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Circular harmonics

1. Introduction

The generation of curves under geometric restrictions is an important area of research in Computer Aided Geometric
Design (CAGD). Considerable effort has been expended over the last forty years in this field in order to develop efficient and
flexible representations of complex shapes. Since Bézier curves in the early sixties, B-spline curves in the mid seventies, and
subdivision schemes in the late seventies, the search for representations that overcome the topological limitations of the
classical approaches has not ceased. Research in this area has been fruitful and has resulted in many different methodologies
(Bohm et al., 1984; Pham, 1992). They can be broadly categorized in terms of curve representation as

e subdivision schemes, where the curve is described as the limit of a refinement process (Micchelli and Prautzsch, 1989;
Deslauriers and Dubuc, 1991; Warren and Weimer, 2002);

e parametric schemes, where the curve is described continuously by some coefficients using basis functions (Farin et al.,
1987; Piegl, 1991; Farin, 1997; Schumaker, 2007).

A subdivision scheme is a set of rules that recursively define new points on finer grids starting form a set of initial points
on a coarse grid. If the same rule is kept for all iterations, the scheme is called stationary (Cavaretta et al., 1991; Dyn et al.,
1991; Dyn, 1992). If a different rule is used at each refinement level, the scheme is called nonstationary (Derfel et al., 1995;
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Dyn and Levin, 1995). Research is continually moving toward the investigation of refinement rules able to combine desirable
reproduction properties under some geometrical constraints. In particular, schemes capable of reproducing circles were
proposed in Zhang (1996), Zhang and Krause (2005), Sabin and Dodgson (2004), Deng and Wang (2010), Romani (2010),
and, more recently, schemes based on exponential B-splines made possible the reproduction of conic sections (Beccari et al.,
2007, 2009; Sunita and Shunmugaraj, 2009; Conti and Romani, 2010; Conti et al., 2011) and exponential polynomials (Dyn
et al., 2008; Romani, 2009).

For certain applications, it is more convenient to represent the curve in an explicit parametric form instead of represent-
ing it as the limit of a subdivision process, the reason being that the parameters provide a direct way of evaluating any
point on the curve. For computational reasons, short basis functions are preferable because the evaluation of a single point
on the curve then depends on fewer coefficients.

In this paper, we are interested in designing a parametric curve representation model that can perfectly replicate ellipses
as well as higher-order algebraic curves. To achieve this, we select basis functions that have the capability of reproducing
specific families of exponential polynomials. We prove a factorization theorem that links the reproduction properties of a
given basis function and its support. The theorem shows that any compact-support basis function that reproduces that sub-
space can be expressed as the convolution of an exponential B-spline and a compact-support distribution. As a corollary of
this result, we obtain a full characterization of the minimal-support basis functions with the required reproduction proper-
ties; these basis functions were first identified by Ron using a different approach (Ron, 1990). This explicit characterization
gives us the opportunity to identify interesting candidates within the family, and to construct nonstationary subdivision
schemes that share the same reproduction properties.

The paper is organized as follows: In Section 2, we state the general parametric curve model through an expansion with
compact-support basis functions, and discuss the requirements these bases should fulfill. In Section 3, we construct a family
of basis functions that reproduce exponential polynomials and prove that these bases have minimal support. In Section 4,
we exhibit the multiresolution properties of our basis functions and propose a subdivision scheme that shares the same
reproduction properties within the family. Finally, we illustrate the versatility of our model in Section 5 by identifying a
basis from the family that contains ellipses and higher-order harmonics within its span.

2. Parametric curves
2.1. Generic curves

A curve r(t) on the plane can be described by a pair of Cartesian coordinate functions x;(t) and x;(t), where t € R is
a continuous parameter. We choose to parameterize the one-dimensional functions x; and x, by linear combinations of
suitable basis functions. Among all possible bases, we focus on those derived from a compactly supported generator and
its integer shifts {¢ (- — k)}kez. This allows us to take advantage of fast and stable interpolation algorithms (Boehm, 1988;
Costantini, 1988; Unser, 2000). The parametric representation of the curve is then given by the vectorial equation

o0

=Y qm¢(%—k>, (1)

k=—o00

where {c[k]}kez is a sequence of control points and T a sampling step.

We want our parametric curve to be defined in terms of the coefficients in such a way that unicity of representation
is satisfied. Furthermore, for computational purposes, we ask the interpolation procedure to be numerically stable. A gen-
erating function ¢ is said to satisfy the Riesz-basis condition if and only if there exist two constants 0 < A < B < 0o such
that

00 2

> clklp(- —k)

k=—o00

Alleli?,z) < < Bllelf, z)- )

Ly (R)

for all c € £2(Z). A direct consequence of the lower inequality is that the condition Z,fifoo c[k]<p(% —k)y=0forall teR
implies that c[k] = 0 for all k € Z. Moreover, c[k] =0 for all k € Z trivially implies that Z,fifoo c[k]go(% —k) =0 for all
t € R. Therefore, the basis functions are linearly independent and every function is uniquely specified by its coefficients.
Moreover, the upper inequality ensures the stability of the interpolation process (Unser, 2000; Aldroubi and Unser, 1994).
Condition (2) can be expressed (Aldroubi and Unser, 1994) in the Fourier domain, where the following equivalent form must
hold for every w € R:

o
« 2
A< Z |@(w +2mn)|” < B.
n=—oo
The curve model in (1) has been shown to be very versatile since it can approximate any curve when the sampling step
T decreases while keeping the same basis function ¢. The minimum requirement for this to happen is that ¢ should be
able to reproduce constants, which we formalize by
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> et-k=1 (3)
k=—o00

In the literature of approximation theory, this constraint is often named the partition-of-unity condition (de Boor and DeVore,
1985).

2.2. Closed curves

We are especially interested in the case when r is closed. In this context, the two coordinate functions are periodic, with
same period. We normalize it to unity so that r(t) =r(t+1) for all t € R, and divide it into M segments, which is equivalent
to choosing the sampling step T = % Under these conditions, we can reduce the infinite summation in (1) to a finite one
with M terms involving periodized basis functions. We write

(o) co M-1 M-1 00
rt)= Y cklpMt—ky= Y > cMn+klp(Mt—n)—k)= " clkl Y  @(Mt—n)—k), (4)
k=—o00 n=-—00 k=0 k=0 n=—oo

Pper (Mt—k)

where M is the number of control points, the sequence {c[k]}xez is M-periodic, and ¢per is the M-periodization of the basis
function ¢. In the periodic setting, it has also been shown that this parametric curve model is very versatile (Jacob et al.,
2002), and we can approximate any closed curve as accurately as we want by increasing the number of knots M. Under
some mild refinability conditions, it has been shown that this model naturally leads to a stationary subdivision scheme
(Micchelli and Prautzsch, 1989).

2.3. Desirable properties of bases in the periodic settings

We now enumerate the conditions that our parametric closed curve model should satisfy, and introduce the correspond-
ing mathematical formalism.

1. Unique and stable representation. We want our closed parametric curve to be defined in terms of the coefficients in such
a way that unicity of representation is satisfied, and we want the interpolation procedure to be numerically stable.
A generating function ¢ is said to satisfy the periodic Riesz-basis condition if and only if there exist two constants

0 < A < B < 00 such that
M-1 2

> clklgper (M - —k)

k=0

2
< Bllell, qo..m-11) )
L2([0.1])

holds true for all M-periodic and bounded sequences c. The interpretation of this condition is in all points similar to
the non-periodic case. We also note that (5) is automatically satisfied if @per is defined as in (4), and (2) holds true
for ¢.

2. Affine invariance. Since we are interested in representing shapes irrespective of their position and orientation, we would
like our model to be invariant to affine transformations, which we formalize as

2
AHCHEZ([O.,.M—]]) <

M-1
Ar(t) + b= " (Ac[k] + b)@per (Mt — k), (6)
k=0

where A is a (2 x 2) matrix and b is a two-dimensional vector. From (6), it is easy to show that the affine invariance is
satisfied if and only if

M-1

> pper(M-—k)=1. (7)
k=0

This last equality is a direct implication of the partition-of-unity condition (3).
2.4. Approximation and reproduction properties in periodic settings

The parametric closed-curve model (4) can be used to approximate any closed curve s as accurately as desired by
increasing the number of knots M. Formally, we write that

lim |Is — Pusl, 0,11 =0,
M—o0
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where Pys denotes a projection of s onto {¢(M - —k)}rez, or, equivalently, onto {@per(M - —Kk)}k=[0...M—1], Since both allow
for alternative representations of the same space. In order to be able to select a suitable basis function, it is important to
know the rate at which the error decreases as a function of M. The open-curve case reduces to the well-known Strang-and-
Fix framework in approximation theory (Blu and Unser, 1999; Strang and Fix, 1971), the results of which are transposable
to the closed-curve case as well (Jacob et al., 2002).

In addition to desirable approximation properties, our main interest lies in the situation where the curve r can reproduce
desirable shapes exactly. For this purpose, we select for each M > My a specific basis function capable of reproducing the
shapes of interest with M vector coefficients, and denote it ¢y. Its M-periodization is written as @y per. Using a different
basis function ¢y for each value of M obviously leads to a subdivision scheme that is nonstationary. The existence of such
a scheme depends on some refinability conditions over ¢y. In particular, the conditions of Section 2.3 have to hold for each
¢um individually.

When the scheme is nonstationary, the approximation error of a curve s is ||s — PusSliz, (0,17, where now Pys denotes
the projection of s onto {¢m(N - —k)}kez, with N = M. Inspired by Dyn and Levin (1995), which discuss asymptotically
equivalent binary subdivision schemes, we show in Section 5.1.5 that the rate of decay of the approximation error as a
function of N = M is equivalent to that of the stationary case.

3. Reproduction of exponential polynomials

The main aim of this section is to introduce a family of functions that reproduce exponential polynomials, and prove
that these functions have minimal support. To achieve this goal, we start by formalizing the concept of the reproduction
of exponential polynomials. Next, we define the exponential B-splines and list their relevant properties. This allows us to
give a full parameterization of the family of functions of interest: they happen to be combinations of exponential B-splines
and their derivatives. Note that, in this section, we consider spline functions on a cardinal grid on the real line. The case
of periodic spline functions corresponding to closed curves follows directly from this theory by the argument given in
Section 2.3, but the theory we develop here is more general and can also be used to design basis functions that reproduce
non-periodic functions, for instance, open curves.

3.1. Preliminary definitions

A function Pg of the variable t € R is called an exponential polynomial of degree N and exponent o € C when it takes
the form

N
Py (t) = (a[m + Za[n]t">, (8)

n=1

where {a[n]}nepo...N7 i a sequence of (N + 1) complex coefficients with a[N] # 0. A finite linear combination of exponential
polynomials takes the form

M
> plmipym. 9)
m=1

A generating function ¢ is said to reproduce a function f if and only if there exists a sequence {c[k]}xcz such that

o0

fy=">_ clklp@t—k

k=—o00

holds almost everywhere.
3.2. Reproduction conditions

A fundamental result in approximation theory is that there is an equivalence between the ability of a generating function
to reproduce polynomials of a certain degree and the order of decay of the approximation error as the step size goes to
zero (Unser and Blu, 2003). Strang and Fix (1971) showed that a generating function ¢ € L,(R) has an approximation error
that decays with order N if and only if

o0

/w(t)dt;éo

—00

and there exists a finite constant C, € C such that
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> t—kpt—k) =Cy

k=—o00

holds for almost every t € R, and for n € [0...N — 1]. Moreover, the generating function reproduces polynomials up to
degree (N —1).

An extension of the Strang-and-Fix conditions was presented by Vonesch et al. (2007) in the context of the reproduction
of exponential polynomials. Here, we provide a reformulation suited to our needs.

Proposition 1. A compact-support generating function ¢ € L,(R) reproduces exponential polynomials of degree up to (N — 1) and
exponent « if and only if

o0

/ e o(t)dt £0 (10)

—00

and there exists a finite constant C,, € C such that

Dt —k"e e —k) =Cy (11)

k=—00

holds for almost every t e R, and forn € [0...N — 1].

This proposition is a direct consequence of the generalized Strang-and-Fix conditions from Vonesch et al. (2007) and the
fact that ¢ is compactly supported.

Another way of approaching the problem is offered in Unser and Blu (2005) where the authors show that the repro-
duction properties of generating functions are preserved through convolution. We summarize here their proposition for
completeness.

Proposition 2. (See Unser and Blu, 2005.) Given a generating function ¢, that reproduces exponential polynomials of exponent o
and degree up to N, then, for any  such that f_oooo e~y (t)dt # 0, the composite function (¢ * ) also reproduces exponential
polynomials of exponent « and degree up to N.

Their formulation also requires two mild technical conditions over v and (¢q * ¥) to ensure that moments are well-
defined.

Proposition 2 provides a constructive procedure to build generating functions using simpler functions with known repro-
duction properties. In the next section, we present the exponential B-splines, which will provide us with the appropriate
building blocks to reproduce exponential polynomials.

3.3. Exponential B-splines

Exponential B-splines are the exponential counterpart of the well-known polynomial B-splines (Unser and Blu, 2005;
Spdth, 1969; de Boor and Ron, 1992). As their name suggests, they have the property of reproducing exponential polynomi-
als, polynomials being recovered as a particular case by setting &« =0 in (8). An exponential B-spline of order N and poles
o = (a1,...,ay) is defined in the Fourier domain as

N 1 e—(o—am)

Ba)=]] —— (12)

jow— o
me1 ] m

Note that the exponential B-splines are entirely specified by the collection ¢¢; the ordering of the poles oy, is irrelevant. We
illustrate in Fig. 1 several exponential B-splines, where we see that a wide range of behaviors can be obtained by varying N
and o.

The most relevant properties of exponential B-splines for our purposes are

e The exponential B-splines are always well-defined (i.e., bounded and compactly supported), and form a Riesz basis if
and only if (om; — am,) ¢ 2mjZ for all pairs such that mq # mj.

o Exponential B-splines of order N are compactly supported within the interval [0, N].

e The convolution of two exponential B-splines yields another B-spline of augmented order

Ba; * Bay = Baiua,

where (orq U ay) is the concatenation of the elements of a1 and 5.
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(a) (b) (c)

Fig. 1. Examples of exponential B-splines. (a) First-order exponential B-splines with « € {(—2), (—1), (7%), (0), (%)}. (b) Second-order exponential B-splines
Biaay With & € {(=2,-2), (=1, —1), (= . —1).(0,0), (3, D)}. (c) Nth order exponential B-splines Ba....a) With @ =—} and Ne[1...5].

e The exponential B-splines of first order with parameter (o) reproduce the exponential function with exponent «

[e.¢]
=" e Byt —k).
k=—00

e An exponential B-spline reproduces exponential polynomials of degree up to (Ny;, — 1) and exponent o, if and only if
o, appears exactly N, times in « and, for all other distinct op,, we have that (om, — am,) ¢ 2WZ.

The three last properties provide us with a constructive procedure for building generating functions capable of repro-
ducing exponential polynomials of a given degree and exponent. By construction, the support of the resulting generating
functions corresponds to the order of the exponential B-spline. We refer to Unser and Blu (2005) for additional aspects of
exponential B-splines.

3.4. Distributional decomposition

Our first goal is to characterize the functions that reproduce exponential polynomials. To that end, we are able to prove
a converse version of Proposition 2; we prove that any compact-support function with the required reproduction properties
must contain an exponential B-spline convolution factor with the same reproduction properties.

Theorem 1. Let ¢ be supported within [a, b] and let it reproduce finite linear combinations of exponential polynomials (9) such that
(Om, — otmy) & 2MZ for mq # my. That is, ¢ satisfies (10) and (11) for each pair (N, o). Then, a distribution r exists such that

©=Pax¥, (13)

where  satisfies (10) for all a, each oy, appears Ny, times in o, and v is compactly supported within [a, b — N] with N = Z%’:l Nm.

Proof. We proceed by induction over the order Ny, of each o, to show that we can factor out Np,, times an exponential
B-spline of first order for each o, from the generating function ¢. The process can be repeated for each exponent until the
remaining kernel cannot reproduce any exponential polynomial anymore. Then, it is enough to show that, for a given om,,
there exists a distribution v such that

© = Blam,) * Vs (14)

where i satisfies the following properties:

1. it is compactly supported within [a, b — 1];
2. it reproduces exponential polynomials of degree up to (Np, — 2) and exponent o, ;
3. it reproduces exponential polynomials of degree up to (N, — 1) and exponent oy, for all mq # my.

Since the definition of ¢ provided in (14) is implicit, we need to verify that this distributional kernel exists and is
well-defined. We show this constructively. For a given mp < M, we define the function

Y(6) =Y e*mX(D — am, Dt — k), (15)

k=0

where D is the derivative operator in the sense of distributions, and I is the identity. The infinite sum in (15) is well-defined
since, for every t, the sum has only a finite number of elements because ¢ has compact support. From (15), we write that
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Y () — ey (t — 1) = (D — atm, D (0). (16)
Taking the Fourier transform of (16) leads to the factorization

. 1— e*(jw*amz) R R R
w)=——"—"—Y(w)= w)Y(w
0@ = — 2 (@) = Py @)V (@)
which corresponds to the implicit definition of v given in (14).
To prove the first point, we recall that ¢ reproduces exponential polynomials of degree up to N,,, —1 > 0 and exponent
Om,. Thus, by setting n=0 in (11) and applying the differential operator (D — o, 1), we have that

o0
> e (D — am, Do (t —k) =0,
k=—o00
in the distributional sense. Thanks to this last equality and using the explicit formula of i given in (15), we can also write
that
-1
Yty == > e (D —am, et —k).
k=—00
According to this last expression, the support of ¢ is contained within (—oo, b — 1]. But, according to definition (15), we
also have that the support of ¢ is contained within [a, +00). Hence, we conclude that the support of ¢ is contained within
[a,b—1].
We deal with a modified version of (11) to prove the second point. By linearity, and since ¢ reproduces exponential
polynomials of degree up to Ny, — 1> 0 and exponent oy,,, we can write that

o0

> Pt —ke o —k) = Cp, (17)
k=—o00
where P is any polynomial of degree no greater than (N, —1), and Cp is a constant that only depends on the polynomial P
and not on t. Then, the application of (D — am,[) to (17) leads to

o0 o0

0= Y Pt—ke 0 D—amhpt—k+ > Pt—ke ™ Por—k),
—_—

k=—o00 k=—o00

¥ (t—k)—e"™2 y (t—k—1)

Cp

where we have used (16) to rewrite the first term, and where the second term is equal to the constant C; since Pisa
polynomial of degree no greater than (N, — 2). Since v has a compact support, we can rearrange the terms as

> Qi —ke  m Oy —k) = —Cp, (18)

k=—00

where Q (t) = P(t) — P(t+1). Since P is a polynomial of degree no greater than (N, — 1), it follows that Q is a polynomial
of degree no greater than (N, —2). This also means that, for all polynomials Q of degree no greater than (Np, — 2), there
exists a constant Cq such that Y 22 Q(t —k)e (t’k)w(t —k) =Cq. In particular, if P(t) =t, then Q (t) = —1. Because
P is a polynomial of degree lesser than that of P, it also satisfies (17). Then, we can substitute P by P =1 in (17), which
we combine with (18) and Q = —1 to obtain the system

[e.¢]
> e m g — ) =y,
k=—00

oo
= > et mE Py e~y =—Cp,

k=—o00

which leads to

[e.¢] [0.¢]
Z e*()tm2 (ffk)l/,(t _ k) — Z e*amz (t*k)(p(t _ k)'

k=—o00 k=—00

Integrating the last expression of t over the interval [0, 1], and rearranging the terms, yields
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o o
/e‘“msz(t)dr= / e %mlop(t)dt.
—00 —00

Thus, since ¢ satisfies (10), so does . Therefore, ¥ reproduces exponential polynomials of degree up to (N, — 2) and
exponent om,.

Finally, to prove the third point, we proceed in the same manner. We recall that, for m; 7 my, the function ¢ reproduces
exponential polynomials of degree up to Nyy, —1 > 0 and exponent o, . Thus, if we use (17) with parameter oy, and apply
the differential operator (D — o, [), then we obtain

@] o0
(@, —amy)Cp= Y Pt—ke ™R D —ap, Dot —k + > Pt—ke ™o —k),
—

(= T P S

!
G

where we have used again (16) to rewrite the first term, and where the second term is equal to the constant C;-, since P is
a polynomial of degree no greater than (Ny;, — 2). Since 1 has compact support, we can rearrange the terms to obtain

> Qe —ke @ Ryt — k) = (am, — amy)Cp — Ch. (19)

k=—o00

where Q (t) = P(t) —e“m2~%m P(t 4 1). Since P is a polynomial of degree no greater than (Np, — 1), and since e“m2~%m =£1,
then Q is a polynomial of degree (N, — 1), too. This also means that, for all polynomials Q of degree no greater than
(Nj — 1), there exists a constant Cq such that Y 2 Q(t—k)e™%m “_k)W(t —k) =Cq. In addition, we see that, if P(t) =1,
then Q (t) =1 —e%m~%m and C;s = 0. Now, by setting P(t) =1 in (17) and Q (t) =1 —e%m2~%m jn (19), we have the system

o

> e m gt — k) =Cp,
k=—o00

o

Y (1 —etmaem)e=m 0y (£ — k) = (m, — tm,)Cp,
k=—o00

which leads to

00 00
Z e—m (t_k)lﬂ(t k)= 1 Am; — Om, Z e—am; (t"‘)go(t —k).

_ a—(am, —am,)
k=—o00 € e k=—00
Integrating the last expression of t over the interval [0, 1], and rearranging the terms, yields

o0 oo
/ e—"‘ml%lf(t)clt=1 Gmy — Smy / e mlp(t) dt.

— e_(am] —Otmz)
—00 —00

Thus, since ¢ satisfies (10) for om,, so does  for oy, . Therefore, i reproduces exponential polynomials of degree up to
(Nm; — 1) and exponent op,. O

3.5. Minimal-support generating functions

As a direct consequence of Theorem 1, we show that appropriate combinations of exponential B-splines define the whole
family of functions of minimal support that reproduce exponential polynomials. This family was first identified in Ron (1990)
by independent means.

Theorem 2. The size of the smallest-support kernel ¢ € L,(R) that reproduces exponential polynomials of degree up to (Ny, — 1) and
parameter oy forme {1... M} is

M
N=) Nm (20)
m=1

provided that (atm, — om,) ¢ 277 for my # my. Moreover, every minimal-support function ¢ can be written as
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N-1 n

d
9O =D oy balt—a), (21)
n=0

where a is an arbitrary shift parameter that determines the lower extremity of the support of ¢. Moreover, each o, appears exactly
Np, times within the collection o and the collection of A, satisfies ,11\]:_01 Anofy #0.

Proof. By Theorem 1, we can write

©=PBa*V,

where 1 is a distribution with support [a, b — N] that satisfies (10) for all «,. Finally, each oy, appears Ny, times within
the collection e. Conversely, if we take a distribution  that satisfies (10) for all o, and is supported within [a, b’], then
¢ = By * ¥ is supported within [a, b’ 4+ N] and reproduces exponential polynomials of degree up to (Ny, — 1) and parameter
oy for m € [1...M]. Now, minimizing the support of ¢ means finding the smallest b such that i exists. Of course, this
is possible only if b’ =b — N > a, which yields ¢ as a single-point distribution. This shows that the minimum size of the
support of ¢ is b —a = N.

We know from distribution theory that the only distributions that have a support of zero-measure are finite linear
combinations of the Dirac distribution and of its derivatives (Schwarz, 1966, Th. XXXV). Thus, if ¢ has minimal support,
then there exist constants A, such that

0) :Z)mé(”)(t—a). (22)

n=0

This means that
o0 dn
p(t) = ;Oxn@ﬁa(t —a).

Since we restrict ourselves to Ly (R), the summation has to run from 0 to (N — 1).
Finally, since y satisfies (10) for all oy, we have that

o0
0 # / e Ombyr(t) dt by hypothesis
—00

oo

N-1
= /e’“thAHS(”)(t)dt by (22)

—0 n=0

oo

N-1
= an / e"mlts™ ¢)ydt by linearity
n=0

—0o0

N-1
=Y a8 (), e7m) by definition
n=0

N—1
= 3 b
n=0
which proves the last result. O

3.6. Interpolator
It is also possible to constrain ¢ to be an interpolator. That is,

VkeZ: @)=k = S[k].

Due to the size of the support of ¢, the interpolation condition can add up to N constraints, depending on the value of a.
This number of constraints matches the N degrees of freedom that result from the choice of A, in (21). A general study of
the appropriate choice of A, to satisfy the interpolation condition lies out of the scope of this paper. However, we propose
a case-by-case approach that will be exemplified in Section 5.
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4. Multiresolution and subdivision

We have characterized the complete family of functions with minimal support that reproduce exponential polynomials in
order to build parametric curves. In this section, we emphasize the connection with the subdivision world using the classical
multiresolution properties of exponential B-splines. Moreover, we also specify another type of multiresolution scheme in
terms of reproduction capabilities. In this section we focus on our case of interest: closed curves.

4.1. Classical multiresolution of exponential B-splines

An important observation concerning the family of minimal-support basis functions in (21) is that it is constructed
with exponential B-splines and their derivatives of equal parameter «. Thanks to this property and under appropriate
circumstances, the basis functions in (21) inherit the multiresolution properties of the exponential B-splines. It has been
shown in Unser and Blu (2005), de Boor et al. (1993) that an exponential B-spline and its derivatives with parameter

o = (a1, ...,ay) satisfy the nonstationary set of dilation relations
t o0
B (5) = Y helkiBg(t—h),
k=—00

d [t > d
Eﬂa(i) = Zkgooh%[k]&ﬂ%(t —k),

i

t > d"
_9n 2 Bel(t—
@ﬂa(z) =2" ) helkl o hy(t—k), (23)
k=—00
where n < (N —1), % = ("‘71, e, ”‘7"’) is the collection of roots divided by 2, and h% is the mask whose symbol is given by

N
1 om __
H%(z):ﬂﬁﬂ(“re £277).

4.2. Subdivision scheme

We have now all the ingredients in hand to define a multiresolution hierarchy of spaces of closed curves. We define the
spline space at resolution M as
M-1
Ve ={r) =Y culklom. per(Mt — k) t,
k=0

where M is the number of control points of the curve, and ¢y per is the M-periodization of (21) with defining parameter
%. Note that the set of parameters {An}n—o..n—1, Which are used to define @p per through (21) and (4), depend on M. In
order to find the equivalent scaling expression for our generating function ¢y, we proceed in the Fourier domain where the
explicit expression of ¢y in terms of exponential B-splines is

Pu(w) = Ay (o) B (@)e . (24)

There, the Fourier-domain function Apy (jow) = Ao[M] + Zf;’z’]l An[M](w)" is a polynomial in (jw) of degree no greater than
(N —1). To derive the scaling relation, we take (pM(%) and o (t) to the Fourier domain. We have that

20mQ20)  24u([20)p g (2w)e 2

A - . I 1 (25)
Pam () Aam(jo)B 2 (w)e—ivd
By identifying the Fourier symbol H £ (el of the scaling relation, we can rewrite (25) as
20w An(2w . :
(f)M( ) _ m( : )HL (e]a))efjwa_ (26)
om(w)  Aam(jo) M
Using this result, it is straightforward to verify that Vg m C Vg 2m, provided that a in (21) is an integer and ’/“’;%2; is a

2n-periodic function. If a is noninteger, a similar multiresolution embedding space scheme can be achieved by shifting the
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grid at each refinement level. In any case, the particular choice of the set of parameters {A;}n—o..Nn—1 Will determine if the
basis function is refinable and, therefore, if the multiresolution spaces are nested or not. We analyze in Section 5.1.3 how
(26) applies to the various bases proposed in this paper. In addition, we illustrate in Section 5.1.4 a constructive procedure
to determine a nontrivial set of {A,}n—0..n—1 that satisfies (26) and generates refinable schemes.

In the case where the spaces are nested, the subdivision process for finding the sequence of coefficients cy); starting
with the sequence cy; is then carried out in the following two steps:

1. upsampling of the original sequence c) with a factor of 2;
2. filtering of the upsampled sequence with a smoothing filter h% using periodic boundary conditions.

The filter fla will depend on the particular choice of the parameters {A,}n—0..n—1, and its construction will be exemplified
in Section 5 for the case of centered basis functions. The sequence czy of 2M coefficients represents exactly the same
parametric curve as the original sequence ¢y of M coefficients. This process can be repeated indefinitely to obtain finer
representations of the curve in a dyadic fashion.

4.3. Multiresolution-reproduction capabilities

An alternative multiresolution scheme emerges as we concatenate new elements to o« for fixed M. Since the reproduction
of exponential polynomials is fully determined by a, the incorporation of additional elements does not perturb the repro-
duction capabilities. This multiresolution scheme in the reproduction properties will be exemplified in the case of multiple
harmonics in Section 5.2.

5. Applications

In this section, we make use of Theorem 2 to build basis functions with minimal support capable of reproducing sinu-
soids. We start with single-frequency sinusoids that lead to ellipses, and then we derive the basis functions for generating
higher-order harmonics.

5.1. Reproduction of ellipses

Circles and ellipses deserve a special attention since these simple shapes appear frequently in images in many fields,
for example computer graphics and biomedical engineering. Since all ellipses can be obtained by applying an affine trans-
formation to the unit circle, we focus on the reproduction of this simple shape. This allows us to take advantage of the
requirement for affine invariance that we stated in Section 2.3.

A parametric curve defined by M vectorial coefficients and by an M-dependent generating function ¢y is said to repro-
duce the unit circle if there exist two M-periodic sequences {cc[k]}kez and {cs[k]}kez such that

M-1
cos2nt) = ) cclklom per(Mt — k), (27)
k=0
M-1
sin@nt) = Y cs[klom.per(Mt — k). (28)
k=0
We illustrate in Fig. 2 the reproduction of sinusoids of unit period for each component. Note that, when (27) and (28) hold,

it is possible to represent any sinusoid of unit period for an arbitrary initial phase using linear combinations of the two
sequences of coefficients.

5.1.1. Minimal-support basis for sinusoids with maximum smoothness

We now particularize Theorem 2 for the case of sinusoids keeping the maximum degree of smoothness for ¢p. This
particular case is of special interest to us. We were able to take advantage of it to build an efficient active contour capable
of reproducing ellipses (Delgado-Gonzalo et al., 2011).

Corollary 1. The centered generating function with minimal support and maximal smoothness that satisfies all conditions in Section 2.3
and that reproduces sinusoids of unit period with M coefficients is

3

3
%@=ZFW%MWQ+;¢) (29)

k=0

where
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Fig. 2. Parametric representation of the unit circle (a) and its coordinate functions (b) with exponential B-splines and M = 10. The dashed lines in (b)
indicate the corresponding basis functions.

sinz(%t)

2T
sIn” w7

’

1
sm(t) = ngn(t)

s, =1 1—1—2c0527t 1+2c052n 1
M — ’ M s M 5 .
Proof. Using (21), we see that go,sw needs to be constructed from combinations of exponential B-splines with parameters
o= (O,jzm”, —jzmn), which leaves N = 3. Therefore, we have

2
dn
on = rglﬁ[M]d?ﬂa(t —a). (30)

This ensures that (p,f,, is the shortest generating function that reproduces constants and all sinusoids of unit period with
M coefficients. The constant-reproduction property is a direct consequence of using o1 = 0, and the sinusoid-reproduction
property comes from applying Euler’s identity to oy = jzmn and a3 = —jzm”.

In order to maximize the smoothness of the resulting generating function, the coefficients A? [M] and Ag[M] in (30) must

vanish. Since (p,?,, reproduces constants, A(S)[M] can be determined by imposing the partition-of-unity condition. From (7), we
have that

2
AgIM] = (sincl) )
M

An exponential B-spline parameterized by o generates a Riesz basis if and only if (o, — am,) ¢ 2mjZ for all purely
imaginary pairs such that m; # my. In our case, it is important to realize that this condition is satisfied if and only if
M > Mo = 3. In other words, at least three control points are needed to define our parametric curve.

Finally, a closed form for go,sv, is obtained by computing the inverse Fourier transform of

_ei®  _ (0=t | _ e—(o+HiD)

R 30 1
Py (@) =25 M F —— -
Jw Jo —j51 Jo+]37

where we have set a = —% in order to ensure that the basis function is centered. O

We show in Fig. 3 some members of this family of functions for several values of M. We observe that they are continu-
ous, with finite support of length W = 3, and tend to be bump-like. Moreover, when M — oo, they converge to the quadratic
B-spline. By a Maclaurin series expansion, we have that limp— o gm(£) = %sgn(t)tz. Then, limy_ cﬁ/, =1, 3,3, 1] imme-
diately implies that limp;— o (p,%,, = B2. This is because a polynomial B-spline of degree n can be written as
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Fig. 3. Plot of a quadratic B-spline 82 and of the generating functions in (29) for M = 3, 4, 5, and 6. The function with the lowest peak at t =0 corresponds
to M =3, and, as M increases, the central peak increases as well.

n+1
N ok n+1\ , n+1_
ﬁm_k;o( 1)( . >g (r+ ! k),

where ¢"(t) = ﬁsgn(t)t". Note that the convergence of gz),sw to B2 is point-wise. A piecewise expression of (p,%,, can be
obtained by expanding (29) into

2m|t| 2n

T
; COS = COS 37 — COS 47, O<|t|<2,
S . m(3/2—|t
0 = ——— 1 (sin T2, J<i <3,
1—cosm 3
) 5 <t

5.1.2. Minimal-support interpolating basis for sinusoids
As was suggested in Section 3.6, the generating function ¢y can be tailored to satisfy the interpolating condition. We
investigate now how this applies to the reproduction of ellipses and other trigonometry-related curves.

Corollary 2. The centered interpolating generating function with minimal support that satisfies all conditions in Section 2.3 and that
reproduces sinusoids of unit period with M coefficients is

3 2
3 1 3
(p,'v,(t) = E (—1)kc,SV,[k] sec%(gm (t+ 3~ k) — E(sec %) sgn(t + 5 —k)). (31)

k=0

Proof. Following the same approach as when constructing (p,sw, we see that go}w needs to be constructed from combinations
of exponential B-splines with parameters o = (0, jzm”, —'Zm"). Therefore, we have that

2
dn
I _ I .
GO = M fu(t — ). (32)
n=0
In order to fulfill the interpolating condition, A})[M], All[M], and A'Z[M] in (30) must satisfy a linear system of equations.
If we set a = —% in order to ensure that the basis function is centered, we end up with
AlMI=1,
A[M]=0,

2
A M = (M> (1 — sec E).
2n M

In this case, the interpolating (p,lw is a Riesz basis if and only if M > 3, a condition that we already encountered in the case
of Corollary 1. Finally, a closed form for <p,'\,, is obtained by applying an inverse Fourier transform to
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Fig. 4. Plot of the third-order I-MOMS (8% — %ﬁ) and of the generating functions in (32) for M =3, 4, 5, and 6. Among the different (pllw, the function with
the least pronounced discontinuity at t = i% corresponds to M =3, and, as M increases, the jump of the discontinuity increases as well. For M =3, w},, is

continuous at t = %1, but discontinuous at t = +3.

R 30 1— eI 1 — e~(0=iff) | — e=(o+iFD)
Ph(w) = A [M1el 2

jo  jo-j% jo+j3F

_ e 1 _ e—(0-iFD) | _ o= lw+iFF

I RERES
+)“2[M](Jw) ej 2 . . o . L2
Jw Jo —J37 Jo+]57

We show in Fig. 4 some members of this family of functions for several values of M. We observe that they share a finite
support of length W = 3. As we increase M, ‘/’;\/1 converges to A2 — %ﬂz. which is the third-order I-MOMS described in Blu

et al. (2001). A piecewise expression of (p}w can be obtained by expanding (31) into

2nt 2n

cos 21 _cos 21
— o<t < 3,
1—cos 57
4cos? L +4cos &+1 It] = 1
8cos 7 (cos gz +1) -2
I _
@y () = { cos & —cos B2 <t <3
2(1—cos 2&)cos & ° 3slt<3,
M M
soTezTy: =3
8cos - (cos & +1)° 2
3

5.1.3. Refinability of the proposed bases

As discussed in Section 4.2, not all members of the family of functions given by Theorem 2 are refinable. Here, we show
the multiresolution properties of the proposed basis functions that reproduce sinusoids.

When imposing maximal smoothness, it is straightforward to verify that the basis function go,sw is refinable since it is
proportional to a refinable exponential B-spline. To build the associated refinement mask, we have to take into account that
a is a half integer. Therefore, there is a half-integer shift in the parameterization every time we apply the refinement. That
means that a curve ry; built with M coefficients and the same curve expressed with 2M coefficients satisfy

> 3 > 3 1
tn () =A3IM] Y emlk]Be (Mt —k+ 5) =x2M] Y camlk]Ba <2Mt —k+5 - 5).

k=—o00 k=—o00

The dependency between the two sequences of coefficients can be stated as

AIM] & sinc,L:\?
CZM[k]:mlgcml]h%[k—}d—zn:(Si %> ((em)p2 % he )k +21,

where (cp)42 is the ¢y sequence upsampled by a factor of 2. It is interesting to note that the filter h% is equal to the

sequence cﬁ/, in the expression of @,f,, in (29). We identify the refinement filter I;nz,z described in Section 4.2 as a shifted and
scaled version of the refinement filter h% of the exponential B-spline By.
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When imposing the interpolation property, it can be shown that, for the particular choice A{)[M], A'l[M], and AIZ[M] leads
Am({20)
A (jo)
Meanwhile, (p,'v, is unique due to the restrictions introduced by the interpolatory condition, and there is no remaining degree
of freedom to be used to increase the regularity or to improve the multiresolution properties of the basis function.

to a ratio that is not 2m-periodic. Thus, the multiresolution spaces are not nested, and no refinement mask exists.

5.14. Additional refinable bases

In this section, we illustrate a constructive procedure to design new refinable schemes. In particular, we focus on the
particular case where the ratio 32”1%3)) is constant. This can be achieved by imposing scaling conditions over the N’ roots
{Vn}n=1..n of the polynomial Ay (jw). Then, we have that

N/
AGw) = M1 ] [ (i — yalM1),
n=1

where N’ < N and where we have made explicit the dependence of the roots with respect to M. Note that there is a one-to-
one dependence between the elements of the set {An}n—o0..n—1 and the roots of the polynomial {y};—1. N/, Up to a scaling
factor. In particular, if we choose the roots such that

Vn[M]
2
for all n, then the quantity

AnG2o)  AnIMITTY, (20 — yaIM])

Yul2M] = (33)

= - by definition
Am(®)  anZMITTY, Go — yal2M])
= av IMI2N TTh; G — yalM1/2) factoring
I 2MITThC; G — yal2M])
v AvIM]
=2 Ay 2M by (33)

is independent of w and the resulting function ¢ is refinable. This particular multiresolution scheme where the roots of
Ap(jw) satisfy (33) is intimately related to the generalized exponential B-splines proposed in Khalidov and Unser (2006).
To build new refinable basis functions that reproduce sinusoids, we can choose the roots {VnR}n=1mN/ of Ap(jow) such
that ynR[ZM] = ynR[M]/Z. The number of roots N’ determines which is the maximum non-zero element in the sequence
{A,‘}}nzo_uz, and therefore the smoothness of the resulting basis function.
The particular choice of le[M] = —yzR[M] = % and a = —% defines a refinable, centered, and symmetric generating
function with minimal support that reproduces sinusoids of unit period with M coefficients. These roots determine the set

of parameters {AR},—0_2 up to a scaling constant as
_ )»5 [M]

ARIM] = e

AIM] =0,
ARIM] = A8 [Mm1.
Then, the resulting generating function is
2RM 3 .. 3
Op(6) = —=2—Bo | Mt —k+ = ) + A5 [M1 o | Mt —k + = ). (34)
M 2 2
We show in Fig. 5 some members of this family of functions for several values of M. We choose kg[M] such that the L,
norm of ga,‘\‘,, (t) is unitary. We observe that they share a finite support of length W = 3.
Our choice of {ynR}n:L“Nr is arbitrary and corresponds to one particular case where the resulting generating function is

symmetric and non-smooth. Other choices would lead to asymmetric functions and other degrees of smoothness.

5.1.5. Order of approximation

The notion of order of approximation is crucial in approximation theory since it governs the rate of decrease of the
approximation error as the sampling step vanishes. Specifically, in the periodic stationary case, the approximation order
is defined as the exponent L such that the difference between a function f and its projection Py f onto {¢o(M - —k)}kez,
or equivalently in {@per(M - —k)}k=[0..m—1], tends to zero. In direct analogy with the classical Strang-and-Fix theory of
approximation for the non-periodic case, it has been shown in Jacob et al. (2002) that the error for the periodic case can be
bounded by
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Fig. 5. Plot of the generating functions in (34) for M =3, 4, 5, and 6. Among the different w,“‘,,, the function with the most pronounced discontinuity at
t= :i:% corresponds to M = 3, and, as M increases, the jump of the discontinuity decreases.

Table 1
Summary of the properties of @3, and ¢},.
Py P
Parameters ASIM] = (sinc ;)2 MIMI=1
AS[MI=0 MIMlI=0
AS[M]=0 A‘Z[M]z(%)z(l—sec%)
Smoothness Discontinuous C'(R)
Order of approximation OM™3) OM™3)
Limit (M — 00) 82 B —1p?
Refinable Yes No

If —Pumf 017 < CoM~E fllnyqo.17)s

where Cy, is a constant that only depends on the particular choice of ¢. An analogous result for the nonstationary case can
be obtained using the concept of asymptotically equivalent subdivision schemes presented in Dyn and Levin (1995). We say
that ¢y and ¢ define equivalent multiresolution schemes of order y if and only if

1Pmf — Pum Sl o1 = O(M77Y), (35)

where Py f denotes the projection of f onto {gp(N - —k)}rez with N =M, and Puf denotes the projection of f onto
{@(M - —k)}rez. In our setting, if we set @(t) = limp_, oo @um(t) for all t € R, it is straightforward to see that

I f = PmFllaqoan < If = Puflligoan + 1Pmf — Pufllyqoay = O(M~™nEY)),

Therefore, if the ¢y and ¢ define multiresolution schemes of order high enough, the rate of decay of the error is the same
for the nonstationary and the stationary case.

By taking the limit M — co on w,%/, and q)}w, we can observe that such functions converge to the classical quadratic
B-spline A2 and to the third-order I-MOMS 8% — %[37 derived in Blu et al. (2001), respectively. Both generating functions
are known to have the same order of approximation L = 3. The main difference between them lies in the constant that
multiplies the M~3 factor. This factor is more favorable in the case of the quadratic B-spline than in the case of the third-
order I-MOMS. Thus, in general, the approximation offered by the quadratic B-spline is more accurate than the one offered
by the I-MOMS. This property carries over to (p,?,, and ‘lew when M — oo.

5.2. Reproduction of higher-order harmonics

We now present a constructive procedure to extend the ellipse-reproduction properties of our curves to higher-order
harmonics. This problem was already approached using Fourier descriptors (Zahn and Roskies, 1972). Since our basis func-
tions are capable of perfectly reproducing sinusoids, the classical family of Fourier descriptors becomes a special class of
our construction. It must be noted, though, that our bases have a finite support, a property which is lacking in Fourier
descriptors.

We say that a parametric curve defined by M vectorial coefficients and by a generating function ¢y reproduces higher-
order harmonics up to order L if there exist two M-periodic sequences {c; ¢[k]}kez and {c;s[kI}kez for every 1 <I< L such
that
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M-1
cos(2mlt) = Y~ ci [kl per (Mt — k), (36)
k=0
M-1
sin(2nlt) = Z c1,s[klom, per (Mt — k). (37)
k=0
Such a curve is able to reproduce all modes up to order L for each component. Like in the case of the sinusoids, it is
possible to represent any initial phase using linear combinations of the two sequences of coefficients in (36) and (37). We
recall that, using Euler’s identity and the multinomial theorem, related functions such as (cos(2n-))! and (sin(2m-))!, with
1< I <L, can also be expressed as linear combinations of elements from {cos(2xl-), sin(2ml-)}1<i<1. This ensures that the
functions (cos(2n-))! and (sin(2m-))! are expressible with the same basis functions @M OT QM per-

5.2.1. Minimal-support basis of maximum smoothness for higher-order harmonics
Corollary 3. The centered generating function with minimal support and maximal smoothness that satisfies all conditions in Section 2.3
and that reproduces higher-order harmonics up to order L with M coefficients is

2L+1
O () = 1o[M1Ba <t+ T+) (38)

where o contains only {0}, {j Zmnk}ke[]mL]: and {—j Zﬁ"k}ke[lu_”, and where Lo[M] is an appropriate normalizing constant.

Proof. The proof follows the same strategy as in Corollary 1. The choice of the collection o and the size of the support
N =2L + 1 is given by Theorem 2. The parameters A1[M],..., A [M] are set to zero to maximize the smoothness of (p,?,,,
and Ag[M] is fixed in such a way that <p,§,, satisfies the partition-of-unity condition, which yields

1
201 :
iy Bak+ 1)
We recall that exponential B-splines parameterized by e form a Riesz basis if and only if (om, — am,) ¢ 2wjZ for all pairs

such that m; # mjy. In our case, this condition is satisfied if M > 2L + 1. Finally, the shift parameter is set to a = —ZLT‘H to
ensure that the generating function is centered. O

Ao[M] =

It should be noted that the smoothest basis function corresponds to a normalized trigonometric spline, which was
defined as a piecewise trigonometric function by Schoenberg (1964).

5.2.2. Parametric expansion of higher-order harmonics
Here, we determine the sequence of M vector coefficients that reproduce the higher-order harmonics using the generat-
ing function go,sw given in (38). We start by recalling the exponential-reproducing property of the exponential B-splines

o

et = Z e“kﬂ(a) (t —k). (39)

k=—00

Setting « :jzwnl with 1 <I< L, we see that ﬁgm) reproduces the complex exponential ejzﬁmt. If we now convolve both
M
sides of (39) with 8 . .2u,, we get that
o\(57)

(Ba 2z, * diY 0= Y ok (B2, * By g2m)) (€ =),

k=—o00

ot =25 k)
where we have used the definition of <p,§,, from (38), along with the fact that the convolution operator commutes with
the shift operator. To simplify the left-hand side, we invoke an important property of linear shift-invariant (LSI) systems:
complex exponentials are eigenfunctions of LSI operators. By virtue of this property, if the complex exponential el is
presented at the input of a system specified by the impulse response h, then its output is given by fl(a)ej“f, where h
denotes the Fourier transform of h. If we consider ﬂa\(jzwm) as the impulse response of an LSI system, then

(ﬂ“\(j%) * elzﬁm)(t) = Ba\(j%)(a)ﬂw:zn,ejﬁ .

™M

Therefore, we have that
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(a) (b) (©) (@

Fig. 6. Lissajous curves.

(b) (c)

(a) (q)
Fig. 7. Hypotrochoid curves.

(a) (b) (c) (d)
Fig. 8. Epitrochoid curves.

(a) (b) (c) (d)

Fig. 9. Other curves: (a) Teardrop, (b) Deltoid, (c) Astroid, (d) Cardioid.

o0
- - om 1 2L+ 1
= Y ik S(r_—_k).
= o[M] o 2

k=—00 ﬂd\Uzwm)(w)lw:ZVm

By flipping the sign of o, we can easily obtain an analogous result for the reproduction of eIt Finally, by using both
results, we have that

o0
cos <2nl<t + 2 ;; ! )) = kgoo c [k]<.01%/1(Mt —k), (40)
o0
sin(2n1<t+ %)) = 3" calklgh (Mt~ k). (41)
k=—o00
where
el ik eIk
= o] < i "3 >
a\(j%)(wﬂw:% 'Ba\(szﬁ"’)(a))'w:f%

colk] =

~

2in[MINB . A '
J o[M] ﬁa\gzﬁ“z)(w”w:%ﬂ ﬂ‘x\(,'lzwﬁl)(a))lw:,%
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Table 2

Coefficients for the curves shown in Figs. 6, 7, 8, and 9.
Curve Cx; Cx,
Lissajous (a) Cis C2s
Lissajous (b) Cis Cas
Lissajous (c) C2s €35
Lissajous (d) 35 C4s
Hypotrochoid (a) 2c1,c+3c2c 21,5 —3C25
Hypotrochoid (b) C1c+C3.c C1,s —C3s
Hypotrochoid (c) Ci,ctC2c C1s —C2s
Hypotrochoid (d) 3c1,c +2c3,¢ 3c1,5 — 235
Epitrochoid (a) 2c1,c —3C2c 21,5 —3C25
Epitrochoid (b) Cl,c—C3,c C1s—C3s
Epitrochoid (c) 2C1,c — Cac 21,5 — C4s
Epitrochoid (d) 4cqc —5C4c 4cys —5Cas
Teardrop 4cq ¢ 2015 —C2s
Deltoid 2c1c+Coc 2015 —C25
Astroid 3C1,c+C3,c 3c1s — €35
Cardioid 2C1,c — C2.c 2c15 —C2s

Note that the sequences c1 and ¢, can be considered M-periodic and that the summations in (40) and (41) can be reduced
to finite ones if we make use of the periodized basis functions given in (4). We have expressed in (40) and (41) how to
compute the vector coefficients for reproducing sinusoids and initial phase. The appropriate linear combination of ¢; and c;
allows one to change arbitrarily the initial phase.

In order to illustrate the reproduction capabilities of the proposed model, we designed a basis function capable of
reproducing some classical harmonic curves (Von Seggern, 1993). In particular, we tailored (p,?,, in(38)with L=4and M =9,
which lead to & = (0,j2F, —j2F, ... j8F, —j8T). We show some members of the Lissajous, Hypotrochoid, and Epitrochoid
families in Figs. 6, 7, and 8, respectively. More singular examples like the Teardrop, the Deltoid, the Astroid, and the Cardioid
are shown in Fig. 9. The coefficients for each coordinate function can be found in Table 2.

6. Conclusions

We have proposed a new family of basis functions that we use to represent planar curves. We were able to single out
the basis of shortest support that allows one to reproduce exponential polynomials. Under the appropriate circumstances,
these basis functions may form a natural multiscale hierarchy. In these cases, we specified multiresolution algorithms and
subdivision schemes for the representation of geometric closed curves. We were able to characterize the order of approxi-
mation of such nonstationary multiresolution schemes. We exemplified our method by constructing minimal-support bases
that reproduce ellipses and higher-order harmonics. In particular we tailored these bases to obtain maximal-smoothness
basis functions, and interpolatory basis functions. We took advantage of the theoretical developments of this paper to build
efficient active contours, which we present in the companion paper (Delgado-Gonzalo et al., 2011).
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