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Abstract

This paper discusses the dimension of spline spaces S(m,n,m−1, n−1,T )
over certain type of hierarchical T-meshes. The major step is to set up a bijec-
tion between the spline space S(m,n,m− 1, n− 1,T ) and a univariate spline
space whose definition depends on the l-edges of the extended T-mesh. We
decompose the univariate spline space into direct sums in the sense of isomor-
phism using the theory of the short exact sequence in homological algebra.
According to the decomposition of the univariate spline space, the dimension
formula of the spline space S(m,n,m − 1, n − 1,T ) over certain type of hi-
erarchical T-mesh is presented. A set of basis functions of the spline space is
also constructed.

Keywords: Dimension formula, spline space, T-mesh, homology.

1 Introduction

Non-Uniform Rational B-Splines (NURBS) are popular tool to represent surface
models in Computer Aided Geometric Design (CAGD) and Computer Graphics.
However, due to the tensor-product structure of NURBS, local refinement of surface
models based on NURBS is impossible, and NURBS models generally contain large
number of superfluous control points. To overcome the above drawbacks, Sederberg
et al. introduced T-splines, the control meshes of which allow T-junctions ([1, 2]).
T-splines provide local refinement strategy and can reduce the large number of
superfluous control points in NURBS models.

∗Corresponding author, email: dengjs@ustc.edu.cn
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In [3], the concept of spline spaces over T-meshes is introduced. Different from T-
splines, a spline over a T-mesh is a single polynomial within each cell of the T-mesh,
and it achieves the specified smoothness across the common edges. Spline spaces
over T-meshes are suitable for geometric modeling[4] and they can be applied for
analysis naturally, since it is easy to do standard Finite Element Method analysis
based on splines over T-meshes [5].

One major issue in the theory of splines over T-meshes is to study the dimension
of the spline spaces. There have been a few literature focusing on the problem so far.
In [3], the dimension formula for the spline space S(m,n, α, β,T ) is obtained with
constraintsm ≥ 2α+1, n ≥ 2β+1. The result is further improved by Li et al. [6]. For
the spline spaces with highest order smoothness where m ≤ 2α, n ≤ 2β, the authors
of the current paper derived a dimension formula for C1 biquadratic spline spaces
(that is, S(2, 2, 1, 1,T )) over hierarchical T-meshes[7]. Recently, B. Mourrain gives
a general formula for the spline spaces S(m,n, α, β,T ) by homological techniques[8].
Unfortunately there is a term in the dimension formula which is very hard to compute
in practice.

Contrary to the above positive results, Li and Chen have showed that the di-
mension of spline spaces with highest order smoothness over T-meshes may depend
on the geometry besides the topology information of the T-meshes [9]. The result
suggests that it is vain to study the dimension formula over general T-meshes in the
case of highest order of smoothness. In this paper, the dimension formula of spline
spaces S(m,n,m − 1, n − 1,T ) over certain type of hierarchical T-meshes will be
explored.

There are several methods for establishing the dimension of spline spaces, such
as the B-net method [3], and the smoothing cofactor method [10] and homology
method [11]. In the smoothing cofactor method, the cofactor of a spline associated
with the common edge of two adjacent cells is a univariate polynomial. This is
similar to homology theory in topology. Therefore, using the smoothing cofactor
method and according to a result in [7], we construct an isomorphism between a
spline space with highest order smoothness over a T-mesh and a univariate spline
space satisfying some conditions. For a certain type of hierarchical T-mesh, by giving
an order of the interior l-edges of the extended T-mesh, we can then decompose the
univariate spline space into a direct sum, and thus give a dimension formula for the
spline space over hierarchial T-meshes.

The rest of the paper is organized as follows. In Section 2, the definitions and
some results regarding T-meshes and spline spaces over T-meshes are reviewed. In
Section 3, an equivalence is set up between the spline over a T-mesh and a univariate
spline space. The proof of the dimension formula is presented in Section 4. Some
examples are also provided. In Section 5, we conclude the paper with future research
problems. We leave the proof for a key lemma and the construction of a set of basis
functions of the spline space in the appendix.
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2 Spline Spaces over T-meshes

In this section, we first review some concepts about T-meshes and spline spaces over
T-meshes.

2.1 Spline spaces over T-meshes

A T-mesh is a rectangular grid that allows T-junctions. For simplicity, in this paper
we consider only regular T-meshes whose boundary grid lines form a rectangle. We
adopt the same definitions for vertex, edge, and cell as in [3], and the definitions
for l-edge, interior l-edge, associated tensor product mesh are borrowed
from [7]. A grid point in a T-mesh is called a vertex of the T-mesh. Vertices
of a T-mesh are divided into different types. For example, in Figure 1, {bi}

i=10
i=1

are boundary vertices and {vi}
i=5
i=1 are interior vertices. v2 is a crossing vertex and

{bi}
i=10
i=1 ∪{vi}

i=5
i=1−{v2, b1, b3, b6, b8} are T-vertices. The line segment connecting two

adjacent vertices on a grid line is called an edge of T-mesh such as v4v5, b9b10, v2v3
in Figure 1. b2v3 is a large edge (l-edge for short), which is the longest possible
line segment consisting of several edges. The boundary of a regular T-mesh consists
of four l-edges,which are called boundary l-edges. The other l-edges in T-mesh are
called interior l-edges. A regular T-mesh can be extended to a tensor product mesh,
called the associated tensor-product mesh, by extending all the interior large edges
to the boundary, see Figure 1.

b1 b2 b3

b4

b5

b6b7b8

b9

b10 v1 v2

v3v4v5

T
b1 b2 b3

b4

b5

b6b7b8

b9

b10 v1 v2

v3v4v5

T c

Figure 1: A T-mesh T and its associated tensor product mesh T c.

Given a T-mesh T , F is the set of all the cells of T and Ω is the region occupied
by cells in F . Spline spaces over T-meshes are defined by

S(m,n, α, β,T ) : = {f(x, y) ∈ Cα,β(Ω) : f(x, y)|φ ∈ Pmn, ∀φ ∈ F}, (1)

where Pmn is the space of all the polynomials with bi-degree (m,n), and Cα,β is the
space consisting of all the bivariate functions that are continuous in Ω with order α
along the x direction and order β along the y direction. In this paper, we will focus
on the spline space S(m,n,m− 1, n− 1,T ).
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2.2 Hierarchical T-meshes and extended T-meshes

A hierarchical T-mesh is a special type of T-mesh that has a natural level struc-
ture [4]. It is defined in a recursive fashion. Initially a tensor product mesh (level 0)
is presumed. From level k to k+1, a cell is subdivided at level k into four sub-cells,
which are cells at level k+1, by connecting the middle points of the opposite edges
with two straight lines. Figure 2 illustrates a sequence of hierarchical T-meshes.

Level 0 Level 1 Level 2

Figure 2: Hierarchical T-meshes.

For a T-mesh T , the extended T-mesh T ε associated with T is an enlarged
T-mesh by copying each horizontal boundary line of T m times, and each vertical
boundary line of T n times, and by extending all the line segments with an end
point on the boundary of T [7]. This can be made precise by the following example.
Figure 3 illustrates a T-mesh (left) and the extended T-mesh (right) associated with
degree (3, 3).

Figure 3: A T-mesh T and its extended T-mesh associated with degree (3, 3).
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2.3 Homogeneous boundary conditions

A spline space over a given T-mesh T with homogeneous boundary conditions is
defined by [7]

S(m,n, α, β,T ) := {f(x, y) ∈ Cα,β(R2) : f(x, y)|φ ∈ Pmn, ∀φ ∈ F and f |R2\Ω ≡ 0},

where Pmn,F is defined as before. One important observation in [7] is that the
two spline spaces S(m,n,m− 1, n− 1,T ) and S(m,n,m− 1, n− 1,T ε) are closely
related.

Theorem 2.1. [7] Given a T-mesh T , and let T ε be the extended T-mesh associated
with S(m,n,m− 1, n− 1,T ). Then

S(m,n,m− 1, n− 1,T ) = S(m,n,m− 1, n− 1,T ε)|T , (2)

dimS(m,n,m− 1, n− 1,T ) = dimS(m,n,m− 1, n− 1,T ε). (3)

Based on the above theorem, we only have to consider spline spaces over T-meshes
with homogeneous boundary conditions.

3 Equivalent spline spaces

In this section, we will give an equivalent description of spline spaces S(m,n,m −
1, n− 1,T ε) by using the smoothing cofactor method.

3.1 Smoothing cofactor method

As before, let T and T ε be a T-mesh and its extension respectively. Let F =
{C1, C2, · · · , Ck} be the set of all the cells in T ε, and Ωi be the region occupied by
Ci ∈ F . Denote Ωk+1 = R

2\ ∪ki=1 Ωi and F ε = {Ω1,Ω2, · · · ,Ωk+1}.

Let U1, U2, U3, U4 ∈ F ε be four regions in adjacent positions as shown in Figure 4.
For a spline function f(x, y) ∈ S(m,n,m − 1, n − 1,T ε), denote fi(x, y) be the
bivariate polynomial which coincides with f(x, y) on Ui, i = 1, 2, 3, 4. Note that if
fi(x, y) = fj(x, y) for two adjacent cells Ui and Uj , then Ui and Uj can be merged
into a single region, and in this case (x0, y0) is a T-junction.

By the smoothing cofactor method, we have the following relationship between
fi(x, y):

Lemma 3.1. [6, 9] Let fi(x, y), i = 1, 2, 3, 4 be defined as in the preceding paragraph.
Then there exist a constant k ∈ R and polynomials a(y) ∈ Pn[y], b(x) ∈ Pm[x] such

5



U2 U3

U4U1

b

(x0, y0)

Figure 4: Smoothing conditions in adjacent cells

that

f1(x, y) = f2(x, y) + b(x)(y − y0)
n,

f3(x, y) = f2(x, y) + a(y)(x− x0)
m,

f4(x, y) = f2(x, y) + a(y)(x− x0)
m + b(x)(y − y0)

n + k(x− x0)
m(y − y0)

n,

where (x0, y0) is the vertex of T ε in Figure 4. Furthermore, a(y), b(x) and k are
uniquely determined by fi(x, y), i = 1, 2, 3, 4, specifically

a(y) =
1

m!

(
∂mf3(x0, y)

∂xm
−

∂mf2(x0, y)

∂xm

)
, (4)

b(x) =
1

n!

(
∂nf1(x, y0)

∂yn
−

∂nf2(x, y0)

∂yn

)
, (5)

and

k =
1

m!

1

n!

∂m+n(f2(x, y) + f4(x, y)− f1(x, y)− f3(x, y))

∂xm∂yn
. (6)

a(y) and b(x) are smoothing co-factors associated the edges between adjacent cells.
The constant k is called the conformality factor associated with the common vertex
(x0, y0).

Based on the above lemma, we convert the dimension problem into the study of
a univariate spline space. We first introduce the following definition.

Definition 3.1. Let Eh be a horizontal l-edge in T ε, and {v1, v2, · · · , vr} be vertices
on Eh. Assume the x-coordinates of the vertices are x1 < x2 < . . . < xr respectively.
We define a univariate spline space with homogeneous boundary conditions associ-
ated with Eh:

S(m,m− 1, Eh) :=
{
p(x) ∈ Cm−1(R) : p(x)|[xi,xi+1] = pi(x) ∈ Pm[x],

i = 1, 2, . . . , r − 1, and p(x)|R\[x1,xr] ≡ 0
}
. (7)
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Similarly, for a vertical l-edge Ev, we can define a univariate spline space S(n, n−
1, Ev) associated with it.

By the homogeneous boundary conditions, it is easy to see that for any p(x) ∈
S(m,m− 1, Eh), there exist constants k1, . . . , kr such that

r∑

i=1

ki(x− xi)
m ≡ 0. (8)

Equation (8) is equivalent to a linear system associated with Eh:





∑r

i=1 ki = 0,
∑r

i=1 kixi = 0,

· · · ,
∑r

i=1 kix
m
i = 0.

(9)

For a vertical l-edge Ev, there is a similar equation

s∑

i=1

ki(y − yi)
n ≡ 0, (10)

which is also equivalent to a linear system associated with Ev:





∑s

i=1 ki = 0,
∑s

i=1 kiyi = 0,

· · · ,
∑s

i=1 kiy
n
i = 0.

(11)

By (9) and (11), one immediately has

Lemma 3.2. [6]

dimS(m,m− 1, Eh) = (r −m− 1)+, dimS(n, n− 1, Ev) = (s− n− 1)+.

Here u+ = max(0, u).

3.2 Conformality vector spaces

To study the dimension of spline space S(m,n,m−1, n−1,T ε), we need to consider
the conformality conditions for all the (horizontal and vertical) l-edges. Thus we
introduce the following definition.

7



Definition 3.2. Let Eh
i , i = 1, 2, . . . , p be all the horizontal l-edges of T ε, and Ev

j ,
j = 1, 2, . . . , q be all the vertical l-edges of T ε. Define a linear space W [T ε] by

W [T ε] := {k = (k1, k2, · · · , kv)
T : Lh

i = 0, Lv
j = 0, i = 1, · · · , p, j = 1, · · · , q},

where v is the number vertices of T ε, ki is the conformality factor corresponding to
i-th vertex of T ε, and Lh

i = 0 and Lv
j = 0 are linear systems associated with the

l-edges Eh
i and Ev

j respectively. W [T ε] is called the conformality vector space of

S(m,n,m − 1, n − 1,T ε). Similarly, one can define the conformality vector space
W [E] of S(m,m− 1, Eh) (or S(n, n− 1, Ev)) associated with a l-edge.

The following facts should be noted regarding W [T ε].

1. W [T ] can also be defined over a general T-mesh T (besides an extended
T-mesh). For any f(x, y) ∈ S(m,n,m− 1, n− 1,T ), there is a unique corre-
sponding vector k ∈ W [T ] called conformality vector.

2. ki, which is the i−th component of k, is the conformality factor corresponding
to i−th vertex in T ε. This vertex is the intersection point of two l-edges.
So ki has to satisfy both equations (9) and (11) associated with the two l-
edges. Once k is determined, the smoothing co-factors a(y) and b(x) can
be constructed accordingly. Figure 5 illustrates an example, where a(y) =
k5(y − y1)

n + k4(y − y2)
n + k3(y − y3)

n, b(x) = k1(x − x1)
m + k2(x − x2)

m.
a(y) is determined by k3, k4, k5 whose corresponding vertices lie beneath the
edge associating with a(y); b(x) is determined by k1, k2 whose corresponding
vertices lie on the left of the edge corresponding to b(x).

x1 x1x2 x2x3 x3x4 x4x5 x5

y1 y1

y2 y2

y3 y3

y4 y4

y5 y5

k1 k2 k3 k7

k5

k4

k6
a(y)

b(x)

Figure 5: Conformality vector

3. A naught value of ki which is the conformality factor corresponding to a T-
vertex results in the vanishing of the corresponding vertex in the T-mesh
T . An example is illustrated in Figure 6 where k7 = 0, and in this case
S(m,n,m− 1, n− 1,T ) = S(m,n,m− 1, n− 1,T ′), or T degenerates to T ′.
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x1 x1x2 x2x3 x3x4 x4x5 x5

y1 y1

y2 y2

y3 y3

y4 y4

y5 y5
T T ′

k1k1 k2k2 k3k3 k7

k5k5

k4k4

k6k6

Figure 6: The naught value of a conformality factor.

As an example, we discuss the conformality vectors of B-spline functions.

Example 3.1. Let ∆ : −∞ < x1 < x2 < . . . < xr < ∞ (r > m + 1) be a
partition of R, and S(m,m − 1,∆) be the B-spline function space defined over ∆,
that is, S(m,m − 1,∆) consists of piecewise polynomials of degree m with Cm−1

continuity over ∆. The B-spine basis function N [xi, xi+1, . . . , xi+m+1] is an ele-
ment in S(m,m − 1, Ei), where Ei is the interval [xi, xi+m+1] with the partition:
xi < xi+1 < . . . < xi+m+1. Here 1 ≤ i ≤ r − m − 1. The conformality vector
k = (ki, ki+1, . . . , ki+m+1) of N [xi, xi+1, . . . , xi+m+1] can be obtained by solving the
associated linear system (9). It is easy to see that kjkj+1 < 0, j = i, i+1, . . . , i+m
and ki > 0.

Example 3.2. Let S(m,m − 1,∆x) be the B-spline function space defined over
∆x : −∞ < x1 < x2 < . . . < xr < ∞ (r > m + 1), and S(n, n − 1,∆y) be
the B-spline function space defined over ∆y : −∞ < y1 < y2 < . . . < ys < ∞
(s > n + 1). We denote T⊗ as a tensor product mesh ∆x × ∆y. It is easy to see
that, f(x) ∈ S(m,m − 1,∆x) and g(y) ∈ S(n, n − 1,∆y) implies that f(x)g(y) ∈
S(m,n,m− 1, n− 1,T⊗).

Now assume that the B-spline basis functions N [xi, xi+1, . . . , xi+m+1] ∈ S(m,m−
1,∆x) and N [yj , yj+1, . . . , yj+n+1] ∈ S(n, n− 1,∆y) have conformality vectors k1 :=
(k1

i , k
1
i+1, . . . , k

1
i+m+1) and k2 := (k2

j , k
2
j+1, . . . , k

2
j+n+1) respectively. Then by equa-

tion (6), the B-spline basis function N [xi, xi+1, . . . , xi+m+1]·N [yj, yj+1, . . . , yj+n+1] ∈
S(m,n,m − 1, n − 1,T⊗) has a conformality vector k1 ⊗ k2 which is a vector of
dimension (m + 2)(n + 2) with elements k1

pk
2
q , p = i, i + 1, . . . , i + m + 1, q =

j, j + 1, . . . , j + n+ 1.
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3.3 Equivalence of spline spaces

Based on the above preparations, we obtain a mapping K between the spline space
S(m,n,m− 1, n− 1,T ε) and the conformality vector space W [T ε]:

K : S(m,n,m− 1, n− 1,T ε) −→W [T ε]. (12)

By Equation (6), K is a linear mapping due to the linear property of the operator
∂m+n /∂xm∂yn. In fact, K is an isomorphic mapping.

Theorem 3.3. The mapping K : S(m,n,m−1, n−1,T ε) −→W [T ε] is bijective.

Proof. We first prove that K is injective. It is enough to show that K f = 0 implies
f ≡ 0 for f ∈ S(m,n,m−1, n−1,T ε). By the remark 3 following Definition 3.2, if
the conformality vector of f(x, y) is a zero vector, then f(x, y) is a single polynomial
over T ε. By the homogeneous boundary conditions, f(x, y) ≡ 0. Thus K is
injective.

Next we show K is surjective. By the remark 2 following Definition 3.2, for a
given conformality vector k ∈ W [T ε], one can construct a smoothing cofactor for
each edge of the T-mesh T ε, and thus obtains a spline function f(x, y) ∈ S(m,n,m−
1, n− 1,T ε) corresponding to k, that is, K is surjective. Thus the mapping K is
bijective.

By the above theorem, the spline space S(m,n,m − 1, n − 1,T ε) is isomorphic
to the conformality vector space W [T ε], and

dimS(m,n,m− 1, n− 1,T ε) = dimW [T ε]. (13)

Similarly, one can show that

S(m,m− 1, Eh) ∼= W [Eh], S(n, n− 1, Ev) ∼= W [Ev] (14)

for a horizontal l-edge Eh and a vertical l-edge Ev.

In the following, we only have to analyze the structure of W [T ε].

4 The dimension formula

In this section, we will derive a dimension formula for the spline S(m,n,m− 1, n−
1,T ε) over a certain type of hierarchical T-meshes by direct sum decomposition
of the spline space. The decomposition is according to each interior l-edge of the
T-mesh T ε. A set of basis functions of the spline space is also constructed.
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4.1 Some definitions

We first introduce a certain type of hierarchical T-meshes associated with degree
m,n and denote it by Tm,n.

Definition 4.1. Let T⊗ = [x0, x1, · · · , xp] × [y0, y1, · · · , yq] be a tensor product
mesh, and let X = {x0, xm−1, · · · , xs(m−1), xp} and Y = {y0, yn−1, · · · , yt(n−1), yq},
where s and t are unique integers such that 0 < p − s(m − 1) ≤ m − 1, 0 <
q − t(n − 1) ≤ n − 1. The domain Ω = [x0, xp] × [y0, yq] is subdivided by the lines
{x = xi, y = yj : xi ∈ X, yj ∈ Y } into sub-domains, each of which is occupied by
a local tensor product mesh of size (m − 1) × (n − 1) (or smaller near the right
or upper boundary lines). Each subdomain is called a (m,n)-subdomain of T⊗. a
(m,n)-subdomain is called s boundary one, if it is near the boundary lines of T-
mesh. A subdomain is said subdivided if each cell in the subdomain is subdivided (a
cell is subdivided by connecting the middle points of oppose sides of the cell with two
line segments). A subdomain is called isolated if it is subdivided while its adjacent
subdomains (two subdomains are called adjacent if they share a common boundary
line segment) are not subdivided and it is not boundary one.

Figure 7(a) illustrates an example where a tensor product mesh is subdivided
into (3, 3)-subdomains by blue lines. In Figure 7(b), two subdomains are further
subdivided by red lines, and these one subdomain is isolated.

(a) (b) (c)

Figure 7: Hierarchical T-mesh Tm,n in the case of m = n = 3, p = 5, q = 6
.

Definition 4.2. A hierarchical T-mesh Tm,n associated with (m,n) is defined level
by level. At level k = 0, Tm,n is a tensor product mesh T⊗. From level 0 to level 1,

11



subdivide T⊗ into (m,n)-subdomains, and some of which are further subdivided to
get the mesh at level 1. Generally from level k to level k + 1, subdivide some local
tensor product meshes at level k (which are obtained by subdividing subdomains at
level k − 1) into (m,n)-subdomains at level k, some of which are further subdivided
to get level k + 1 mesh.

The T-mesh Tm,n is a special type of hierarchical T-mesh [4]. In particular, it is
a regular hierarchical T-mesh when m = n = 2. Figure 7 illustrates the process of
generating a hierarchical T-mesh T3,3. Figure 7(a) shows that a tensor product mesh
is subdivided into subdomains at level k = 0. Figure 7(b) shows two subdomains
at level k = 0 are subdivided to get a mesh at level k = 1. Figure 7(c) shows
two local tensor product meshes (corresponding to the two subdivided subdomains
in Figure 7(b)) are subdivided into (3, 3)-subdomains at level k = 1, and three
subdomains at level k = 1 are further subdivided to get a mesh at level k = 2.

4.2 The dimension formulas

Now we are able to state our main result in the paper – the dimension formula
for spline space S(m,n,m− 1, n− 1,T ε

m,n), where T ε
m,n is Tm,n’s extended T-mesh

associated with degree m,n.

Theorem 4.1. Let V + be the number of crossing vertices of T ε
m,n. Assume T ε

m,n

has EH interior horizontal l-edges and EV interior vertical l-edges. Then

dimS(m,n,m− 1, n− 1,T ε
m,n)

= (m− 1)(n− 1) + V + − (m− 1)EH − (n− 1)EV + δ, (15)

where δ is the number of isolated subdomains of T ε
m,n at all levels.

Before proving the theorem, we need some preparations.

Lemma 4.2. Let Tm,n be a hierarchical T-mesh associated with (m,n), and T ε
m,n be

its extended T-mesh. E is the set of all the interior l-edges of T ε
m,n. Then the l-edges

in E can be ordered as Et ≺ Et−1 ≺ · · · ≺ E1 such that the projection mapping

π : W [Ti] −→W [Ei]

is surjective, i = 1, 2, . . . , t. Here Ti is the T-mesh obtained by deleting {E1, · · · , Ei−1}
from T ε

m,n, and Ei ⊂ Ti is regarded as a l-edge in Ti.

Proof. See the appendix.

Base on the above lemma, we can decompose the conformality vector space
W [T ε

m,n] into direct sums of W [Ei].

12



Theorem 4.3. Let the notations be the same as in Lemma 4.2. Then

W [Ti] ∼= W [Ti+1]⊕W [Ei], i = 1, 2, . . . , t.

Proof. Since Ti = Ti+1∪Ei, S(m,n,m−1, n−1,Ti+1) ⊂ S(m,n,m−1, n−1,Ti).
Correspondingly, W [Ti+1] can be regarded as a subspace of W [Ti] by taking every
vector k ∈ W [Ti+1] as a vector in W [Ti] whose components corresponding to the
vertices of Ei are zero, and the remaining components are the same as k′s.

Now consider the sequence

0 // W [Ti+1]
i

// W [Ti]
π

// W [Ei] // 0 , (16)

where i in the natural embedded mapping, and π is the projection mapping defined
in Lemma 4.2. We will show that the sequence is exact. Since i is injective and π is
surjective by Lemma 4.2, it is enough to show that Im(i) = Ker(π).

On one hand, for any k ∈ W [Ti+1], i(k) = k′ is a vector in W [Ti] whose com-
ponents (conformality factors) corresponding to the vertices of Ei are zero. Thus
π(i(k)) = 0 ∈ W [Ei], that is, Im(i) ⊂ Ker(π).

On the other hand, for any k ∈ Ker(π), π(k) = 0, that is, the components of k
corresponding to the vertices of Ei are zero. Therefore k ∈ Im(i), i.e., Ker(π) ⊂
Im(i).

Thus the sequence (16) is exact. Since W [Ti+1], W [Ti] and W [Ei] are linear
spaces, the sequence is split, and therefore W [Ti] ∼= W [Ti+1]⊕W [Ei], as required.

Based on the above theorem, we have

Corollary 4.4. The set of functions ∪ti=1{B
i
j(x, y)}

j=ri−m−1
j=1 defined in the proof of

Lemma 4.2 form a basis for the spline space S(m,n,m− 1, n− 1,T ε
m,n).

Now we are ready to prove the dimension formula (15).

Proof of Theorem 4.1. By Theorem 4.3, W [T ε
m,n] can be decomposed into direct

sums of W [Ei]:
W [T ε

m,n]
∼= ⊕t

i=1W [Ei].

The interior l-edges E = {E1, E2, . . . , Et} of T ε
m,n can be divided into disjoint

sets Ei, i = 0, 1, . . . , l, i.e., E = ∪li=0E
i and Ei ∩ Ej = ∅, i 6= j. Ei is the set of

interior l-edges of T ε
m,n defined at level i, i = 0, 1, . . . , l. In particular, E0 is the set

of the interior l-edges of the initial extended tensor product mesh T ε
⊗ . By the order

defined in Lemma 4.2, any element in Ei precedes any element in Ej for i > j.
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By the direct sum decomposition of W [T ε
m,n],

dimW [T ε
m,n] =

l∑

i=0

∑

Ej∈Ei

dimW [Ej]. (17)

Now we count dimW [Ej ] according to the level of Ej from the highest level l to
the lowest level 0.

By Lemma 3.2 and (14),

dimW [Ej] = dimS(m,m− 1, Ej) = (v+j −m+ 1)+

if Ej is a horizontal l-edge, and

dimW [Ej ] = dimS(n, n− 1, Ej) = (v+j − n + 1)+

if Ej is a vertical l-edge. Here v+j is the number of crossing vertices of Ej in the
mesh Tj .

Consider all the interior l-edges Ei in a fixed level i (i = l, l − 1, . . . , 0). Ei is
obtained by subdividing some subdomains at level i− 1 (except for i = 0 where E0

is the initial extended tensor product mesh). As shown in the proof of Lemma 4.2,
if there is no isolated subdomain at level i− 1, then one can order the l-edges in Ei

such that

v+j ≥

{
m− 1, if Ej is a horizontal l-edge
n− 1, if Ej is a vertical l-edge

If a subdomain S is isolated, then one can order the l-edges in the subdomain S

such that the above equality holds for all but one vertical l-edge in S . For the
exceptional l-edge,

v+j = n− 2.

Figure 9, illustrates an example for the order of l-edges in E2 in the case of
m = 4, n = 3.

From the above facts, one has
∑

Ej∈Ei

dimW [Ej] =
∑

Ej∈Ei
h

(v+j −m+ 1) +
∑

Ej∈Ei
v

(v+j − n+ 1) + δi, i ≥ 1, (18)

where Ei
h is the set of horizontal l-edges in Ei, Ei

v is the set of vertical l-edges in Ei,
and δi is the number of isolated subdomains at level i− 1. For i = 0, since E0 is the
set of l-edges of a tensor product mesh T ε

⊗ , it is direct to check that

∑

Ej∈E0

dimW [Ej] =
∑

Ej∈E0
h

(v+j −m+ 1) +
∑

Ej∈E0
v

(v+j − n+ 1) + (m− 1)(n− 1). (19)

Now the dimension formula (15) follows from (13), (17), (18) and (19).
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4.3 Examples

In this subsection, we give two examples to count the dimensions of the spline spaces
S(m,n,m− 1, n− 1,T ε

m,n).

Example 4.1. In the case of m = 2, n = 2, Tm,n is a regular hierarchical T-mesh
and we denote it as T . By the dimension formula (15),

dimS(2, 2, 1, 1,T ) = dimS(2, 2, 1, 1,T ε)

= V + −E + δ + 1

where, V + is the number of crossing vertices, E is the number of interior l-edges,
and δ is the number of isolated cells of T ε. This formula has been presented in [7].

Next we give a concrete example for the case m = 3, n = 3.

Example 4.2. In this example, the hierarchical T-mesh T3,3 (which is the same as
the T-mesh in Figure 7(c)) and its extension T ε

3,3 are illustrated in Figure 8. There

T3,3 T ε
3,3

Figure 8: A hierarchical T-mesh T3,3 and its extension.

are three isolated subdomains (one at level 0 and two at level 1) in the middle of
T ε

3,3. Thus δ = 3. It is easy to count that V + = 166, EH = 21 and EV = 19. So

dimS(3, 2, 2, 2,T ε
3,3)

= V + − (3− 1)EH − (3− 1)EV + δ + (3− 1)(3− 1)

= 93.

We can also get the dimension by counting the number of basis functions.

There are (12 − 4)(13− 4) = 72 basis functions over the 11 × 12 tensor product
mesh T ε

3,3. At level 1, 7 basis functions are added to the basis functions set by
subdividing two subdomains. At level 2, 14 basis functions are added to the basis
functions set by subdividing three subdomains. Totally, there are 72 + 7 + 14 = 93
basis functions, and therefore the dimension of S(3, 2, 2, 2,T ε

3,3) is 93.
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5 Conclusions and future work

This paper presents a dimension formula for the spline space S(m,n,m − 1, n −
1,T ) over certain type of hierarchical T-meshes. By using the smoothing co-factor
method, we set up a bijection between the spline space S(m,n,m − 1, n − 1,T )
and a conformality vector space W [T ]. Then we decompose W [T ] into direct sum
of simple linear spaces by using homological technique, and a dimension formula is
thus obtained. At a by-product, we also obtain a set of basis functions for the spline
space S(m,n,m− 1, n− 1,T ).

It is important to construct a set of proper basis functions which have nice prop-
erties for the spline space in applications. We will study this topic in the future.

6 Appendix

In this section, the proof of Lemma 4.2 is given.

Proof. We first outline the proof strategy. For getting the result, we choose a set of
bases {ki

j} for W [Ei] and construct a function Bi
j(x, y) ∈ S(m,n,m−1, n−1,Ti)(∼=

W [Ti]) such that the conformality vector of Bi
j(x, y) corresponding to the vertices

of Ei is k
i
j . Then π : W [Ti] −→W [Ei] is surjective.

Before we discuss the construction of Bi
j(x, y), some preparations are given as

follows.

Preparations

1. Choose a set of bases for W [Ei]. If Ei is horizontal, let ∆x : −∞ < x1 <
x2 < · · · < xri < ∞ be the x-coordinates of the vertices of Ei on Ti. The
B-spline basis functions {N [xj , xj+1, · · · , xj+m+1]}

ri−m−1
j=1 is a set of bases of

S(m,m − 1,∆x) and {ki
j}

ri−m−1
j=1 is a set of bases of W [Ei], where ki

j is the
conformality vector of N [xj , xj+1, · · · , xj+m+1]. For a vertical interior l-edge,
we can choose a set of bases of W [Ei] similarly.

2. Define an operator on T-meshes. The operator D on a T-mesh T associated
with an l-edge Ei is defined as follows. DEi

(T ) = (Ei,T1), where T1 is the T-
mesh by removing Ei from T . Then π1◦DEi

(T ) = Ei , and π2◦DEi
(T ) = T1.

3. Define an order of E. The interior l-edges E of T ε
m,n can be divided into disjoint

sets Ei, i = 0, 1, . . . , l, i.e., E = ∪li=0E
i with Ei ∩ Ej = ∅, i 6= j. Ei is the set

of interior l-edges of T ε
m,n defined at level i, i = 0, 1, . . . , l, where l is the level

of Tm,n. The order “≺” between Ep and Eq is defined as: ∀ep ∈ Ep, ∀eq ∈ Eq,
if q < p, then eq ≺ ep. In the following, the order “≺” inside Ep is presented.

Consider Ep, and suppose the T-mesh T̃ p is obtained by deleting the l-edges
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∪li=p+1E
i from T ε

m,n. Without loss of generality, it is enough to consider the
case of p = l.

Then, the order inside El is defined as follows with respect to the case of l = 0
and l > 0, respectively.

• l = 0. The T-mesh T is a tensor product mesh T⊗. The progress of
choosing interior l-edges sequence is presented in the following.

T ← T⊗

SE ← the set of interior l-edges of T

i← 1
while SE 6= ∅ do
if there is no trivial interior l-edge then

choose any interior l-edge E0
i

else

choose a trivial interior l-edge E0
i (i.e W [E0

i ] = 0)
end if

T ← π2 ◦DE0
i
(T )

SE ← the set of interior l-edges of T

i← i+ 1
end while

By this progress, we get a sequence of E0 denoted as E0
1 , E

0
2 , · · · , where

E0
i is chosen earlier than E0

i+1. The order is defined as E0
i+1 ≺ E0

i

• l > 0. Select an l-edge E ∈ El. Then E must intersect with an (m,n)-
subdomain D at level (l− 1). If E is vertical, we consider all the vertical
l-edges in El which intersect with D and arrange them from left to right.
Then E is the i-th l-edge. By the structure of T ε

m,n, E is also the i-th
l-edge in another (m,n)-subdomain at level (l− 1) which intersects with
E. Hence we can denote the position of E as L(E) = i. Considering the
local tensor product structure on D at level (l−1), L(E) = i < m. If E is
horizontal, L(E) can be defined in a similar way by arranging horizontal
l-edges in El from top to bottom and L(E) < n.

Define l-edge sets A1, A2, A3, A4, A5 as

A1 ={E ∈ El : If E is vertical, L(E) < m− 2;

If E is horizontal, L(E) < n− 2},

A2 ={E ∈ El : E is horizontal, L(E) = n− 2}.

A3 ={E ∈ El : E is vertical, L(E) = m− 2},

A4 ={E ∈ El : E is horizontal, L(E) = n− 1},

A5 ={E ∈ El : E is vertical, L(E) = m− 1}.

The progress of choosing interior l-edge sequence is presented in the fol-
lowing.

17



T 0 ← T ε
m,n

for i = 1 to 5 do

T̃ ← T i−1

SE ← the set of interior l-edges of T̃ in Ai

j ← 1
while SE 6= ∅ do
if there is no trivial l-edge in SE then

choose any interior l-edge El
i,j from SE

else

choose any trivial l-edge El
i,j from SE

end if

T̃ ← π2 ◦DEl
i,j
(T̃ )

SE ← the set of interior l-edges of T̃ in Ai

j ← j + 1
end while

T i ← T̃

end for

This progress generates an interior l-edge sequence El
1,1, E

l
1,2,· · · , E

l
1,j1

,
El

2,1, E
l
2,2, · · · , E

l
2,j2

, · · · , El
5,j5

. If one l-edge e1 is chosen earlier than
another l-edge e2 in the sequence, we define e2 ≺ e1.

For an example, see Figure 9, we consider the case of l = 2. Here m =
4, n = 3, p = 6, q = 6. An l-edge in the T-mesh belongs to the set in the
right side of Figure 9 whose name has the same color as the l-edge. And
its order of an interior l-edge sequence of E2 is labeled near itself.

A1

A2

A3

A4

A5

1 5 7

6

4 2 10 13 3

12

9

11

8

Figure 9: An example of E2, where m = 4, n = 3, p = 6, q = 6.

Bi
j(x, y) construction
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Now we are ready to construct Bi
j(x, y).

When l > 0, the B-spline function N i
j(x, y) can be constructed by the tensor

product mesh over (m,n)-subdomains at level (l − 1) contained e. Here N i
j(x, y) is

related to the knots of an interior l-edge e in the sequence associated with A1(or
A2, A3). It is a tensor-product B-spline function, which equals to Bi

j(x, y) up to a
nonzero constant. For trivial interior l-edges, no function is introduced. Suppose
that we construct the functions associated with all the l-edges whose orders are
“larger” than the order of E in the sequence associated with A4. We now construct
the functions associated with E. E is a non-trivial horizontal l-edges and we denote
the x-coordinates of E as {x1, x2, · · · , xd}. Let α be the number of vertices formed
by two l-edges with level l intersection. This type of vertex is called an (l, l)-vertex
later. The i-th knots sequence of E’s x-coordinates is {xi, · · · , xi+(m+1)}. According
to the structure of the current mesh, α ∈ {0, 1, 2}.

1. α = 0. If l ≥ 2, a B-spline can be constructed over a tensor product mesh over
all the (m,n)-subdomains at level (l − 2) containing E’s i-th knot sequence.
If l = 1, we can construct a B-spline according to the tensor product mesh of
level 0. The required function Bi

j(x, y) is the same as the B-spline function up
to a nonzero constant.

2. α = 1. If l ≥ 2, consider the unique (l, l)−vertex, denoted as Q. Assume
the (m,n)-subdomain which contains Q at level (l − 2) is Σ. If the interior
vertical l-edge that contains Q goes through Σ, we can construct a B-spline
similar to the case of α = 0. If it does not go through Σ, one of its endpoint
must be within Σ and another is outside of Σ according to the structure of
the special hierarchical T-mesh. Suppose the intersection point between the
vertical l-edge and Σ is R. We extend the l-edge from the endpoint within
Σ and cut the boundary of Σ at P . Then the n + 2 vertices can be used
to construct a B-spline N1(x, y) by a tensor product mesh over all (m,n)-
subdomains containing the given (m+2) vertices. These n+2 vertices consist
of P , R, and n vertices in the original vertical l-edge within Σ. Therefore,
the conformality vector of N1(x, y) is nontrivial at these (m+ 2) vertices and
trivial at the new vertices without P in the process of extending. Suppose
k1 is the conformality factor at P . If another function g(x, y) is constructed
such that its conformality factor at P is −k1 and the conformality factors at
the new vertices without P and the given (m + 2) vertices are zeros, then
f(x, y) = N1(x, y) + g(x, y) differs by a multiplier λ ( 6= 0) with the function
Bj

i (x, y) which we need by the linear property of K and Example 3.2.

Now we discuss the construction of g(x, y). If we remove Q from the set
consisting of P and all the vertices in the original vertical l-edge, the number
of remaining vertices is not less than (n+2). We choose (n+2)−vertices from
these remaining vertices and P must be one of them. Similar to the case of
α = 0, there is no (l, l)-vertex in these (n+2)−vertices. So, a B-spline N2(x, y)
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is constructed and we denote k2 as the conformality factor of N2(x, y) at P .
By Example 3.2, k2 6= 0 and the conformality vector of N2(x, y) is trivial at
the new vertices without P and those given (m + 2) vertices according to Q
removed. Then we define g(x, y) = −k1/k2N2(x, y).

For an example, see Figure 10, where m = 3, n = 3. Here P is shown as “�”
in the figure. N1(x, y) is constructed over the tensor product mesh shown in
the upper right of this figure and the one in the lower right is used to construct
N2(x, y). Compute k1 of N1(x, y) and k2 of N2(x, y) at P as we have shown in
Examples 3.1 and 3.2. Then f(x, y) is given by

f(x, y) = N1(x, y)−
k1
k2

N2(x, y). (20)

When l = 1, a B-spline associated with the given m + 2 vertices can be

rs

utut
ut
ut

ut ut ut ut

rs

ut ut ut ut ut

ut
ut
ut

ut

Figure 10: Construction of the linear combination of B-splines in the case of m =
n = 3.

constructed by the tensor product mesh of level 0.

3. α = 2. If l ≥ 2, there are two (l, l)−vertices P1 and P2 in the given (m + 2)
vertices. One of the two vertical l-edges at P1, P2 respectively must go through
Σ′ that occupied by (m,n)-subdomains containing P1 and P2 at level (l − 2).
So, we can construct the function by the method presented in the case of
α = 1. When l = 1, the function can be constructed by the tensor product
mesh of level 0 and the case l ≥ 2.
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When all the l-edges in the sequence associated with A4 are deleted, there are no
(l, l)−vertices at the l-edges in A5. So we can construct the function we need by the
method presented in the case of α = 0.

When l = 0, by the order defined on E0 and the tensor product mesh at level 0,
B-spline surfaces can always be constructed. So as stated previously, π is surjective.
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