A web of type 1 is formed by 3 non-single families of circles, such that no
two of them are paired families. Hence, this type only exists on a cyclide
with 6 real families of circles, and we have 8 different 3-webs on such a
cyclide; see Fig. 18.

(ii) A web of type 2 is formed by 2 special paired families and another family
which has a paired one. This type only exists on the image of a one-sheet
hyperboloid under an inversion; see Fig. 19.

(iii) A web of type 3 is formed by a single family and 2 paired families; see
Fig. 16 to the left.

(iv) A web of type 4 is formed by a single family and 2 non-single families,
which are not two paired families; see Fig. 20.

(v) A web of type 5 consists of 2 single families and another family which has
a paired one. Hence, this type only exists on the Dupin ring cyclide and
consists of its principal curvature lines and a family of Villarceau circles;
see Fig. 16 to the right.

Proof. The main idea of the proof is to use the surface D̄ ⊂ R4, the cones
which define the circle families and to verify webs at hand of appropriate
projections onto a plane or 3-space. Types 2,4,5 are in fact degenerations of
type 1.

Type 1: Here D̄ is the carrier of a pencil of quadrics which contains three
cones (with vertices V1, V2, V3) each of which contains planes. By Remark 8
the pencil of quadrics must also contain a cone with a real vertex V4 and an oval
base quadric. Now we project D̄ from V4 onto a hyperplane H4 (not through
V4) and obtain (a part of) an oval quadric Φ. The three circle families of D̄
(no two of them paired) are projected to conics (on Φ) in tangent planes of
quadratic cones; Φ and these cones lie in a pencil of quadrics. By Proposition 5
it follows that the conics of distinct families are crossing. We have now exactly
the situation of Remark 16 and conclude that these three families of conics
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Fig. 18. Eight different 3-webs of type 1 in a Darboux cyclide.
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Fig. 19. A 3-web of type 2 in a Darboux cyclide (right) obtained from a non-rota-
tional one-sheet hyperboloid (left) by an inversion.

form a 3-web. Hence, also the 3 circle families on the cyclide form a 3-web.

Type 2: Let V1 ∈ Σ be vertex of the cone giving the special paired families. Let
V2 be the vertex of the cone Γ2 giving the other non-single family. Project from
the line connecting V1 and V2 onto a plane. Then the special paired families
are projected either to tangents to a conic or to two pencils of lines. Since
V1 ∈ Σ it follows that V1 ∈ Γ2. Thus the 3rd non-single family is projected to
a pencil of lines. The resulting straight lines are tangent to a reducible curve
of algebraic class 3 and by Theorem 14 form a 3-web. Hence, also the 3 circle
families on the cyclide form a 3-web.

Special paired families only exist on cyclides which are images of quadrics
under inversion. Among the quadrics only a one-sheet hyperboloid (not of
revolution) contains 4 families of circles/lines. Thus the cyclide in type 2 can
only be an image of a one-sheet hyperboloid under inversion. (This web on a
hyperboloid was also discussed by Wunderlich (1938).)

Type 3: We connect the cone vertex V1 (associated with the two paired families)
with any point on the vertex line v2 of the cone that determines the single
family. From the resulting line L we project into a plane (not intersecting L).
The image of the two paired circle families are either the tangents of a conic
or two pencils of lines. The image of the single family is a pencil of lines. So
together we have the tangents of a reducible curve of algebraic class 3, which
according to Theorem 14 form a 3-web.

Type 4: The proof is literally the same as in the proof for type 1. We only need
to remark that one of the cones in the hyperplane H4 now degenerates to a
pair of planes and its tangent planes are understood in the sense of algebraic
geometry: these are the ones passing through the vertex line of the cone.

Type 5: We may apply an inversion to map the ring Dupin cyclide to a ring
torus. Now it follows from the rotational symmetry that the Villarceau circles
together with meridian circles and parallel circles (rotational paths) form a
3-web.
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Fig. 20. A 3-web of type 4 in a Darboux cyclide.

We still have to show that two (nonspecial) paired families and a 3rd (non-
single) circle family cannot form a 3-web. Again, project from the line con-
necting the two involved cone vertices, say V1, V2 onto a plane. The two paired
families are projected either to tangents to a conic or to two pencils of lines.
Since V1 6∈ Σ it follows that the 3rd family is projected to tangents to a (non-
degenerate) conic. The resulting straight lines are tangent to a reducible curve
of algebraic class 4 and due to Theorem 14 do not form a 3-web. �

Remark 18 Similarly, there are the same 5 types of 3-webs of conics in the
intersection of two arbitrary 3-dimensional nonsingular quadrics in R4 (if the
intersection does not contain 2-dimensional quadrics as a whole). If we project
such a 3-web from R4 to R2 we get a 3-web of conics in the plane. The conics
of the planar 3-web are tangent to the “visual contour” (i.e., the boundary of
the projection) of the intersection of the quadrics, which is a curve of order
≤ 12; cf. Schmid (1936), Timorin (2007).

The closure condition can be used for the computation of discrete 3-webs as
follows. Consider 3 families of curves on a surface, forming a 3-web. We use
the notation from the definition of the closure condition at the beginning of
Section 4. We prescribe the requested “size” N of the web, as well as starting
points O and A1 ∈ k1. One step of algorithm is to draw the curve m3 of the
third family through the point A1; set A′1 = m3 ∩ l1; then draw the curve m2

of the second family through the point A′1; set A′2 = m2 ∩ k3. The next step
of algorithm is the same, but now A2 and A′1 are chosen as starting points.
Performing N such steps one gets N curves of the first family and N curves of
the second one. After that, we make similar N steps starting from the points
O and A2 to get N curves of the third family.

One can apply this algorithm to construct finite 3-webs, i.e., discrete 3-webs
forming a triangulation of the whole closed surface. Indeed, parameterize one
of the curve families, say, the first one, so that the curve k1 corresponds to
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parameter values both 0 and 1 (we assume that the surface has ring shape).
Running the algorithm we get N curves of the first family, let σ be the param-
eter value of the N -th curve. Let Ã1 ∈ k1 be a point such that OÃ1 = OA1/σ.
Repeat the same procedure starting from the points O and Ã1 until σ is close
enough to 1. Eventually a discrete 3-web close to a finite one is constructed
this way. On Darboux cyclides, there are arbitrary dense finite 3-webs of type
1 by (Wunderlich, 1938, Section 4).

5 Related studies and open problems

There are several directions in which we would like to continue our research:

• We are still lacking a proof for the conjecture that any surface which carries
three families of circles is a Darboux cyclide and that any surface with two
families of circles intersecting under a constant angle is a Dupin cyclide.
Moreover, we would like to classify all surfaces which carry two families of
circles and discuss them from a geometric modeling perspective.
• Cyclides of isotropic geometry may also deserve attention. Recall that an

isotropic circle is either a parabola with a vertical axis (a favorite element
of architecture) or an ellipse whose projection into a horizontal plane (top
view) is a circle. An isotropic cyclide is given by equation (1), in which
both instances of (x2 + y2 + z2) are replaced by (x2 + y2). Viewing isotropic
cyclides from the Laguerre geometric perspective, we can transform them
into surfaces which are enveloped by several families of right circular cones.
This would, for example, provide access to architectural structures from
strips of right circular cones.
• It is also interesting to obtain an algorithm for rational parametrizations of

Darboux cyclides and the corresponding rational Bezier representation; this
is expected to result from the work of Krasauskas and Zube (2011).
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