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Chapter 1

Robust Computation of Morse-Smale Complexes
of Bilinear Functions
Gregory Norgard and Peer-Timo Bremer

Abstract The Morse-Smale (MS) complex has proven to be a useful tool in extracting and visu-
alizing features from scalar-valued data. However, existing algorithms to compute the MS complex
are restricted to either piecewise linear or discrete scalar fields. This paper presents a new combina-
torial algorithm to compute MS complexes for two dimensional piecewise bilinear functions defined
on quadrilateral meshes. We derive a new invariant of the gradient flow within a bilinear cell and
use it to develop a provably correct computation which is unaffected by numerical instabilities.
This includes a combinatorial algorithm to detect and classify critical points as well as a way to
determine the asymptotes of cell-based saddles and their intersection with cell edges. Finally, we
introduce a simple data structure to compute and store integral lines on quadrilateral meshes which
by construction prevents intersections and enables us to enforce constraints on the gradient flow to
preserve know invariants.

1.1 Introduction

Topological structures such as contour trees [1, 2], Reeb graphs [3, 4], and Morse-Smale (MS)
complexes [5, 6] have become a cornerstone of scalar field analysis and visualization. They provide
a succinct description of the global behavior of a scalar field and in their latest incarnations the
corresponding algorithms are highly efficient and numerically stable. However, the stability and
efficiency of these techniques depends on the restriction to either piecewise linear or even discrete
functions, particularly for MS complexes. While this makes the computations tractable it is unclear
how valid such approximations are for typical simulation data. In practice, many of the largest
and most advanced simulations use higher-order kernels, often on regular or block-regular grids.
Unfortunately, there exist no techniques to reliably extract topological information from these
interpolations creating a potentially significant gap between the data that is computed and the
data that is analyzed.

In this paper we take a first step towards closing this gap by introducing a provably correct
algorithm to compute MS complexes of two-dimensional bilinear functions defined on quadrilateral
meshes. We derive the somewhat unintuitive behavior of integral lines of the bilinear interpolant,
introduce a discrete algorithm to detect and classify critical points in bilinear functions, and describe
a simple and efficient data structure to store the paths of integral lines through cells of the mesh.
Similar to Bhatia et. al. [7], we construct maps from the cell boundaries to themselves encoding
sufficient restrictions on the gradient flow to guarantee the validity of the resulting MS complex.
Subsequent numerical integration is constrained by the maps and thus guaranteed to be valid
and correct up to the numerical accuracy of the integration operator. Furthermore, as shown in
Section 1.7, the maps themselves contain a surprisingly large amount of information about the
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gradient flow suggesting that the use of an “oracle” similar to that described in [2] could potentially
extend this approach to even higher orders of interpolation. Finally, we show that level sets of
saddles on the interior of cells are always aligned with mesh edges which introduces some unexpected
artifacts. In particular, our experiments suggest that a piecewise bilinear interpolation while visually
more pleasing creates on average more topological artifacts than its piecewise linear counterpart.

Related Work. As mentioned above, topological techniques have become popular in a large variety
of applications and even a cursory review of all related research is beyond the scope of this paper.
Instead, this section focuses on techniques designed for interpolations beyond piecewise linear,
as well as general algorithms for MS complex computation. The most common use of bilinear and
trilinear interpolation is in the marching cubes algorithm [8] and its many variations and corrections
[9] [10]. Of particular interest for this paper is the asymptotic divider of Nielson and Hamann [11]
which implicitly describes the gradient flow in cells containing saddles. In general, much of the
research focused on topologically correct iso-surfaces [12] [13] can be seen as aimed towards the
robust detection of critical points and the corresponding topology of the level sets [14]. Pascucci
and Cole-McLaughlin [2] describe a general algorithm to compute the augmented contour tree
encoding the topology of all level sets of a function defined on a regular grid. The approach is based
on an oracle constructing the contour tree within each cell and the merging of neighboring trees.
They describe the oracle for a piecewise trilinear interpolation, but the approach could be extended
to other interpolation schemes. Nevertheless, the techniques discussed above focus on the structure
of the level sets not on the gradient flow behavior.

While clearly related, gradient based structures such as the MS complex [15, 16] contain signifi-
cantly more information than, for example, contour trees and are correspondingly more difficult to
compute. Here we are using a variant of the tracing-based algorithm of Bremer et al. [5] extended
to bilinear functions. By first detecting all critical points and tracing separatrices from saddles this
algorithm constructs the MS complex iteratively maintaining the consistency explicitly through
constraints in the data structure. More recently, Gyulassy and other [17, 6] introduced discrete MS
complex algorithms which are based on a region growing approach. This approach is significantly
easier to generalize to three and higher dimensions, but has the drawback of effectively reducing
the interpolation further. There also exist a number of techniques aimed at computing vector field
topology [18] that could be adapted to scalar topology. For example, Theisel et al. [19] use stream-
line tracing to compute saddle connectors in a three-dimensional potential field. However, these
techniques rely on the numerical integration of streamlines, and thus are not guaranteed to produce
valid and/or consistent results.

1.2 Theory

This section will briefly introduce the necessary mathematical background in Morse theory as well
as formally define the piecewise bilinear interpolation and discuss some non-degeneracy conditions
enabling robust computation.

Morse-Smale Complex. Given a smooth manifold M and a smooth function f : M → R the
Morse-Smale (MS) complex segments M into regions of uniform gradient behavior. Let ∇f be the
gradient of f then all points p on M are classified as either critical if ∇f(p) = 0 or regular otherwise.
Furthermore, a critical point p is call non-degenerate if the Hessian, the matrix of second partial
derivatives, of f at p is not singular. If all critical points of f are non-degenerate and have pairwise
distinct function value f is said to be Morse. Given a Morse function f an integral line L(t) : R→M
of f is defined as a line whose tangent is aligned with the gradient of f : δL/δt = ∇f(L(t)). For
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t→∞ all integral lines converge towards a maximum where they are said to end. For each maximum
p the union of all integral lines ending at p is called the stable manifold of p. Symmetrically, the
unstable manifold of p is defined as the union of all integral lines starting at p. Intersecting the
stable and unstable manifolds of f defines its MS complex a segmentation in which within each cell
all integral lines start at the same minimum and end at the same maximum.

Piecewise Bilinear Functions. In this paper we are interested in
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c d
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Fig. 1.1 The standard

reference cell.

two-dimensional manifolds defined by a quadrilateral mesh given as a collec-
tion of vertices V , edges E, and cells Q. The function f is defined at the
vertices v and for brevity we will use v to indicate a vertex as well as the
function value at that vertex depending on the context. For each cell q we
define a function fq : q → R through bilinear interpolation. More specifically,
consider the cell shown in Figure 1.1 with vertices a, b, c, and d. Since none
of the computations depend on the embedding we assume wlg. M = R2 and
q = [0, 1]× [0, 1]. We then define fq as:

fq(x, y) = (a− b− c+ d)xy + (−a+ c)y + (−a+ b)x+ a. (1.1)

Finally, we define f as the collection of all fq, q ∈ Q. Note that, by construction, the fq’s agree
along shared edges/vertices and thus f is continuous. Finally, to avoid degeneracies we assume that
no two vertices of the mesh have equal function value which can easily be enforced through symbolic
perturbation [20].

Clearly, even a perturbed f is not Morse and thus does not define an MS complex. However,
similar to the work on piecewise linear functions [15, 5] one can compute a quasi-MS complex of f
by consistently detecting and classifying critical points and computing monotone, non-intersecting
integral lines from saddles to extrema.

1.3 Bilinear Gradients

In order to consistently compute an MS complex of f , one must first understand the structure of
f within each cell and in particular the behavior of f ’s gradient flow. This section will derive some
general properties of the gradient flow within a bilinear cell q and discuss their implications for
critical point detection and integral line computation. Section 1.4 will then show how to guarantee
that these properties are preserved during the computation. Finally, we will prove in Section 1.6
that this leads to a consistent MS complex.

Zero Lines. By definition, the bilinear interpolation fq within a cell q reverts to the linear inter-
polation along the edges of q. Since all vertices have pairwise distinct function values, fq is strictly
monotone along each edge and we indicate the direction of its gradient restricted to the edge by an
arrow along the edge, see Fig. 1.2. Assuming the standard cell (the unit cube in R2, see Fig. 1.1)
the direction of the gradient along the edges is equivalent to the sign of fq

x and fq
y on the respective

edges. For example, if the gradients of edges (a,b) and (c,d) are aligned and positive, fq
x > 0, then

fq
x > 0 everywhere on q. Conversely, if the gradients are anti-aligned: fq

x < 0 on (a,b) and fq
x > 0

on (c,d) then there exist a line with fq
x = 0 separating the edges, which we will call a zero-line.

Considering the gradient of fq

∇fq =
[
(a− b− c+ d)y + (−a+ b)
(a− b− c+ d)x+ (−a+ c)

]
, (1.2)



4 Gregory Norgard and Peer-Timo Bremer

it is clear that the zero-line is indeed a horizontal line (fq
x is linearly interpolated depending only on

y). We call the intersection of the zero-lines with edges zero-points. The definition of zero-lines leads
to three possible cases of gradient behavior within q: (i) no zero-line; (ii) one zero-line; and (iii) two
orthogonal zero-lines, see Fig. 1.2. One interesting property of zero-lines is that, since zero-lines of
a bilinear function fq are by definition orthogonal to gradients they are always level sets of fq.

a b

c d
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c d

(b)

x

a b

c d

(c)

zero-line

zero-line

stableunstable transition

(d)

Fig. 1.2 The three different classes of bilinear cells containing: (a) no; (b) one; and (c) two zero-lines. Gradients

restricted to edges are indicated by arrows; Approximate integral lines are shown as dashed and zero-lines are shown
dotted.(d) Possible gradient flow across an edge with the different edge sections labeled.

Critical Points. The flow classification within a cell leads directly to a combinatorial critical point
detection. Clearly, only cells with two zero-lines contain critical points which lie at the intersection
of the zero-lines. Furthermore, as indicated in Fig. 1.2(c) the two pairs of anti-aligned edges force
the critical point to be a saddle. Using symbolic perturbation there cannot exist a critical point
on an edge. Thus, all other critical points of the combined f exist at vertices of the mesh and are
detected and classified in the standard manner [15] using their neighboring vertices:

• A vertex with only higher neighbors is a minimum;
• A vertex with only lower neighbors is a maximum;
• A vertex switching between higher and lower neighbors more than twice is a saddle; and
• All other vertices are regular.

Besides the classification, zero-lines also imply another interesting fact for saddles:
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Fact 1 Given a bilinear function containing a saddle at (0, 0) the level sets containing this saddle
are always the coordinate axes and its asymptotes are the y = −x and y = x lines.

Practically, this implies that independently of the global structure of the level sets of f , level
sets around any saddle in the interior of a cell are always axis aligned. As will be discussed in
Section 1.7 this can create noticeable artifacts that, in fact, may be worse than those of a piecewise
linear interpolation.

By definition, the asymptotes of a saddle form the first segments of the integral lines connecting
saddles to extrema. Thus, determining where these integral lines intersect the boundary of a cell
is crucial. Interestingly, the question of which integral line intersects which edge can be answered
combinatorially.

Lemma 1. Let v be a saddle of bilinear function fq in the standard cell q then v’s asymptotes do
not pass through vertices of q.

Proof. Wlg. we assume a < b, a < c, d < c, and d < b as shown Fig. 1.2(c). From equation(1.1)
follows that v will be located at xsad = c−a

a−b−c+d and ysad = b−a
a−b−c+d . For an asymptote to pass

through a vertex we must have either ysad = xsad or ysad = 1 − xsad. The former reduces to
b − a = c − a which violates our assumptions. Similarly, multiplying the later with denominator
results in b − a = (a − b − c + d) − c + a ⇔ 2b + 2c = 3a + d. Since, a, d < b, c this is also a
contradiction.

The consequence of Lemma 1 is that through comparing vertices across the diagonals, a saddle can
be assigned a unique closest edge in a cell. For example, in Fig. 1.2(c), the saddle is determined to
lie closest to the right edge, by noting that a < d and b < c. This comparison between diagonal
vertices will also prove to be key in proving consistency in Section 1.5. Since the asymptotes are
aligned with the diagonals, it follows that two asymptotes intersect the closest edge and one each
of the two neighbor edges.

Cross-Edge Flow. Next we consider the different flow patterns across shared edges. Within a cell
q, the gradient of fq is smooth and continuous. However, the gradients of two neighboring cells
p, q may not agree and thus f ’s gradient is generically discontinuous across edges. At any given
point along an edge, the gradient field of a cell will either point into that edge (indicating outflow)
or away from the edge (indicating inflow). The gradient can switch between inflow and outflow at
most once and that switch will occur at zero-points. We classify a section of an edge based on the
inflow/outflow combinations. If both cells indicate outflow this section of the edge is called stable
(flow will converge and continue along the edge). If both cells indicate inflow, the section is called
unstable (no flow can reach this section). Finally, if inflow and outflow are combined we consider
this a transition section (flow will cross into the neighboring cell), see Fig. 1.2(d). Furthermore, a
stable and unstable section will always have a direction associated with it depending on the values
of the vertices of the edge. An edge can have at most three different section and generically a stable
and unstable sections will always be separated by a transition section. Clearly, this classification
reverses itself when considering the inverse flow.

However, if an edge contains two zero-points (one from each cell) it is difficult to decide their
order along the edge combinatorially. This reduces to determining the sign of the determinant of a
3x3 matrix involving all six vertices of both cells, which would require a second-order simulation
of simplicity [20]. Fortunately, as will be discussed in more detail later, the ordering among zero-
points does not effect the consistency of the algorithm. Therefore, we simply decide the ordering
numerically and break ties with a random choice.
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Cell-Based Flow. As discussed above, the flow on the interior of a cell can be classified into
the three cases of no, one, or two zero-lines. The generic flow pattern for the first and last
case follows directly from the flow pattern at the edges, see Fig. 1.2(a), 1.2(c). The case of a
single zero-line, however, is governed by an interesting and not necessarily intuitive restriction:

a b

c d

x

Fig. 1.3 And illustra-

tion of a cell with one
zero-line.

Lemma 2. Given a bilinear function fq on the standard cell q with a single
zero-line connecting edges (a,c) and (b,d) no integral line exists that intersects
both edges.

Proof. Wlg. assume that d < c, c < a, a < b, and d < b, as shown in
Fig. 1.3 and consider the cells interpolant to extend beyond the boundary of
the cell. Since there exists a zero-line, there must exist a saddle s contained
along this line. Furthermore, as indicated by the integral lines in Fig. 1.3 the
assumptions guarantee that s lies on the left side of q. The asymptotes of
s form a 45 degree angle with the zero-line and thus cannot cross (b,d). By
construction, the asymptotes are the lines where |fq

x | = |fq
y | and thus in the region between two

asymptotes we have either |fq
x | < |fq

y | or |fq
x | > |fq

y |. Under the current assumptions the edge (b,d)
lies completely within a region where |fq

x | < |fq
y |. No integral line can cross an asymptote (which

is just another integral line) and therefore all integral lines crossing (b,d) must fulfill |fq
x | < |fq

y |
everywhere along their path. Combining this with the fact that q is the standard cell with unit
width and unit height, any integral line crossing (b,d) must either cross (a,b) or (c,d).

Lemma 2 seems counter-intuitive since one can image stretching a cell in one direction thus
making it more “likely” for an integral line to cross. However, any such cell can always be bijectively
mapped into the standard cell without effecting the structure of the integral lines. This lemma
encapsulates one of the most crucial constraints on the path of integral lines in bilinear flow and
will be key to prove the consistency of the algorithm in Section 1.5

1.4 Data Structure

As discussed above computing an (quasi)-MS complex requires reliable critical point detection
as well as the ability to compute non-crossing, monotone integral lines. This section describes a
simple data structure that guarantees integral lines do not cross. Section 1.5 will then show how to
initialize this structure with a number of carefully chosen integral lines to ensure all integral lines
are consistent with the theory established in Section 1.2.

We represent (pieces of) integral lines as a list of their intersections with mesh edges or vertices.
Each intersection is stored as a tracing element each of which can have a forward and a backward
pointer to another tracing element. If the forward/backward pointer of a tracing element is set
the forward/backward path of the integral line is considered known and will not be recomputed.
Tracing elements are stored in vertices and in ordered lists on edges, in which case each tracing
element contains its geometric location along the edge. The ordering explicitly enforces the fact
that no two tracing elements can exist at the same place even though their geometric location
might be numerically identical. During the integral line computation algorithm discussed below,
the order information will supersede the geometric information and, if necessary, the geometry
will be adapted accordingly. Finally, there exist geometric locations, e.g. zero-points and saddle
asymptotes, in which any perturbation of the starting point will cause fundamental changes in
the path of an integral line. In these situations, we will use multiple tracing elements in the same
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geometric location each storing one possible outcome. Since these groups of elements represent a
single (unstable) location, they are considered linked and no other integral line is allowed to be
inserted between them.

Since edges are shared between cells, so are the corresponding tracing elements. However, for
a cell q, only tracing elements initialized by q or traced through q are relevant to that cell. For
example, zero-points of neighboring cells are not relevant to the gradient flow within q. Therefore,
we store a flag with each element indicating whether it is relevant for one or both of its neighboring
cells.

1.5 Algorithm

Using the critical point detection discussed in Section 1.2, this section describes how to compute
integral lines from saddles to extrema to create the MS complex. Similar to [21], we first compute all
ascending integral lines from saddles to maxima and then, using the inverse gradient, all descending
lines from saddles to minima.

The algorithm first finds all saddles and initializes their neighboring cells, see below. This creates
four tracing elements for each saddle each with either the forward or backward pointer unset. The
algorithm proceeds by picking one of these tracing elements and computing its next step. Each
time the algorithm reaches an un-initialized cell it initializes the cell before continuing. The integral
line stops once an extremum is reached, see Algorithm 1. Below, we first describe how cells are
initialized and then how tracing elements are propagated.

Cell initialization. Cells are initialized by splitting their boundary into inflow and outflow sections.
By definition, this switch can only occur at zero-points and vertices. For vertices, we create two
tracing elements on the two neighboring edges and set their corresponding pointers according to
the gradient flow, see Fig. 1.4(a). For zero-points, we can determine combinatorially whether the
integral of this point lies in the interior of the cell. If not, we link the zero-point to itself. Otherwise,
we compute the integral line of the zero-point forward and backward through the cell and insert
the corresponding tracing elements. Note that Lemma 2 requires both intersection points to lie
on neighboring rather than opposite edges and, if necessary, we enforce this condition explicitly.
Furthermore, the new intersections are unstable in the following sense. Considering Fig. 1.4(b)
any integral line entering on the right of the lower zero-point will cross the cell, while all integral
lines on the left of the zero-point will exit through the left edge. To handle this instability and
enforce consistency with the known gradient structure, we duplicate each newly inserted tracing
element creating two linked pairs. For cells containing a saddle, we also insert tracing elements
for its asymptotes, which will be included in the starting points for the integral line computation
algorithm, see Fig. 1.4(c). As discussed in Lemma 1, we can decide which edges of the cell intersect
an asymptote combinatorially and add the corresponding tracing elements. Similar to the integral
lines from zero-points, the tracing elements for asymptotes represent an instability. Therefore, we
create a linked triplet for each tracing element associated with an asymptote and connect them
according to the flow, see Fig. 1.4(c).

One important aspect of the initialization is that it implicitly creates a map between inflow and
outflow sections of the cell boundary. Each inflow section is bounded by two tracing elements whose
forward pointers lead to two elements bounding its corresponding outflow section. Furthermore, by
construction, any integral line that observes this map is consistent with the given set of zero-lines,
cell-based saddles, and most importantly Lemma 2.
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(a)

{

{

(b)
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Fig. 1.4 (a)-(c)Cell initialization for the three types of cells. Arrows along edges represented the corresponding
restricted gradient and circles the tracing elements. Curved brackets indicate linked groups of tracing elements. (a)

No zero-line; (b) One zero-line; (c) Two zero-lines. (d),(e) Possible flow patterns for vertices with incoming stable

sections. (d) Maximum; (e) Regular vertex.

Integral Line Propagation. An integral line is computed by selecting a tracing element starting
at a saddle and progressively advancing the integral line through the mesh by either creating new
tracing elements or following along existing pointers. At any time, we initialize cells in a lazy manner
before any integral line computation is done within a cell. In the following we describe the integral
line computation algorithm for an ascending line and the descending case is handled symmetrically.

If a tracing element t already has a forward pointer we follow this pointer until we either find
an extremum or an element that has not been propagated. An element without a forward pointer
can exist either in the interior of an edge or on a vertex. If on an edge, such a t must lie either
in an inflow or an outflow section, since all zero-points already have forward pointers from the
initialization.

Assume t lies on an inflow section, see Fig. 1.5(a): We find its right and left neighboring tracing
elements relevant to the current cell (ignoring zero-points and untraced elements from neighboring
cells). Following the forward pointers of these elements leads to (part of) an outflow section, see
Fig. 1.5(b). By construction, the current tracing element must end within this outflow section.
Using any preferred numerical technique, we compute the location of the integral line’s forward
intersection with the cell boundary (Fig. 1.5(c)) and insert the corresponding tracing element into
the edge list, see Fig. 1.5(d). If for any reason the numerically computed intersection lies outside of
the predetermined outflow section (Fig. 1.5(e)), we correct its location to the nearest valid position,
see Fig. 1.5(f). We then continue the integral line computation with the newly created tracing
element in the neighboring cell. Notice that, when computing ascending lines no tracing element
can reach an inflow section of that cell.
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(a) (b) (c)

(d) (e) (f)

Fig. 1.5 An illustration of how the integral line computation interacts with the data structure. (a) When computing

the integral line of a tracing element (blue square), find its left and right neighbors along the cell’s boundary (red
circles). (b) Follow the neighboring elements forward pointers to find the elements (red circles) that bound your

potential outflow section of the cell’s boundary. (c) Numerically compute the gradient to the boundary and insert a

new tracing element (blue square) into that edge’s ordered list. Assign backwards and forwards pointers appropriately.
(d) The integral line now further subdivides the cell’s boundary. (e) If a tracing element is numerically determined

to trace outside of its valid outflow section in the cell’s boundary, (f) then the numerical computation is corrected

to the furthest point in the outflow section and a new tracing element is inserted there.

If t lies on an outflow section it follows that this section is part of a stable section of that edge
(otherwise t could not have reached this point). Each stable section has an associated direction and
t is connected to the appropriate endpoint of this section. By construction, this endpoint is either
a vertex or a zero-point, see Fig. 1.2(d). The former case will be treated next, and in the later case
the zero-point has a forward pointer which we follow. Stable sections are the only places where
ascending integral lines merge. Since these sections are unstable for the inverse flow, they cannot be
reached by descending lines. Therefore, ascending and descending lines cannot merge. For general
meshes, however, they can touch at vertices as discussed below.

By construction, integral lines only reach vertices through stable edge sections. For regular (all
valence four) grids only maxima and regular vertices can have stable inflow sections attached to
them, see Fig. 1.4(d). Furthermore, any regular valence four vertex with an incoming stable section
must also have an outgoing stable section, which represents the only outflow, see Fig. 1.4(e). There-
fore, in regular grids integral lines pass through vertices along stable edge sections. Consequently,
on regular grids ascending and descending lines can never merge since no vertex can have both
stable inflow and unstable outflow (stable inflow of the inverse gradient). On meshes with higher
valency vertices ascending and descending integral lines can touch at vertices with both incoming
stable and outgoing unstable edge section. However, on edges and in the interior of cells ascending
and descending lines remain disjunct. Therefore, intersection of ascending and descending lines can
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be avoided by querying the local neighborhood of a vertex. Since the mesh implies an orientation,
preventing intersections is straight forward. The complete pseudo-code of the algorithm on a regular
grid is shown below.

Algorithm 1 void TraceForward(TracingElement Element)
if Element had previously been traced. then

TraceForward(Element → forward)
end if

if Element is on a edge then

if Element is on a transition section then
Trace through a bilinear cell. Insert a new tracing element in the boundary of the cell. Set Element’s forward

pointer to the new tracing element

TraceForward(Element → forward)
else

Trace on a stable section to a zero-point or vertex and set Element’s forward pointer to that tracing element.

TraceForward(Element → forward)
end if

else
if Vertex is a maximum then

RETURN

else
Find the stable edge leading out, and trace to the next zero-point or vertex on that edge.

TraceForward(Element → forward)

end if
end if

1.6 Proof of correctness

In order to guarantee that the MS complex is topologically correct the computed integral lines must
be monotonic and non-crossing. The non-crossing of integral lines has been addressed by the data
structure. The monotonicity of an integral line is a numerical calculation, which is susceptible to
floating point error may will not reflect the symbolic perturbation we have employed with simulation
of simplicity. Thus we prove that integral lines are monotonic with respect to the data structure
describing the function. This will prove that integral lines terminate at extrema and do not cycle.

We establish this monotonicity property by assigning each tracing element a value and proving
each ascending integral traverses them in an increasing manner. On an edge, a tracing element has
value equal to the sum of the edges’ neighboring vertex values, and on a vertex has value twice that
of the vertex. We then establish the following lemma.

Lemma 3. If a integral line connects two edges of a cell, then the sum of the vertices of the edge
where the integral line terminates is greater than the sum of the vertices of the edge where the
integral line originates.

Proof. Consult Figs. 1.2 and 1.4 for clarity. If an integral line connects neighboring edges, this
reduces to comparing the values of vertices across diagonals. In the no and one zero-line cases, the
vertices on the terminating edge will have a greater sum for any integral line connecting neighboring
edges. This can be seen by comparing values of vertices connected by edges. For two zero-lines, the
diagonal vertex comparison is not immediately clear, however from Lemma 1, the saddle point’s
closest edge is determined from the diagonal vertex comparison. In Fig. 1.2(c) for the right edge to
be closest to the saddle point a < d and b < c. The result for the sum of the vertices follows.
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An integral line can also connect opposite edges. The lemma is clear for the no zero-line case again
by comparing values of vertices connected by edges. With one zero-line, due to the cell initialization
and integral line computation maintaining Lemma 2, the only opposite edge connection is across the
zero-line, where the sum of the terminating edge’s vertices is greater than that of the originating
edge’s. For the two zero-line case, the saddle’s asymptotes allow only one valid opposite edge
connection and with the diagonal vertex comparison from above, the sum of the terminating edge’s
vertices is again greater.

This lemma leads directly into the following theorem.

Theorem 1. The integral line computation algorithm 1 will create a monotonically increasing in-
tegral line and cannot cycle.

Proof. A integral line computed by algorithm 1, will be a sequence of tracing elements from edge to
edge, vertex to edge, and edge to vertex. Lemma 3 establishes that edge to edge transition increases
the value of the tracing element. Vertex to edge and edge to vertex transitions as previously described
will trivially increase the tracing element value. Thus the integral line’s tracing elements will have
a monotonically increasing value. As the vertex values are well ordered by simulation of simplicity,
this prevents the integral line from visiting an edge again after visiting a different edge and thus
cannot cycle.

Thus with monotone, non-crossing integral lines we are guaranteed to construct a valid Morse-
Smale complex.

1.7 Results

To evaluate the bilinear MS complex computation we first test the robustness of the bilinear tech-
nique to numerical error, by comparing two numerical integral line computations. We also compare
the resulting MS complexes to those computed using the piecewise linear technique in [5]. Three
separate data sets are utilized: an artificial terrain composed on superimposed Gaussians, a Finite
Time Lyapunov Exponent (FTLE) field for simulated fluid flow around a cylinder, and a circular
ridge.

To test robustness, the first integral line computation will output a random location on the
cell boundary and rely on the data structure for correction. The second method computes an
analytic solution to integral line and then uses bisection to determine the intersection with the
cell boundary. Figures 1.6(a) and 1.6(b) show the results on the Gaussian terrain. The random
integral line computation produces jagged integral lines, as expected, yet the two structures are
surprisingly similar. This demonstrates the algorithm’s robustness to numerical error and suggests
that a consistent mapping of inflow/outflow regions of cells may be sufficient for creating valid MS
complexes in higher order computations.

Next we compare the bilinear and piecewise linear MS complexes. To the authors’ knowledge,
no rigorous comparison of MS complexes exist, so the comparison is made visually. Both methods
were used on the Gaussian terrain (Fig. 1.6(b), 1.6(c)) and the FTLE field (Fig. 1.8(a), 1.8(b)).
Visually the methods produce quite similar results with the integral lines of the bilinear method
appearing smoother as one would expect from a higher order method. Additionally, we find that
the bilinear method, on average, will produce more artifacts in terms of additional critical points,
specifically along ridges. Figs. 1.7(a) and 1.7(b) show the critical points detected with bilinear and
piecewise linear interpolation. Both methods create additional critical points when the ridge does
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(a) (b) (c)

Fig. 1.6 Comparison of bilinear and piecewise linear MS complexes. (a) The MS complex with bilinear interpolation
when the integral lines are computed with a random walk computation. (b) The Morse-Smale complex with bilinear

interpolation with the integral lines computed analytically and intersected with the boundary with bisection. (c) The

Morse-Smale complex computed with piecewise linear interpolation, computed as in [5].

(a) (b)

Fig. 1.7 (a) Critical points when a circular ridge is interpolated bilinearly. (b) Critical points when a circular ridge

is interpolated linearly.

not align with the mesh, however the piecewise linear method uses a triangular mesh which aligns
with ridges more often than the bilinear quadrilateral mesh.

Summary. In this work, we have investigated the integral line behavior within bilinear cells. Using
these results we have developed a robust algorithm that combines combinatorial critical point detec-
tion with a data structure that can facilitate and correct any numerical integral line computation.
We have proven that using these techniques we preserve the monotone and non-crossing integral
line properties that guarantee a valid topological Morse-Smale complex for a bilinearly interpolated
function.

Examining the implementation of the algorithm we find it robust to errors in the numerical com-
putation of integral lines and produces surprisingly reasonable results when given random integral
line data. When given a numerically reasonable integral line computation, we find that the bilinear
Morse-Smale algorithm produces more critical points and smoother integral lines than the piecewise
linear approach. Overall the technique is appealing for its higher order approximation and visually
smoother integral lines.
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(a)

(b)

Fig. 1.8 The Morse-Smale complex of the FTLE field using two different methods. (a) The simplified MS complex
for the bilinearly interpolated FTLE field. (b) The simplified MS complex for the piecewise linearly interpolated

FTLE field. The general structure of the two methods appear to be visually similar. The simplification canceled

critical points with lower than 1.5% persistence.
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