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Abstract

Approximating complex curves with simple parametric curves is widely used in CAGD,
CG, and CNC. This paper presents an algorithm to compute a certified approximation to
a given parametric space curve with cubic B-spline curves. By certified, we mean that the
approximation can approximate the given curve to any given precision and preserve the
geometric features of the given curve such as the topology, singular points, etc. The approx-
imated curve is divided into segments called quasi-cubic Bézier curve segments which have
properties similar to a cubic rational Bézier curve. And the approximate curve is naturally
constructed as the associated cubic rational Bézier curve of the control tetrahedron of a
quasi-cubic curve. A novel optimization method is proposed to select proper weights in the
cubic rational Bézier curve to approximate the given curve. The error of the approximation
is controlled by the size of its tetrahedron, which converges to zero by subdividing the curve
segments. As an application, approximate implicit equations of the approximated curves
can be computed. Experiments show that the method can approximate space curves of high
degrees with high precision and very few cubic Bézier curve segments.

Keywords: Space parametric curve, certified approximation, geometric feature, cubic
Bézier curve, cubic B-spline curve.

1. Introduction

Parametric curves are widely used in different fields such as computer aided geometric
design (CAGD), computer graphics (CG), computed numerical control (CNC) systems [1, 2].
One basic problem in the study of parametric curves is to approximate the curve with
lower degree curve segments. For a given digital curve, there exist methods to find such
approximate curves efficiently [3, 4, 5, 6]. If the curve is given by explicit expressions,
either parametric or implicit, these methods are still usable. However, some important
geometric features such as singular points cannot be preserved. In this paper, we will focus
on computing approximate curves which can approximate the given curve to any precision
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and preserve the topology and certain geometric features of the given space curve. Such
an approximate curve is called a certified approximation. Here, the geometric features
include cusps, self-intersected points, inflection points, torsion vanishing points, as well as
the segmenting points and the left(right) Frenet frames of these points.

There are lots of papers tried to approximate a smooth parametric curve segment [1,
7, 8, 9, 10, 11, 12, 13, 14]. Among them, Geometric Hermite Interpolation (GHI) is a
typical method for the curve approximation. Degen [8] presented an overview over the
developments of geometric Hermite approximation theory for planar curves. Several 2D
interpolation schemes to produce curves close to circles were proposed in [9]. The certified
approximation were considered by some authors and they focused on the case of planar
curves [15, 16, 17, 18].

For space curves, Hijllig and Koch [10] improved the standard cubic Hermite interpolation
with approximation order five by interpolating a third point. Xu and Shi [11] considered
the GHI for space curves by parametric quartic Bézier curve. Pelosi et al. [12] discussed the
problem of Hermite interpolation by using PH cubic segments. Chen et al. [14] enhanced
the GHI by adding an inner tangent point and the approximation was then more accurate.
These methods were mainly designed for the local approximation of a parametric curve
segment. The approximate curves obtained generally cannot preserve geometric features
and topologies for the global approximation. The algorithms had to be improved to meet
certain special conditions. For instance, Wu et al [19] presented an algorithm to preserve the
topology of voxelisation and Chen et al [20] gave the formula of the intersection curve of two
ruled surfaces by the bracket method. As a further development for certified approximation,
more properties such as the topology and singularities of the curve need to be discussed
in the approximation process. We would like to give the local approximation with certain
restrictions. And the local approximation methods can then be used in the global certified
approximation naturally.

The certified approximation is also based on the topology determination. For implicit
curves, the problem of topology determination was studied in some papers such as [21, 22,
23, 24]. Efficient algorithms were proposed in [25] and [26] to compute the real singular
points of a rational parametric space curve by the µ-basis method and the generalized D-
resultant method respectively. An algorithm was proposed to compute the topology for a
rational parametric space curve [27]. However, even we have the methods to determine the
topology of space curves and the methods to approximate the space curves with free form
curves, the combination of them is not straightforward. The topology may change while
the line edges in topology graph are replaced by the approximate free form curve segments.
For example, some knots may be brought in or lost such that the crossing number of the
approximate curve is not equivalent to the approximated curve.

In this paper, we compute a certified approximation to a given parametric space curve
with a rational cubic B-spline curve based on the topology. The cubic rational Bézier curve
is taken as the approximate curve segment because it is the simplest non-planar curve and
has nice properties [28, 29]. The presented method consists of two major steps.

In the first step, the given space curve segment is divided into sub-segments which have
similar properties to a cubic rational Bézier curve. Such curve segments are called quasi-
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cubic Bézier curves. The preliminary work of our division procedure is to compute the
singular points and the topology graph of the given curve, which have already been studied
in [30, 25, 26, 27]. Inflection points and torsion vanishing points of the curve are also added as
character points. We further divide the curve segments to ensure that the subdivided curve
segments have similar properties to a cubic Bézier curve. For instance, each curve segment
has an associated control tetrahedron whose four vertices consist of the two endpoints of
the curve segment and the two intersection points of the tangent lines and the osculating
planes at the different endpoints respectively. And the curve segment is inside its associated
control tetrahedron. Furthermore, we need to ensure some monotone properties about the
associated control tetrahedron, which are necessary for the convergence of the algorithm.
The tetrahedrons are then just the control polytope of the approximate cubic Bézier curves.
In other words, the approximate curve is controlled by the sequence of the tetrahedrons.
And this property ensure the topological isotopy for the approximated and approximate
curves. Some more careful discussions are proposed for both cubic Bézier and quasi-cubic
curve segments.

In the second step of the algorithm, we use a cubic rational Bézier spline to approximate
a quasi-cubic Bézier curve obtained in the first step. Some different approximation methods
can be used here such as GHI with inner tangent points [14]. However, as we mentioned, a
quasi-cubic Bézier curve has an associated control tetrahedron. The associated cubic rational
Bézier curve of this tetrahedron is naturally used as the approximate curve. So, each curve
segment and its approximated cubic curve segment share the same control tetrahedron.
A novel method, called shoulder point approximation, is proposed to select parameters in
the cubic Bézier curve so that it can optimally approximate the given curve segment. If
the distance between the two curve segments is larger than the given precision, we further
subdivide the given curve segment and approximate each sub-segment similarly. The error
of the approximation is controlled by the size of the associated tetrahedrons, which are
proved to converge to zero. In the subdivision process, there is one important difference
between our algorithm with the others. We only need to check the collision of the sub-
tetrahedrons subdivided from which are the intersected before the subdivision, since the
sub-tetrahedrons are included in its father tetrahedrons. In general algorithms, one has to
check the collision of all pair of the approximate curve segments or their control polytopes
after a subdivision. Finally, the rational cubic Bézier curves are converted to a C1 rational
B-spline with a proper knot selection and used as the final approximate curve. After a cubic
parametric approximate segment is computed, we can compute its algebraic variety using
the µ-basis method [31], which can be used as the approximate implicit equations for the
given parametric curve.

The proposed method is implemented and experimental results show that the method
can be used to compute certified approximate curves to high degree space curves efficiently.
The computed rational B-spline has very few pieces and can approximate the given curves
with high precision.

The rest of this paper is organized as follows. In Section 2, some notations and prelimi-
nary results are given. In Section 3, we give the algorithm to compute the dividing points
such that each divided segment is a quasi-cubic curve. In Section 4, the method of parameter
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selection for the cubic rational Bézier segments is proposed and then an algorithm based
on shoulder point approximation is given. We also prove that the termination of the algo-
rithm. The final algorithm is given in Section 5, and some examples are used to illustrate
the algorithm. In section 6, the paper is concluded.

2. Preliminaries

Basic notations and preliminary results about rational parametric curves and cubic Bézier
curves are presented in this section.

2.1. Basic notations

A parametric space curve is defined as

r(t) = (x(t), y(t), z(t)), (2.1)

where x(t), y(t), z(t) ∈ Q(t) and Q is the field of rational numbers. In the univariate case,
Lüroth’s theorem provides a proper reparametrization algorithm and some improved algo-
rithms which can also be found such as [30]. So we assume that (2.1) is a proper parametric
curve in an interval [0, 1] since any interval [a, b] can be transformed to [0, 1] by a parametric
transformation t ← t−a

b−a
. Further, the denominators of (2.1) are assumed to have no real

roots in [0, 1].
The tangent vector of r(t) is r′(t) = (x′(t), y′(t), z′(t)) and the tangent line of r(t) at a

point r(t0) is T(t0) = r(t0) + λr′(t0), λ ∈ Q. A point r(t0) is called a singular point if it
corresponds to more than one parameters with multiplicities counted. A singular point is
called a cusp if r′(t0) is the vector of zeros, which means that t0 is a multiple parameter;
otherwise, it is an ordinary singular point [26]. The curvature and torsion of the curve are

κ(t) =
‖r′(t)× r′′(t)‖

‖r′(t)‖3
, τ(t) =

(r′, r′′, r′′′)

‖r′ × r′′‖
.

A point is called an inflection if its curvature is zero and called torsion vanishing point if
its torsion is zero. All these points are called character points of the curve, and r(t) is a
normal curve if it has a finite number of character points. A rational space curve is always
a normal curve. In this paper, we assume that κ(t) 6≡ 0 and τ(t) 6≡ 0, which means that the
curve is not a planar curve.

If r(t0) is not a character point, then the Frenet frame at r(t0) can be defined as F(t0) :=

{r(t0);α(t0),β(t0),γ(t0)} where α(t0) =
r
′(t0)

‖r′(t0)‖
, β(t0) = γ(t0)×α(t0), γ(t0) =

r
′(t0)×r

′′(t0)
‖r′(t0)×r′′(t0)‖

are the unit tangent vector, unit principal normal vector, and unit bi-normal vector, respec-
tively. And the osculating plane is O(t0) := ((x, y, z)− r(t0)) · γ(t0) = 0.

For a point with κ(t0) = 0, the bi-normal vector is not defined, neither is the osculating
plane. Here, we define them using limit. Consider the limit limt→t0 γ(t) of the bi-normal
vector at t0. Since the left limit and the right limit are generally different, we define the left
bi-normal vector and the right bi-normal vector as γ−(t0) := limt→t0−0 γ(t) and γ+(t0) :=
limt→t0+0 γ(t) respectively. The limitations always exist if r(t) is a rational space curve
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of form (2.1). As a consequence, the left and right osculating planes at t0 are O−(t0) :=
((x, y, z)− r(t0)) ·γ

− = 0 and O+(t0) := ((x, y, z)− r(t0)) ·γ
+ = 0. If the κ(t0) 6= 0, one can

find that γ+(t0) = γ−(t0) and O+(t0) = O−(t0).
Similarly, if t0 is at a cusp, we define the left and right tangent vectors as α−(t0) :=

limt→t0−0α(t) and α+(t0) := limt→t0+0α(t), respectively. Hence, the corresponding left and
right principal vectors are β−(t0) := γ−(t0) × α−(t0) and β+(t0) := γ+(t0) × α+(t0). We
also denote the left and right tangent lines as T−(t0) = r(t0) + λα−(t0) and T+(t0) =
r(t0) + λα+(t0) where λ is the real number parameter. Then, a rational parametric curve
r(t) always has left and right Frenet frames.

2.2. Rational cubic Bézier curve

A rational Bézier curve with degree n has the following form

p(t) =

∑n
i=0 ωipiB

n
i (t)

∑n
i=0 ωiBn

i (t)
, t ∈ [0, 1],

where ωi ≥ 0 are associated weights of the control points pi ∈ R3 and Bn
i (t) =

(

n
i

)

(1−t)n−iti.
When n = 3, it defines a cubic rational Bézier curve where ♦p0p1p2p3 is called the control
tetrahedron of p(t). One can set the weight ω0 = ω3 = 1 up to a parametric transformation.
We now consider the cubic curve and omit superscript 3 from B3

i (t)

p(t) =
p0B0(t) + ω1p1B1(t) + ω2p2B2(t) + p3B3(t)

B0(t) + ω1B1(t) + ω2B2(t) +B3(t)
, t ∈ [0, 1]. (2.2)

The rational cubic Bézier curve (2.2) has the following properties.

Lemma 2.1. Let p(t) be a non-planar cubic rational curve of the form (2.2). Then

1) p(t) passes through the endpoints p0,p3 with the corresponding tangent directions p′(0)
and p′(1) parallel to p0p1 and p2p3 respectively.

2) p0p1p2 and p1p2p3 are the osculating planes of p(t) at the endpoints p0 and p3, respec-
tively.

3) p(t) lies inside its control tetrahedron ♦p0p1p2p3.

4) p(t) has no singular points and κ(t) 6= 0, τ(t) 6= 0 in [0, 1].

5) For any t⋆1 < t⋆2 ∈ [0, 1], the control tetrahedron of p⋆(t) = p(t), t ∈ [t⋆1, t
⋆
2] is inside the

control tetrahedron of p(t) .

6) ‖p0p01‖, ‖p1p12‖, and ‖p2p23‖ are strictly monotone for t⋆ ∈ (0, 1) where p01,p12, and
p23 are the intersection points of the osculating plane O(t⋆) with p0p1,p1p2, and p2p3

respectively.

7) ‖p0p03‖ and ‖p1p12‖ are strictly monotone for t⋆ ∈ (0, 1) where p03 = p1p2p(t
⋆)
⋂

p0p3

and p12 = p0p3p(t
⋆)
⋂

p1p2.
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Proof. Properties 1), 2) and 3) are basic properties of Bézier curves and the proof can be
founded in [1]. They also can be checked directly.

For 4), Li and Cripps shown that there is no cusps and inflection points for a non-
degenerate rational cubic space curves in [32], and the torsion can be checked directly.
Wang et al. also proved that a cubic space curve has no singular points by moving planes
method in [25].

5) can be proved by a successive Decasteljau subdivision [1]. The control tetrahedron of
p⋆
1(t), t ∈ [t⋆1, 1] is inside the control tetrahedron of p(t). Successively, the control tetrahedron

of p⋆(t), t ∈ [t⋆1, t
⋆
2] lies in the control tetrahedron of p⋆

1(t).
Property 6) can be derived from the above five properties. Also this property is a special

case of the following Theorem 3.10 in this paper.
For 7), it is sufficient to prove that the planes p1p2p(t

⋆) and p0p3p(t
⋆) do not touch

p(t⋆) with t⋆ ∈ (0, 1), respectively. Since p0p3p(t
⋆) passes through p0,p3 and p(t) is cu-

bic, p0p3p(t
⋆) cannot have any tangent point different from p0,p3. Supposing the plane

p1p2p(t
⋆) touches p(t⋆) at t⋆ ∈ (0, 1), the osculating plane O(t⋆) must intersects p1p2p(t

⋆)
with the tangent line T(t⋆). By 6), T(t⋆) must intersect p1p2 which is the intersection line
of O(0), O(1). However, according to Decasteljau subdivision, the intersection point of T(t⋆)
and O(0) is always different from that of T(t⋆) and O(1). Then there is a contradiction. �

The shoulder point of a cubic Bézier curve will play an important role [28]. The definition
is given below.

Definition 2.2. Let p(t) be a curve of the form (2.2). Its shoulder point s is defined as
intersection point of p(t) and the plane p1p2pM where pM = (p0 + p3)/2 (Figure 1).

Figure 1: Shoulder point of a Bézier cubic curve

Proposition 2.3. Let s be the shoulder point of p(t). Then s = p(1/2) = λ1p1 + λ2p2 +
(1− λ1 − λ2)pM where λ1 =

3ω1

2+3ω1+3ω2
, λ2 =

3ω2

2+3ω1+3ω2
.

Proof. By 7) of Lemma 2.1, there exists a unique intersection point of p(t) and the plane
p1p2pM . And λ1, λ2 and 1−λ1−λ2 are just the area coordinates of s in the triangle p1p2pM .
More details can be found in [28]. �
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It is known that the curve is closer to the control point when its associated weight
is greater. We now consider the point which has the maximum distance to the planes
P1 = p0p2p3 and P2 = p0p1p3 respectively.

Definition 2.4. Let r(t), t ∈ [0, 1] be a curve segment on the same side of a plane Q with
the two endpoints on Q. For another plane R parallel to Q, a tangent point of r(t) with the
plane R is called a parallel point of r(t) associated to the plane Q.

According to the definition, a parallel point should satisfy

|r′(t),q1 − q0,q2 − q0| = 0, (2.3)

where q0,q1 and q2 are three non co-linear points on Q. In general, there may be several
parallel points for a curve segment and a fixed plane. However, for the rational cubic curve
segment (2.2), there is a unique parallel point associated to P1 = p0p2p3, and similarly,
there is a unique parallel point associated to P2 = p0p1p3.

Proposition 2.5. Let p(t) be a non-planar cubic rational curve of the form (2.2). Then
there are unique parallel points associated to the planes P1 and P2 respectively, and they are
points of p(t) having the maximal distance to P1 and P2 respectively.

Proof. By equation (2.3), we can find that 3t3−6t2+6t−2
3t(t−1)2

= ω1 and 3t3−3t2+3t−1
3t2(t−1)

= ω2 are the
constraint equations for the parallel points associated to P1 and P2 respectively. They are
two monotone functions for t ∈ (0, 1) with two asymptotes t = 0, 1. It means that for any
weights there is only one parallel point associated to Pi. Furthermore, the parallel point has
the maximal distance since the endpoints of the curve are on Pi. �

3. Quasi-cubic segments on space parametric curves

In this section, we propose a method to divide a given curve r(t) into segments which
have similar properties to cubic Bézier curves, which are called quasi-cubic Bézier segments
and can be approximated by cubic rational Bézier curves nicely.

3.1. Conditions for subdivision

Let t0, t1 be the endpoints of a curve segment r(t). We will define an associated tetrahe-
dron for it. Let O+(t0) and O−(t1) be the right and left osculating planes at the endpoints
respectively. We denote their intersection line as L, if they are not parallel. Since L and the
right tangent line T+(t0) are coplanar, they intersect at a point r1 if they are not parallel.
Similarly, L and the right tangent line T−(t1) intersect at a point r2 if they are not parallel.
So we obtain an associated tetrahedron ♦(t0, t1) = ♦r0r1r2r3 where r0 = r(t0) and r3 = r(t1)
if r1 6= r2.

We have shown that a cubic Bézier curve segment has eight properties in Lemma 2.1
and Proposition 2.5. In the following, we will show how to divide any given rational curve
segment into sub-segments having similar properties.
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Definition 3.1. A curve segment is called a quasi-cubic Bézier curve segment, or simply a
quasi-cubic segment, if it has the eight properties in Lemma 2.1 and Proposition 2.5.

Theorem 3.2. Given r(t) and t0, there always exists t1 > t0 such that r(t), t ∈ [t0, t1] is a
quasi-cubic Bézier curve segment.

We leave the proof of this theorem at the end of the subsection 3.2.

Definition 3.3. Let r(t), t ∈ [t0, t1] be a quasi-cubic segment. Then its associated cubic
Bézier curve segment is defined by the associated tetrahedron of r(t), i.e., the control points
are r0, r1, r2 and r3.

In order to divide the curve segment into quasi-cubic segments, we first add the inflection
points and torsion vanishing points as the dividing points, denoted by P. The parameters
of these points can be computed by solving the real roots of κ(t)τ(t) = 0. The left and right
Frenet frames are also needed. There are several efficient methods to find the real roots of
a univariate polynomial [33, 34] and one can use the procedures realroot and isolate in
Maple.

We need to find more dividing points. Fix a start point t = t0, we now try to determine t1
such that t1−t0 is as big as possible and the segment is included in its associated tetrahedron
designed above. Several boundary parametric values to exclude some special points with
respect to t0 are computed in the following cases:

Condition I). Let t⋆1 > t0 be its nearest parametric value from P. Find t1 ∈ (t0, t
⋆
1)

such that F1(s1, s2) := α+(s1) · γ
−(s2) 6= 0 and F2(s1, s2) := α−(s2) · γ

+(s1) 6= 0 for any
t0 ≤ s1 < s2 ≤ t1, meaning that the right tangent vector α+(s1) is not parallel to the
left osculating plane O−(s2) and the left tangent vector α−(s2) is not parallel to the left
osculating plane O+(s1).

Since the curve is non-planar, Fi(s1, s2), i = 1, 2 cannot be identically zero. We take
a further look at the inequalities F1 6= 0, F2 6= 0. Since the derivative can be computed
using limits, r(t) is differentiable to any order although the left and right derivative may be
different. For conveniences, we omit the +,− marks to distinguish between left and right
derivatives. In what below, we give detailed analysis for F1 and the analysis of F2 is similar.

F1(s1, s2) = α(s1) · γ(s2) =
|r′(s1), r

′(s2), r
′′(s2)|

‖r′(s1)‖‖r′(s2)× r′′(s2)‖
.

Assuming s1 = t0 + δ1, s2 = s1 + δ2, δ1 ≥ 0, δ2 > 0, F1(s1, s2) is re-parameterized as

F1(δ1, δ2) =
|r′(t0 + δ1), r

′(t0 + δ1 + δ2), r
′′(t0 + δ1 + δ2)|

‖r′(t0 + δ1)‖‖r′(t0 + δ1 + δ2)× r′′(t0 + δ1 + δ2)‖
.

Expanding the vectors of the numerator at t = t0+δ1 as Taylor series r
′
S(t0+δ1), r

′
S(t0+δ1+δ2)

and r′′S(t0 + δ1 + δ2) respectively, and combining them, we have

F1(δ1, δ2) =
δ22|r

′
S(t0 + δ1), r̃

′′
S(t0 + δ1 + δ2), r̃

′′′
S (t0 + δ1 + δ2)|

‖r′(t0 + δ1)‖‖r′(t0 + δ1 + δ2)× r′′(t0 + δ1 + δ2)‖
, (3.1)
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where r̃′′S(t0 + δ1 + δ2) = (r′S(t0 + δ1 + δ2)− r′S(t0 + δ1))/δ2 and r̃′′′S (t0 + δ1 + δ2) = (r′′(t0 +
δ1 + δ2) − r̃′′S(t0 + δ1 + δ2))/δ2. Furthermore, when δ2 = 0, r̃′′S(t0 + δ1) = r′′S(t0 + δ1) and
r̃′′′S (t0 + δ1) = r′′′S (t0 + δ1).

Let f1(δ1, δ2) = F1(δ1, δ2)/δ
2
2. Then f1(δ1, 0) = τ(t0 + δ1)/‖r

′(t0 + δ1)‖. F1(δ1, δ2) = 0 is
a planar curve in the plane of (δ1, δ2) which has two components: a double line δ22 = 0 and
another planar curve f1(δ1, δ2) = 0. That means f1 = 0 intersects δ2 = 0 with the points
which are exactly the torsion vanishing points τ(t0 + δ1) = 0 of r(t). And we need not
compute these points since they are already included in the separating points needed in the
topology computation which is discussed in Section 3.3. Consider the intersection points of
f1(δ1, δ2) and δ1 = 0. We can find that the real roots of f1(0, δ2) = 0 are associated to the
vector α(s1) = r′(t0) just parallelling to the osculating plane O(s2) = O(t0 + δ2).

Thus, condition I) can be reduced to solve the following optimization problem

min δ1 + δ2
s.t. F1(δ1, δ2) = 0, δ1 ≥ 0, δ2 > 0

(3.2)

and then t1 can be selected from (t0, t0+ δ1+ δ2). There are numerical methods to solve the
optimization problem. However, we prefer to solve it based on the above discussion since
it is enough to get a boundary parametric value less than the exact solution of (3.2). We
can find the positive real roots of f1(δ1, 0) and f1(0, δ2) for δ1 and δ2 respectively. Let δ⋆1 be
the minimal one among all the real roots. Then δ1 + δ2 = δ⋆1 defines a line. If the line does
not intersect f1 in the first quadrant, then t1 can be in (t0, t0 + δ⋆1). This can be checked by
finding the real roots of f1(δ

⋆
1 − δ2, δ2) = 0. Otherwise, set δ⋆1 ← δ⋆1/2 and check the process

repeatedly until the proper δ⋆1 is found. If f1(δ1, 0) and f1(0, δ2) have no positive real roots,
δ⋆1 can be initialed as δ⋆1 = t⋆1 − t0.

Similarly, we can find such a δ⋆2 for F2. Finally, let t⋆2 = min(t0 + δ⋆1, t0 + δ⋆2) be the
boundary parametric value of t1.

Remark 3.4. The function F1(δ1, δ2) in (3.1) actually has a finite number of terms if the
approximated curve r is a rational curve. If r is a parametric curve in elementary functions,
F1(δ1, δ2) will be in the series form. However, the problem (3.2) can still be solved using
a numerical method. Starting with an initial value δ⋆1, we can find a boundary number by
checking whether δ1 + δ2 = δ⋆1 and F1(δ1, δ2) have common points in the first quadrant with
one of the directions {δ0 ← δ⋆1/2, δ

0 ← 2δ⋆1}.

Further restrictions will be proposed afterward. We will omit the similar discussions and
solving processes and give the conditions directly.

Condition II). Let t∗2 be the parametric value t1 computed in the above procedure.
Find t1 ∈ (t0, t

⋆
2) such that

F (s1, s2) := α+(s1)× (r(s2)− r(s1)) ·α
−(s2) 6= 0

for any t0 ≤ s1 < s2 ≤ t1, which means that the right tangent line T+(s1) and the left
tangent line T−(s2) are not coplanar.
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Condition III). Let t∗3 be the parametric value t1 computed in the above procedure.
We should find t1 ∈ (t0, t

⋆
3) such that F1(s1, s2) := O−(s2)(r(s1)) 6= 0 and F2(s1, s2) :=

O+(s1)(r(s2)) 6= 0, which imply that r(s1) is not on the left osculating plane O−(s2) and
r(s2) is not on the right osculating plane O+(s1).

Conditions I), II), and III) are used to guarantee that the tetrahedron ♦r0r1r2r3 is not
degenerated to a plane polygon. However, these conditions are still not sufficient for the
curve segment lying inside ♦r0r1r2r3. We will give one more condition such that the curve
segment lies inside the tetrahedron and has only one parallel points associated to planes P1

and P2 respectively.
Let t̃1 < t⋆4 where t⋆4 is the parameter value obtained from III). Then the curve segment

r(t), t ∈ [t0, t̃1] satisfies the conditions of I) to III) and r(t) has no character points. We will
try to find t⋆ ∈ (t0, t̃1] such that for any s1 < s2 < s3 ∈ [t0, t

⋆], the tangent vectors α(s1),
α(s2), and α(s3) are not coplanar, i.e.,

|α(s1),α(s2),α(s3)| 6= 0. (3.3)

The following lemma is needed for further discussion.

Lemma 3.5. For a fixed t0 and ∀ǫ > 0, F (s1, s2) := |α(t0),α(s1),α(s2)| = 0 has solutions
(s1, s2) in (0, ǫ)2 if and only if r(t) is a planar curve.

Proof. It can be checked by expanding vectors to Taylor series which are partly illustrated
above. �

And the lemma also holds for F mentioned in I) to III). It means that F (s1, s2) has no
branch segment on the first quadrant of the (s1, s2) plane connecting the origin point.

Condition IV). Find t⋆ ∈ (t0, t̃1) such that F := |α(s1),α(s2),α(s3)| 6= 0 for any
s1 < s2 < s3 ∈ [t0, t

⋆] ⊂ [t0, t̃1]. That means r(t) does not have a triple of linear dependent
tangents in [t0, t

⋆]. Suppose s1 = t0 + δ1, s2 = s1 + δ2 and s3 = s2 + δ3 where δ1 ≥ 0, δ2 > 0
and δ3 > 0.

If δ1 > 0, then we need to find the least t0 + δ1 + δ2 + δ3 with F (δ1, δ2, δ3) = 0, that is,

min δ1 + δ2 + δ3
s.t. F (δ1, δ2, δ3) = 0, δ1, δ2, δ3 > 0.

By Taylor expansion, we find that F (δ1, δ2, δ3) has no branch passing through the (δi, δj)
plane from the first octant in the space of (δ1, δ2, δ3). Then we initialize δi, i = 1, 2, 3 in the
plane δ1+δ2+δ3 = δ⋆1 = t̃1 and check the intersection of the plane with F . Set the boundary
parametric value t⋆51 = δ⋆1 if there is no intersection; otherwise set δ⋆1 ← δ⋆1/2 and repeat the
checking process.

If δ1 = 0, then F (δ2, δ3) degenerates to the special case mentioned in Lemma 3.5 and we
can find a boundary parametric value as t⋆52. Finally, let t

⋆ = min(t⋆51, t
⋆
52).

We have the following key theorem.

Theorem 3.6. Let t⋆ be found by the above process. For any ǫ > 0, t1 = t⋆ − ǫ > t0, the
associated tetrahedron ♦r0r1r2r3 of r(t), t ∈ [t0, t1] is not degenerated. Furthermore,

10



1) r(t) passes through the endpoints r0, r3 with the corresponding tangent directions r′(t0)
and r′(t1) parallel to r0r1 and r2r3 respectively.

2) r0r1r2 and r1r2r3 are the osculating planes of r(t) at the endpoints r0 and r3, respectively.

3) r(t) lies inside its control tetrahedron ♦r0r1r2r3.

4) r(t) has no singular points and κ(t) 6= 0, τ(t) 6= 0 in [t0, t1].

5) There exists only one parallel point between r1 and r0r2r3, same to r2 and r0r1r3.

Proof. According to conditions I) to III), the tetrahedron ♦r0r1r2r3 does not degenerate.
1), 2), and 4) are also followed by the discussions.

The curve segment is inside the tetrahedron. We claim that the curve segment and r3 are
on the same side of plane P3 = r0r1r2. Otherwise, there exists a parallel point p associated
to P3 but on the different side with r3, since r(t) is a smooth segment. Then α(p) is parallel
to P3 which contradicts to I). Similarly, the curve and r0 are on the same side of P0 = r1r2r3.
Furthermore, the curve and r1 are on the same side of P1 = r0r2r3. Otherwise, there exist at
least two parallel points p1,p2 on different sides of P1. Then |α(p1),α(p2),α(r3)| = 0 which
contradicts to condition IV). Similarly, the curve and r2 are on the same side of P2 = r0r1r3.
Therefore, 3) is followed.

Finally, 5) is correct. Otherwise, there exist at least two parallel points associated to P1

or P2 which will lead a contradiction to condition IV). �

Proposition 3.7. For any t⋆1 < t⋆2 ∈ [t0, t1], the sub-tetrahedron ♦r⋆0r
⋆
1r

⋆
2r

⋆
3 of the sub-

segment r⋆(t), t ∈ [t⋆1, t
⋆
2] also has the properties listed in Theorem 3.6.

Proof. In the dividing process, the conditions in I) to IV) are satisfied for the parameters
through the interval not just only for the endpoints. Then the properties are all satisfied
within [t⋆1, t

⋆
2] ⊂ [t0, t1]. �

3.2. Further properties of the divided segment

In this subsection, we prove that the curve segment obtained in the preceding section
also has properties 6) and 7) in Lemma 2.1. Before that, we need some preparations.

Suppose that the curve segment r(t), t ∈ [t0, t1] satisfies conditions I) - IV) in the pre-
ceding section.

Lemma 3.8. Let ♦r0r1r2r3 be the control tetrahedron of a given curve segment r(t), t ∈
[t0, t1]. Then for any t⋆ ∈ (t0, t1), the control tetrahedron ♦r0r

⋆
1r

⋆
2r

⋆
3 of the curve segment

r(t), t ∈ [t0, t
⋆] has the following properties:

1. r⋆1 and r1 are on the same side of r0 in the tangent line T(t0);

2. r⋆2 and r2 are on the same side of T(t0) in the osculating plane O(t0).

Proof. Using the first and second order Taylor expansion of r(t), one can prove the lemma.
�
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Lemma 3.9. Let O(t⋆) be the osculating plane of curve r(t) at t⋆ ∈ [t0, t1]. If r(t) does not
pass through O(t⋆), then τ(t⋆) = 0.

Proof. Similar to the discussions of condition I), using the third order Taylor expansion,
one can see that |r′(t⋆), r′′(t⋆), r′′′(t⋆)| = 0, that is τ(t⋆) = 0. �

We now prove another key property for the curve segments.

Theorem 3.10. Let ♦r0r1r2r3 be the associated tetrahedron of a curve segment r(t), t ∈
[t0, t1]. Then ‖r0r01‖, ‖r1r12‖, and ‖r2r23‖ are strictly monotone in (t0, t1) where r01, r12,
and r23 are the intersection points of the osculating plane O(t⋆) and r0r1, r1r2, and r2r3
respectively.

Proof. Firstly, the intersection point r01 of r0r1 and the osculating plane O(t⋆) must be
on the same side with r1 with respect to r0 on the curve segment. Otherwise, subdividing
r(t) at t⋆, the sub-segment r⋆1(t), t ∈ [t0, t

⋆] will not be inside its tetrahedron for r01 6= r0 by
Lemma 3.8. We denote by r02 the intersection point of line r0r2 and O(t⋆). Similarly, r23
is on the same side with r2 with respect to r3 and r02 is on the same side with r2 w.r.t. r0
(See Figure 2).

Figure 2: The osculating plane

Secondly, we claim that there exist no t⋆1 < t⋆2 in [t0, t1] such that the osculating planes
O(t⋆1) and O(t⋆2) have the same intersection point r01 with r0r1. It is sufficient to prove that
there has no t⋆ ∈ (t0, t1) such that the osculating plane O(t⋆) passes through r1 by assuming
t⋆2 = t1 and denote t⋆1 by t⋆. Otherwise, if the osculating plane O(t⋆) passes through r1, then
O(t⋆) passes through the line r1r(t

⋆) but cannot pass through r0 and r3 by the restrictions
in condition I). Hence O(t⋆) has only two possible cases: it either intersects r0r3 and the
polygonal line r0r2r3, or intersects r0r2 and r2r3. In the first case, let the intersection points
ofT(t⋆) and O(t0), O(t1) be rO0

, rO1
respectively. Then rO0

and rO1
are on the same side with

respect to r(t⋆) in line T(t⋆). Which means that one of the sub-segments r⋆1(t), t ∈ [t0, t
⋆]

and r⋆2(t), t ∈ [t⋆, t1] cannot be inside its tetrahedron by the first paragraph of the proof, a
contradiction to Proposition 3.7. In the second case, the points r0 and r3 are on the same
side of O(t⋆). By Proposition 3.7, the sub-segment curves at t = t⋆ are also on the same side
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of O(t⋆). Then the curve r(t) does not pass through O(t⋆) at t⋆, which means that τ(t⋆) = 0
by Lemma 3.9. Hence, ‖r0r01‖ and ‖r2r23‖ are monotone.

It is known that r01 lies on r0r1 and r23 lies on r2r3. We claim that r12 must be on r1r2.
Otherwise, assuming O(t⋆) has no common points with r1r2, then O(t⋆) must intersect with
r0r1, r0r2, r1r3, and r2r3. That means r0 and r3 are on the same side of O(t⋆), and then
τ(t⋆) = 0, a contradiction.

Since the curve is inside its tetrahedron, r(t⋆) is inside the quadrangle r01r12r23r30. Ac-
tually, r(t⋆) is inside the triangle r01r12r23. r(t⋆) cannot be on r01 and r23 according to
condition III). So, if r(t⋆) is not inside the triangle r01r12r23, then r(t⋆) is on the opposite
side with r12 with respect to r01r23 or on r01r23. Then T(t⋆)

⋂

O(t0) is not inside r01r12, or,
T(t⋆)

⋂

O(t1) is not inside r12r23, since r01r12r23r30 is convex. Without loss of generality,
we suppose T(t⋆)

⋂

O(t0) is not in r01r12. Then T(t⋆)
⋂

O(t0) are on the same side with
r2 w.r.t. r0r1 in O(t0) by Lemma 3.8. Hence, T(t⋆)

⋂

O(t0) and T(t⋆)
⋂

O(t1) is on the
same side of r(t⋆) in T(t⋆), which means that one of the sub-segments r⋆1(t), t ∈ [t0, t

⋆] and
r⋆2(t), t ∈ [t⋆, t1] cannot be inside its tetrahedron, a contradiction to Proposition 3.7.

Therefore, r(t⋆) can only be inside the triangle r01r12r23, and T(t⋆) can only intersect
r01r12 with r012 and intersect r12r23 with r123. Subdivide r(t) at t = t⋆ to get curve seg-
ments r⋆1(t), t ∈ [t0, t

⋆], and r⋆2(t), t ∈ [t⋆, t1], and their tetrahedrons as ♦r0r01r012r(t
⋆) and

♦r(t⋆)r123r23r3. It has been shown that these two sub-tetrahedrons are inside the tetrahe-
dron ♦r0r1r2r3. As a consequence, for any t⋆1 < t⋆2 in [t0, t1], the sub-tetrahedron of the
sub-segment r⋆(t), t ∈ [t⋆1, t

⋆
2] is inside the tetrahedron ♦r0r1r2r3.

Finally, we prove that ‖r1r12‖ is monotone. It suffices to show that there exist no
t⋆1 < t⋆2 ∈ [t0, t1] such that O(t⋆1) and O(t⋆2) have a common point in r1r2. Otherwise,
we assume O(t⋆1) and O(t⋆2) have a common point r⋆12 in r1r2. Since r0r01 and r2r23 are
monotonously increasing, r01(t

⋆
1) and r23(t

⋆
1) are on the same side of O(t⋆2). Hence the

intersection line of O(t⋆1) and O(t⋆2) can only be outside of the tetrahedron ♦r0r1r2r3 passing
through r⋆12. Then the sub-tetrahedron of the sub-segment r⋆12(t), t ∈ [t⋆1, t

⋆
2], cannot be inside

the tetrahedron ♦r0r1r2r3, which contradicts to the consequence in the preceding paragraph.
�

For clarity, we summarize the properties mentioned in the proof of the above theorem as
follows.

Proposition 3.11. For any t⋆1 < t⋆2 ∈ [t0, t1], the sub-tetrahedron ♦r⋆0r
⋆
1r

⋆
2r

⋆
3 of the sub-

segment r⋆(t), t ∈ [t⋆1, t
⋆
2] is inside the tetrahedron ♦r0r1r2r3.

Similar to 7) of Lemma 2.1, we have the following proposition. The proof is also similar
to that of 7) of Lemma 2.1.

Proposition 3.12. ‖r0r03‖ and ‖r1r12‖ are strictly monotone with t⋆ ∈ (t0, t1) where r03
and r12 are the intersection points r1r2r(t

⋆)
⋂

r0r3 and r0r3r(t
⋆)
⋂

r1r2 respectively.

Proof. It is sufficient to prove that the planes r1r2r(t
⋆) and r0r3r(t

⋆) are not tangent to
r(t) at t⋆ ∈ (t0, t1). If the plane r1r2r(t

⋆) is tangent to r(t) at t⋆ ∈ (t0, t1), then the osculating
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plane O(t⋆) must intersect r1r2r(t
⋆) with the tangent line T(t⋆). By Theorem 3.10, T(t⋆)

must intersect r1r2 which is the common line of O(t0) and O(t1). Dividing the curve segment
into two sub-segments r⋆1(t) and r⋆2(t), then one of them cannot be inside its sub-tetrahedron
according to Lemma 3.8 which contradicts to Proposition 3.11. And one can similarly discuss
the case for the plane r0r3r(t

⋆). �

According to Proposition 3.12, r(t) and the plane r1r2rM have a unique intersection point
sr where rM = (r0 + r3)/2. We call sr the shoulder point of the segment r(t), t ∈ [t0, t1].
Similar to Proposition 3.7, we can see that Theorem 3.10 and Proposition 3.12 also hold for
any subsegment r⋆(t), t ∈ [t⋆1, t

⋆
2].

When we subdivide the approximated curve segment at a point t = t⋆, by Theorem 3.10,
we assume that the osculating plane O(t⋆) intersects r0r1, r1r2 and r2r3 at r01, r12 and r23
respectively. Then, one can have the following corollary.

Corollary 3.13. Let k1(t
⋆) = |r1r01|

|r1r0|
, k2(t

⋆) = |r2r12|
|r2r1|

and k3(t
⋆) = |r3r23|

|r3r2|
, then ki(t

⋆) is mono-

tone and ki(t
⋆) ∈ (0, 1) with t⋆ ∈ (t0, t1), i = 1, 2, 3.

We finally give the Proof of Theorem 3.2 by summarizing the above discussions.

Proof. Set t1 as Theorem 3.6, then r(t), t ∈ [t0, t1] has the eight properties in Theorem 3.6,
3.10 and Propositions 3.11, 3.12. It means that the segment r(t), t ∈ [t0, t1] is a quasi-cubic
segment. �

3.3. Subdivision algorithm

As we mentioned in the introduction, the topology graph G of a parametric space curve
can be computed by the method in [27].

A topology graph is a graph G = {V, E} where V is a set of points in the Euclidean space
V = {vi = (αi, βi, γi)} and E is a set of edges E = {(vi,vj)|vi,vj ∈ V}, any two edges do
not intersect except in the endpoints. A graph G is a topology graph of a parametric space
curve r(t) if G and r(t) have the same topology.

The singular points of the space curve are included as vertices in G. In this paper, we
need to add more information to the vertices in our algorithm. For each vertex vi in the
topology graph, we now update it to

Vi = {vi = r(ti0), {ti0, ti1, . . . , tik},

{F−
i0 , . . . ,F

−
ik}, {F

+
i0 , . . . ,F

+
ik}}, (3.4)

where each tij is a real parameter such that r(tij) = vi, F
−
ij and F+

i0 are the left and right
Frenet frames of vi with respect to the parameters tij , j = 0, . . . , k. The point set V thus
updated is called the extended vertex list. Methods to compute the limitation of the tangent
are also introduced in [23].

The edges in G are not used directly in our approximation algorithm, but they give the
connection relationship of two updated vertices. Since the space curve is parametric, the
connection relationship is given by the parameters corresponding to the points in V in the
increasing order. So in our paper, we use the extended vertex list V instead of topology
graph.
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Example 3.14. Figure 3 (a) shows a space curve with a cusp, whose topology graph is
given in Figure 3 (b). Figure 4(a) shows a numerical approximate curve which does not pass
through the cusp. We may use the topology graph or a refined topology graph to approximate
the curve segment as shown in Figure 4(b). This method has two drawbacks. First, we
generally needs hundreds even thousands line segments to approximate the curve segment for
a small precision [24]. Second, the approximate curve cannot keep the tangent directions of
left and right sides of the cusp point. In this paper, we use a cubic Bézier curve instead of a
line segment as shown in Figure 4(c), which is not only more precise but keeps the geometric
properties of the original curve.

(a) Origin curve (b) Topology graph

Figure 3: Topology graph of the curve

(a) General numerical method (b) Based on topology (c) Proposed method

Figure 4: Numerical approximate curve

Based on the above analysis, we now give the segment dividing algorithm.

Algorithm 3.15. Curve Subdivision.
Input: A normal curve segment r(t), t ∈ [0, 1].
Output: An extended vertex list with elements as (3.4).
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1. Compute the certified vertex list V with all character points as vertices with the
method in [27]. The parameters and the left and right Frenet frames are recorded.
Suppose the real roots associated to the character points are si, i = 1, . . . , l − 1 and
0 = s0 < s1 < · · · < sl = 1.

2. Divide each interval [si, si+1] as si = si0 < si,1 < · · · < si,ki = si+1 such that each
segment satisfies the conditions given in I) to IV).

3. Rearrange the sij in an ascending order and rename them as ti, i = 0, . . . , n. Find the
left and right Frenet frames of each segment r(t), t ∈ [ti, ti+1].

4. Add all these new points to the extended vertex list V which is now ready for approx-
imation.

Each curve segment is defined by two adjoint vertices of V. By Proposition 3.7, the curve
segment from the algorithm is in the tetrahedron and has the properties in Theorems 3.6,
3.10 and Propositions 3.11, 3.12. Hence each curve segment obtained from Algorithm 3.15
is a quasi-cubic segment and so are its sub-segments.

4. Shoulder point approximation

In this section, we propose an efficient algorithm to construct a set of cubic Bézier
curve segments which approximate a quasi-cubic segment obtained in Algorithm 3.15 to any
approximate bound.

Firstly, we focus on one quasi-cubic segment r(t), t ∈ [t0, t1]. Let r0, r3 be the endpoints
of the segment, r1 the intersection point of the tangent line at r0 and the osculating plane
of r3, and r2 the intersection point of the tangent line at r3 and the osculating plane of r0.
Then {r0, r1, r2, r3} defines a family of rational cubic curves

p(ω1, ω2, s) =
r0B0(s) + ω1r1B1(s) + ω2r2B2(s) + r3B3(s)

B0(s) + ω1B1(s) + ω2B2(s) +B3(s)
, s ∈ [0, 1]. (4.1)

Then p(ω1, ω2, s) is called the associated cubic Bézier curve segment of r(t). It has been
shown that p(ω1, ω2, s) meets r(t) at its endpoints r(t0) and r(t1). Furthermore, p(ω1, ω2, s)
and r(t) have the same left and right tangent directions and osculating planes at the end-
points, and the same control tetrahedron ♦r0r1r2r3.

Proposition 4.1. Let p(ω1, ω2, s), s ∈ [0, 1] be the associated cubic Bézier curve segment
of r(t), t ∈ [t0, t1]. Then p(ω1, ω2, s) can approximate r(t) at their endpoints with order two
by setting proper ω1 and ω2, i.e., {p(0) = r(t0),p(1) = r(t1)} and {p′(0) = r′(t0),p

′(1) =
r′(t1)}.

Proof. Following the construction of p(s) for r(t), they are G1 interpolated at their end-
points with arbitrary weights ω1 and ω2. According to the properties of the cubic Bézier
curve, one can set the proper ω1 and ω2 such that p(s) and r(t) are C1 interpolated at their
endpoints. �
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In Proposition 4.1, the weights are selected to enhance the approximation order from
G1 to C1 at the endpoints. Actually, on can get {p(ω1, ω2, 0) = r(t0),p(ω1, ω2, 1) = r(t1)}
and {p′(ω1, ω2, 0) = k1ω1r

′(t0),p
′(ω1, ω2, 1) = k2ω2r

′(t1)}, where k1 and k2 are positive
constants. Hence we can set ω1 and ω2 such that k1ω1 = 1 and k2ω2 = 1. However, in the
following paragraphs, we would like to use the freedom of weights to minimize the position
approximation error. Hence, we will show how to compute the proper weights ω1, ω2 such
that p(s) is an optimal approximation to r(t).

The selection of the weights often leads to some optimization problems such as minω1,ω2

(maxs,t d(ω1, ω2, s, t)
2) where d(ω1, ω2, s, t) is the distance function between p(ω1, ω2, s) and

r(t) in certain forms [3]. The computation is usually not efficient and some global error
analysis is introduced to simplify the optimization problem [35]. Another possible method
is to approximate the target curve segment by checking the parallel points. We can push
the parallel points of the approximated curve and the approximate curve (4.1) as near as
possible. It also leads to an optimal problem for a function with degree three. In the
following, we introduce a novel method which avoids any optimizations.

The shoulder point sp of p(s) is given in Proposition 2.3. The shoulder point sr of r(t)
can be computed as the unique intersection point of r(t) and the triangle r1r2rM . Supposing
the plane P (x, y, z) is defined by r1, r2, and rM , then the shoulder point corresponds to a real
root t⋆ ∈ (t0, t1) of P ◦r(t) with r(t⋆) lying in the triangle r1r2rM . So D(ω1, ω2) = ‖sp−sr‖

2

is a rational function in ω1, ω2 with total degree two. Finding the positive solution from the
equations















∂D

∂ω1
= 0,

∂D

∂ω2

= 0,
(4.2)

we obtain the weights for the approximate cubic curve (4.1).
Before the approximation, we will estimate the error between the two curves. Since there

does not have any simple method to compute the distance of two parametric curves with
different parameters, we use the distance between r and the implicit variety of a rational
cubic curve p. It has been proved that the associated implicit ideal Ip of p can be computed
using the µ-basis method [31] efficiently:

Lemma 4.2. The associated ideal of p has the form Ip = 〈f(x, y, z), g(x, y, z), h(x, y, z)〉,
where f, g and h are quadratic polynomials, i.e., the resultants of p′s µ-basis in pairs.

The algorithm of µ-basis is given in [36]. Generalizing the approximation error function
in [37], we have

e(f, r) =

(

f(r)2

fx(r)2 + fy(r)2 + fz(r)2

)1/2

.

Let e(p, r) := e(f, r)+ e(g, r)+ e(h, r) = e(t) be the univariate error function in t. Then the
approximation error can be set as the following optimization problem:

e = max
t0≤t≤t1

(e(t)).
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There are many methods to solve this problem. However, for the efficiency in practice, we
often sample t as ti = (t1−t0)i

m
, i = 0, . . . , m, for a proper m, say m = 300, and set the

approximate error as max(e(ti)).
The following algorithm is proposed to approximate a quasi-cubic curve segment via

shoulder point approximation.

Algorithm 4.3. Shoulder point approximation
Input: A quasi-cubic curve segment r(t), t ∈ [t0, t1] and a positive error bound δ.
Output: A set of cubic Bézier curves which is a δ-approximation for r(t).

1. Construct the associated tetrahedron of r(t) and the rational Bézier cubic curve
p(ω1, ω2, s), s ∈ [0, 1] as shown in (4.1).

2. Compute the weights (ω1, ω2) such that ‖sp − sr‖ is as small as possible.

(a) Compute shoulder points sr and sp(ω1, ω2) of r(t) and p(s) respectively.
(b) Find a pair of real roots (ω1, ω2) by solving the equation system (4.2).

3. Compute the approximate error δ̄ = e(t). If δ̄ < δ then output p(s). Otherwise, divide
r(t) to two parts on its middle point of arc length and repeat the approximation process
for each subsegment.

Example 4.4. A curve segment r(t), t ∈ [0, 21/32] represented by the black curve with degree
six is given by Algorithm 3.15 and the approximate cubic Bézier curve is the red dash curve
in Figure 5. The weights are ω1 = ω2 = 1 in the left figure. After executing step 2 of
Algorithm 4.3, we have ω1 = 5/11, ω2 = 16/31 in the right figure. The numerical errors are
0.29 and 0.04 respectively computed from error function e(t) by setting m = 300.

Figure 5: Selecting the weights for Bézier cubic curve

To show the termination of the above algorithm, we need the following lemma.

Lemma 4.5. The edge of the sub-tetrahedron in Algorithm 4.3 converges to zero when the
arc length of its subdivided curve segment converges to zero.
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Proof. There exists a t = t⋆1 ∈ (t0, t1) such that k1 = 1/2 since k1(t) is monotone with t in
(t0, t1) by Corollary 3.13. Consider the subsegment r(t), t ∈ [t0, t

⋆
1] and subdivide it at t = t⋆2

such that k2 = 1/2 for the sub-tetrahedron ♦(t0, t
⋆
1). Then, subdivide r(t), t ∈ [t0, t

⋆
2] at t = t⋆3

such that k3 = 1/2 for ♦(t0, t
⋆
3). Let t

(1) = t⋆3. We obtain a subsegment r(t), t ∈ [t0, t
(1)] whose

sub-tetrahedron ♦(t0, t
(1)) has vertices r

(1)
0 = r0, r

(1)
1 , r

(1)
2 , r

(1)
3 . Similarly, we can construct

r
(i)
j , j = 0, 1, 2, 3 and t(i). According to the subdividing process, let r

(0)
j = rj, j = 0, 1, 2, 3.

Then, we have ‖r
(i)
0 r

(i)
1 ‖ < ‖r

(i−1)
0 r

(i−1)
1 ‖/2, ‖r

(i)
1 r

(i)
2 ‖ < ‖r

(i−1)
0 r

(i−1)
1 ‖/2+ ‖r

(i−1)
1 r

(i−1)
2 ‖/2 and

‖r
(i)
2 r

(i)
3 ‖ < ‖r

(i−1)
0 r

(i−1)
1 ‖/2 + ‖r

(i−1)
1 r

(i−1)
2 ‖ + ‖r

(i−1)
2 r

(i−1)
3 ‖/2 for i > 0. Hence, the lengthes

of the three edges ‖r
(i)
0 r

(i)
1 ‖, ‖r

(i)
1 r

(i)
2 ‖ and ‖r

(i)
2 r

(i)
3 ‖ of a sub-tetrahedron ♦(t0, t

(i)) converge
to zero when i → ∞. Since r(t), t ∈ [t0, t1] is a rational curve and has no singular point,
t(i) − t0 converges to zero when i→∞.

Let t ∈ [t0, t1] and ♦r0r
′
1(t)r

′
2(t)r

′
3(t) its tetrahedron. Then s(t) = ‖r0r

′
1(t)‖+‖r

′
1(t)r

′
2(t)‖+

‖r′2(t)r
′
3(t)‖ converges to zero when t → t0, since r(t) has no singularities in [t0, t1]. Hence

when the arc length of its subdivided curve segment converges to zero, which means t→ t0,
the edge of sub-tetrahedron converges to zero. �

The termination of Algorithm 4.3 can be guaranteed by the following theorem.

Theorem 4.6. In Algorithm 4.3, the approximation error converges to zero for the subdi-
vision procedure.

Proof. By Lemma 4.5, when the arc length of its subdivided curve segment converges to
zero, the edge of the sub-tetrahedron converges to zero. Since the approximation error is
controlled by the edges, it converges to zero for the subdivision procedure. �

Remark 4.7. In Algorithm 4.3, the Step 3 is given to simplify the proof of the convergence.
In fact, for less computation, we always implement the algorithm with the following step
instead of 3.

3′. Compute the approximate error δ̄ = e(t). If δ̄ < δ then output p(s). Otherwise, divide
r(t) to two parts on its shoulder point sr repeat the approximation process for each
subsegment.

According to the proof of Lemma 4.5, the algorithm fails if a subsequence of si does not
converge to zero under shoulder point subdivision process, and it never happened in our
experiments. It is an interesting problem to prove the termination of this version of the
algorithm.

5. Algorithms and experimental results

After dividing the curve to segments by Algorithm 3.15, we can approximate each curve
segment by the shoulder approximation method in Algorithm 4.3. In this section, we give
the main approximation algorithm and the experimental results.
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The global approximation is based on the local approximation and topology determi-
nation in the above sections. Some relationships of the approximate curve segments are
considerable in the global view. In our approximation, the line edges in the topology graph
are replaced by the associated cubic Bézier curve segments. To ensure the topological iso-
topy before and after the replacement, we restrict the cubic curve segments to have the
appropriate topology based on the topology graph.

It is shown that an associated cubic Bézier curve segment are decided by its tetrahedron.
Let ♦p1

0p
1
1p

1
2p

1
3 and ♦p2

0p
2
1p

2
2p

2
3 be two control tetrahedrons of two cubic Bézier curve seg-

ments p1(s) and p2(s). Then p1(s) and p2(s) can have no common points except for their
endpoints. In the further consideration, we give two cases for the problem. The first case is
that p1(s) and p2(s) have only one common point being the endpoint and the same Frenet
frames at this endpoint. And the other positional situations of p1(s) and p2(s) are included
in the second case.

If all the pairs of cubic Bézier curves satisfy the second case, then to ensure that cubic
curve segment does not bring in the unexpected knots while it replaces the line edge, one
can give a sufficient condition that each cubic curve segment has no common points with
the control tetrahedron of another curve segment except for the endpoint. This condition
can be strengthened if we do not want to check the collision between a cubic curve segment
and a tetrahedron. The condition can be that the two tetrahedrons have no inner points.
By Lemma 4.5, the condition can be satisfied by subdividing the curve segments. Then the
approximate curve have same topology with the given curve, since the approximate curve
is controlled by the sequence of the tetrahedrons. Each tetrahedron has no common inner
points with other tetrahedrons.

We then only need to discuss the pairs of cubic Bézier curves belong to the first case.
Assuming p1

0 = p2
0, then p2

1 is on the radial (1 − λ)p1
0 + λp1

1, λ ≥ 0, and p2
2 is on the same

side with p1
2 on the plane p1

0p
1
1p

1
2. According to the monotonicity of the Bézier curve in

Lemma 2.1, p1(s) and p2(s) can replace the their associated line edges without topology
modification.

Algorithm 5.1. Certified B-spline approximation with error bound.
Input: A normal curve segment r(t), t ∈ [t0, t1] and a positive error bound δ.
Output: A cubic B-spline p(s) such that the approximate error between p(s) and r(t) is
less than δ and the approximate implicit spline for r(t).

1. Divide the curve r(t) into quasi-cubic segments by Algorithm 3.15.

2. Check the topology conditions.

(a) Check the intersection of any pair of cubic Bézier curves which have the same
Frenet frame at the endpoint, divide them to two parts on their shoulder points
respectively, if they have common points more the endpoints.

(b) Check the collision of any pair of tetrahedrons, divide them to two parts on their
shoulder points respectively, if they have inner points.

3. For each segment, find the cubic Bézier curves which approximate the given curve
segment with precision δ by Algorithm 4.3.
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4. Find the implicit form for the cubic Bézier curves with the µ-basis method [31].

5. Convert the resulting rational cubic Bézier curves to a rational B-spline with a proper
knot selection as the method presented in [2].

Remark 5.2. In the process of topology conditions checking, we only need to check the colli-
sion of the sub-tetrahedrons subdivided from which are the intersected before the subdivision,
since the sub-tetrahedrons are included in its father tetrahedrons. It means that the less and
less pairs of tetrahedrons need to be checked in the subdivision process.

Theorem 5.3. From Algorithm 5.1, we obtain a piecewise C1 continuous approximate cubic
B-spline curve which keeps the singular points, inflection points, and torsion vanishing points
of the approximated parametric curve. At cusps, the approximate curve is C0 continuous.

Proof. Algorithm 5.1 gives the G1 cubic Bézier spline since it is constructed as the hermite
interpolation of the original curve, if the character points are not cusps. Then C1 continuity
can be ensured from the conversion from the Bézier spline with a proper knot selection [2].
The singular points of the curve are treated as segmenting points. Since at the segmenting
points, the left and right Frenet frames are preserved, the origin curve and the approximate
curve have the same singular points. Since the cubic spline introduces no more singular
points, the algorithm keeps the singular points. At a cusp, its left (right) tangent and
osculating plane are kept according to Algorithm 3.15, and the approximate curve is then
only C0 continuous.

The character points include the vertices of the topology graph. The topology conditions
ensure that the topology is persevered while the topolgy line edges are replaced by the cubic
Bézier curve segments. According to Theorem 4.6, the approximate curve from Algorithm 5.1
converges to the approximated curve and they have the same topology.

The left and right Frenet frames of the approximate curves are the same as that of
the approximated curve at the character points, which means that the principal normal
vector and the osculating plane are both kept. Then the principal normal vector changes its
direction at the inflection point. Similarly, the curve does not pass through the osculating
plane at the torsion vanishing point. �

Finally, we give several examples to illustrate the algorithm.

Example 5.4. The space curve r1(t) from Example 6 in [27] has a singular point (0, 0, 0)
at t = ±1,±∞, where

r1(t) =

(

1− t2

(t2 + 1)2
,
t (1− t2)

(t2 + 1)2
,
t2 (1− t2)

(t2 + 1)4

)

.

The curve segment r1(t), t ∈ [−2, 2] and its approximate spline curve p(s) are shown in
Figure 6, they are shown in the same figure for comparison and the tetrahedron sequence is
also given in Figure 7, the numerical error e(t) is shown in Figure 8.

As we know, the point (0, 0, 0) is a characteristic point from the topology determining. It
is preserved in p(s) and p(s) is C1 at this point. Each corresponding segment of p(s) and
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Figure 6: r1(t) and p(s)

Figure 7: r1(t) v.s. p(s) and control tetrahedron

Figure 8: Numerical error for r1 with m = 300

r1(t) is interpolated with the Frenet Frames at the endpoints. One can find that r1(t), t ∈
[−∞,+∞] is an asymmetric space trifolium curve. To approximate the other two parts of
t ∈ [−∞,−2] and t ∈ [2,+∞], we can transform t = ±∞ to t = 0 by a reparametrization
as t′ = 1/t. Then approximating r1(t

′), t′ ∈ [−1/2, 1/2] and combining the former spline
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segment, we can get the approximation of the whole trifolium curve.

Example 5.5. Two more space curves are given in this example. r2(t) has a complex sin-
gular point and r3(t) is a random curve with degree nine.

r2(t) =

(

t2 (t− 1)2

(1 + t2)2
,
t (t− 1)3

1 + t2
,
t (t− 1)4

1 + t2
.

)

, t ∈ [−1/16, 3/2]

r3(t) =

(

t(1181 t8−1878 t7−1236 t6+1960 t5+2058 t4−2688 t3+532 t2−9+72 t)
−2+9 t−72 t2+308 t3−840 t4+1218 t5−952 t6+588 t7−408 t8+149 t9

,

−
t(−1686 t7+287 t8+3252 t6−2464 t5+462 t4+168 t3−28 t2+9)

−2+9 t−72 t2+308 t3−840 t4+1218 t5−952 t6+588 t7−408 t8+149 t9
,

−
4t2(263 t7−924 t6+1338 t5−1190 t4+861 t3−483 t2+154 t−18)

−2+9 t−72 t2+308 t3−840 t4+1218 t5−952 t6+588 t7−408 t8+149 t9

)

, t ∈ [0, 1]

The approximated curves, approximate spline curves, and the numerical errors are shown
in the following figures (Figures 9, 10, 11). In r2(t), (0, 0, 0) is a self-intersected point with
t = 0, 1, it is also a cusp point at t = 1. This point is preserved in our approximate B-spline
curve p(s). Furthermore, the limited tangent directions of the cusp are also preserved. p(s)
is C1 or C0 at (0, 0, 0) when p(s) passes through (0, 0, 0) as a self-intersected or a cusp point
respectively. The approximation information for curves r1, r2, and r3 is listed in Table 1.

Figure 9: r2(t) v.s. p2(s) and r3(t) v.s. p3(s)

curve degree error segments interval

r1 8 0.004157 8 [−2, 2]

r2 5 0.0001677 4 [− 1
16
, 3
2
]

r3 9 0.03298 6 [0, 1]

Table 1: Numerical Approximation
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Figure 10: Numerical error for r2

Figure 11: Numerical error for r3

6. Conclusion and further work

We present an algorithm to construct a rational cubic B-spline approximation for a space
parametric curve. The main purpose of the work is to present an isotopic approximation
method which preserves the geometric features of the original curve. The approximated
curve is divided into quasi-cubic segments which have similar properties to those of a cubic
Bézier curve. Sufficient conditions are proposed for a divided segment having the expected
properties and then its approximate Bézier spline is naturally constructed. Based on these
properties, the shoulder point approximate algorithm is presented and it is proved to be
convergent. An approximate implicitization can be found by the µ-basis method. The
method is applicable for any parametric space curve in theory, although the given conditions
are more difficult to compute when the parametric expression is not in rational form.

The intersection curve of a parametric surface and an implicit surface is another impor-
tant type of space curves. The curve can be regarded as parametric form with two parameters
and a constraint function for them. As a further work, we will study the approximation of
this type of space curve.
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