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Abstract

We introduce the notion of radical parametrization of a surface,
and we provide algorithms to compute such type of parametrizations
for families of surfaces, like: Fermat surfaces, surfaces with a high
multiplicity (at least the degree minus 4) singularity, all irreducible
surfaces of degree at most 5, all irreducible singular surfaces of degree
6, and surfaces containing a pencil of low-genus curves. In addition,
we prove that radical parametrizations are preserved under certain
type of geometric constructions that include offset and conchoids.
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1 Introduction

Let us try to motivate our work from two different points of view: from the
purely mathematic point of view and from the potential applications.

Let K be a field (say, of characteristic zero) and f ∈ K[x] a univari-
ate polynomial. A classical question is whether the roots of f(x) can be
computed exactly. We know by Galois theory that, in general, we can only
provide a positive answer (based on radical expressions) when the degree is
at most 4. Furthermore, methods to compute them are available. Now, take
f(x, y) ∈ K[x, y] and formulate the same question. The first remark is that
the dimension of the zero-set (i.e. the set of roots) has increased from 0 to 1.
The answer was given by Zariski, who proved in Zariski (1926) that this is
only possible, in general, when the genus of the curve defined by f(x, y) (say
w.l.o.g. that f is irreducible over the algebraic closure K of K) is at most 6.
Furthermore, in Sendra & Sevilla (2011), it is shown how to calculate them if
the genus is at most 4; the cases of genus 5 and 6 are treated algorithmically
in Harrison (2011). An expectable remark is that, when the genus is 0, the
answer is expressed in K ′(t), where K ′ is a finite algebraic extension of K
and t is transcendental over K ′, and when 1 ≤ genus ≤ 6 the answer is given
by radical expressions over K ′(t).

The next step is to formulate the same question when f(x, y, z) ∈ K[x, y, z].
This is the central topic of this article. To our knowledge, there exist no theo-
retical results establishing the limitations to solve the problem, either by the
degree (in 1 variable) or by genus (in 2 variables). In this paper we give the
first steps in this direction; later in this introduction we give more details.

Now, let us see the problem from another side. It is well known that in
many applications dealing with geometric objects, parametric representations
are very useful. Examples of this affirmation are, for instance:

• when dealing with the intersection of two varieties (say surfaces or
curve/surface) it is convenient to have a parametric representation of
one of them;

• when plotting in the screen a curve or a surface;

• when computing line or surface integrals;
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• when dealing with the velocity or the acceleration of a particle following
a path on the variety;

• when performing geometric transformations, such as rotations, trans-
lations, and scaling;

• when executing projections, etc.

Therefore, it is important to provide parametric representations. There are
different options: one can use rational functions, trigonometric parametriza-
tions, piecewise approximate parametrizations, etc. In this paper, we pro-
pose to enlarge the class of rational parametrizations by introducing radical
parametrizations, i.e. algebraic expressions involving (maybe nested) radicals
of polynomials.

To be more precise, we introduce the notion of radical parametrization by
using basic notions of Galois theory as well as the ideas in Sendra & Sevilla
(2011), and we provide algorithms to parametrize by radicals some families of
surfaces. In Section 2, besides introducing the basic notations, we show how
to parametrize by radicals some special surfaces, including Fermat surfaces.
In the next two sections we try to follow the first steps in the theoretical
analysis of the rationality of surfaces (see Schicho (1998a)). More precisely,
in Section 3 we generalize the notion of parametrization by lines to the case of
radicals. As a consequence we provide an algorithm that parametrizes every
surface having a singularity of multiplicity d− r, where d is the degree of the
surface and r ≤ 4. From these results we prove that every irreducible surface
of degree at most 5 is parametrizable by radicals, and that every singular
surface of degree 6 is also parametrizable by radicals.

In Section 4 we provide algorithms to parametrize by radicals surfaces
with a pencil of genus g curves, where g ≤ 4, with some additional hypothe-
ses when the genus is 1 or 4. Furthermore, we offer an alternative approach for
surfaces with a pencil of non-hyperelliptic genus 4 curves, based on a known
theoretical characterization of such curves; the detection of the hyperellip-
tic case and its reduction to other cases in this article is well known, see
that section for further details. Finally, in Section 5 we prove that radical
parametrizations are preserved under certain types of geometric construc-
tions that include offseting and conchoids.
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Throughout this paper we will use the following notation: F is an alge-
braically closed field of characteristic zero (say e.g. F = C), and S ⊂ F3

is an irreducible surface defined by the irreducible polynomial F (x, y, z) ∈
F[x, y, z].

The computations and images shown in what follows have been performed
with Maple and Surfex respectively.

2 The Notion of Radical Parametrization of

a Surface

We introduce the notion of radical parametrization of a surface by extending
the notion of radical parametrization of a curve (see Sendra & Sevilla (2011)).
For this purpose, in the sequel,

• let t = (t1, t2), where t1, t2 are transcendental elements over F, and

• let K = F( t ).

But first, we recall briefly the classical notion of solvability by radicals. f ∈
K[x] (K is any field of characteristic zero) is solvable by radicals over K if
there exists a finite tower of field extensions

K = K0 ⊂ K1 ⊂ · · · ⊂ Kr

such that

1. for i = 1, . . . , r, Ki = Ki−1(αi) where α`i
i − ci = 0 for some `i > 0 and

ci ∈ Ki−1;

2. the splitting field of f over K is contained in Kr.

A tower as above is called a root tower for f over K.

Intuitively speaking a radical parametrization of a surface is triple of
rational algebraic expressions involving (possibly nested) radicals of poly-
nomials such that its formal substitution, in the defining polynomial of the
surface, yields zero; and such that its Jacobian has rank 2. A formal defini-
tion follows.
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Definition 2.1. The surface S is radical or parametrizable by radicals if there
exist

• A field E which is the largest field in a root tower of some f(x) ∈ K[x]
solvable over K,

F(t1, t2) = K = K0 ⊂ K1 ⊂ · · · ⊂ Kr = E ,

• (R1, R2, R3) ∈ E3 satisfying

◦ F (R1, R2, R3) = 0,

◦ the rank of the jacobian of (R1, R2, R3) w.r.t. t is 2.

In that case we call (R1, R2, R3) a radical (affine) parametrization of S. Sim-
ilarly we introduce the notion of radical projective parametrization. We will
denote the radical parametrization as P( t ). Furthermore, if L is a subfield
of F, and the root tower can be constructed over L( t ), we say that S is
parametrizable by radicals over L.

Example 2.2. Let us start with a simple example to illustrate the notion of
rational parametrization. We see that

P( t ) =

(
t1, t2,

√
1− t21 − t22

)
is a radical parametrization of the unit sphere. Indeed, we take f(x) = x2 −
(t21 + t22) ∈ K[x] (note the ambiguity of the

√
symbol, since it could denote

any of the two roots of f). Then f solvable using the tower

F( t ) = K0 ⊂ K1 = K0

(√
1− t21 − t22

)
= E.

Now, P( t ) ∈ E3 and its jacobian has rank 2.

If R1, R2, R3 ∈ K then they trivially belong to the largest field of a
root tower. Therefore, every rational surface parametrization is a radical
parametrization, in the sense of our definition. In other words, every ratio-
nal surface is radical. Also, note that if

Φ : S ⊂ F3 → Φ(S) ⊂ F3
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is a rational map of finite degree, and P( t ) is a radical parametrization of
S, then Φ(P( t )) is a radical parametrization of the Zariski closure of Φ(S);
furthermore, because of the condition of the finite degree, the image variety
is also a surface. As consequence, we get the following proposition.

Proposition 2.3. The property of being parametrizable by radicals is invari-
ant under birational transformations.

Let us see some families of surfaces that can be easily parametrized by
radicals. The basic idea in all cases below is to achieve a degree 4 polynomial
from the implicit equation that we solve by radicals. We recall that S is
assumed to be irreducible. Note that, in all cases below, the surfaces are
parametrized over the field of definition of S, i.e. over the smallest field
where the defining polynomial F can be expressed.

Case 1 If the partial degree of F w.r.t. one of the variables is less or equal
to 4, then S is parametrizable by radicals. Let

F (x, y, z) = f4(x, y)z4 + f3(x, y)z3 + f2(x, y)z2 + f1(x, y)z + f0(x, y),

then g(z) = F (t1, t2, z) ∈ K[z] has degree at most 4. Let R( t ) be a root of
g(z) (note that g is solvable by radicals over K) then

(t1, t2, R( t ))

is a rational parametrization of S.

Case 2 An extension of the above situation is as follows. Let

F (x, y, z) = Fm1(x, y)zsm1+4 + Fm2(x, y)zsm2+3 + Fm3(x, y)zsm3+2

+Fm4(x, y)zsm4+1 + Fm5(x, y)

where s,mi ∈ N, and Fi is homogeneous of degree mi. We consider the
rational transformation

Φ : Σ := S \ {(a, b, c) ∈ S | c 6= 0} → Φ(Σ) ⊂ K3

(x, y, z) 7→ (xzs, yzs, z)
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Note that Φ is birational, indeed

Φ−1 : Φ(Σ) → Σ ⊂ K3

(x, y, z) 7→
( x
zs
,
y

zs
, z
)

Then, we consider the surface S̃ defined as the Zariski closure of Φ(Σ). It is
defined by

F̃ (x, y, z) = F
( x
zs
,
y

zs
, z
)

= Fm1(x, y)z4 + Fm2(x, y)z3 + Fm3(x, y)z2

+Fm4(x, y)z + Fm5(x, y)

that corresponds to our first case. So, it is parametrizable by radicals. Let
(R1( t ), R2( t ), R3( t )) be a radical parametrization of S̃. Then,(

R1( t )

R3( t )s
,
R2( t )

R3( t )s
, R3( t )

)
parametrize S radically.

Case 3 Let
F (x, y, z) = f(x, y)zm − g(x, y).

then S is parametrizable by(
t1, t2,

m

√
g(t1, t2)

f(t1, t2)

)
.

Note that if f = 1 and g(x, y) = −(xm + ym + 1) we get the Fermat surfaces.

Case 4 A natural extension of the previous case is as follows. Let

F (x, y, z) = f4(x, y)z4m + f3(x, y)z3m + f2(x, y)z2m + f1(x, y)zm + f0(x, y).

If (R1( t ), R2( t ), R3( t )) is a radical parametrization of the surface defined
by

f4(x, y)z4 + f3(x, y)z3 + f2(x, y)z2 + f1(x, y)z + f0(x, y)

then (
R1( t ), R2( t ), m

√
R3( t )

)
is a radical parametrization of S.
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3 Radical Parametrization by Lines

In this section we will see how the idea of rationally parametrizing by lines
can be extended to the case of radical parametrizations. In this section, we
assume that S has degree n and P ∈ S is an (n− r)-fold point, where r ≤ 4.
We consider a plane Π such that P 6∈ Π. Then, the projection from P of
S over Π is r : 1. Therefore, using that univariate polynomials of degree at
most 4 are soluble by radicals we can generate a radical parametrization of
S.

More precisely, the algorithmic reasoning is as follows: let H(t1, t2) be a
polynomial parametrization of the plane Π. We consider the line L passing
through P and a generic point of Π. L can be defined by L(h) = P +
h(H(t1, t2)− P ) where h is a new parameter. In this situation, we compute
the interesection L ∩ S. The polynomial f(h) = F (L(h)) ∈ K(h) has degree
n and factors as

f(h) = hn−rg(h)

so deg(h(g)) = r ≤ 4. Therefore, it is solvable by radicals. This means that
we can express h as a radical expression on t , say h = R( t ), from where one
concludes that L(R( t )) is a radical parametrization of S. Thus, we have the
following theorem:

Theorem 3.1. Every irreducible surface of degree n having an (n − r)-fold
point is parametrizable by radicals.

In addition, note that the following algorithm can be derived.

Algorithm 3.2 (Radical Parametrization by Lines). Given an irreducible
surface S defined by F and a point P = (a, b, c) ∈ S of multiplicity deg(F )−r
such that r ≤ 4, the algorithm generates a radical parametrization of S.

1. Let L(h) = P + h(t1 − a, t2 − b, λ− c), where λ 6= c.

2. Compute, by radicals, the roots of g(h) =
L(h)

hdeg(F )−r ; say R( t ) is one

of the roots.

3. Return P( t ) = H(R( t ), t1, t2)).
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Figure 1: Surface in Example 3.3

We illustrate the algorithm with an example.

Example 3.3. We consider the surface S (see Fig. 1) defined by

F (x, y, z) = x10 + y10 + z10 − xyz4.

It is a degree 10 surface with a 6-fold point at the origin. Therefore, the
algorithm is applicable. In Step 1 we get

L(h) = (ht1, ht2, h)

In Step 2, the polynomial g(h) is

g(h) = h4t1
10 + h4t2

10 + h4 − t1t2.

Computing the roots one may take

R(h) =

√
(t1

10 + t2
10 + 1)

√
(t1

10 + t2
10 + 1) t1t2

t1
10 + t2

10 + 1
.

Thus, the algorithm generates the radical parametrization

P( t ) =


√

(t1
10 + t2

10 + 1)
√

(t1
10 + t2

10 + 1) t1t2 t1

t1
10 + t2

10 + 1
,

√
(t1

10 + t2
10 + 1)

√
(t1

10 + t2
10 + 1) t1t2 t2

t1
10 + t2

10 + 1
,
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√
(t1

10 + t2
10 + 1)

√
(t1

10 + t2
10 + 1) t1t2

t1
10 + t2

10 + 1

 .

From Theorem 3.1, one deduces the following corollaries:

Corollary 3.4. Every irreducible surface of degree less or equal 5 is parametriz-
able by radicals.

Proof. Take a point of the surface and apply Theorem 3.1.

Corollary 3.5. Every singular irreducible surface of degree less or equal 6
is parametrizable by radicals.

Proof. Take a singular point of the surface and apply Theorem 3.1.

4 Radical Parametrization of Surfaces with a

Pencil of Low Genus Curves

In this section we consider the case when S has a pencil of curves Cs with
genus less or equal 4. If the genus g of the curves in the pencil is zero, it is
known (see e.g. Noether (1870), Peternell (1997), Schicho (1998a), Schicho
(1998b)) that S is rational. We analyze the situation when 1 ≤ g ≤ 4,

and we will be able to prove (providing and algorithm) that for g ∈ {2, 3}
the surface S is radical. Moreover, for g ∈ {1, 4}, with some additional
hypotheses, we also prove that the surface is radical, and in the case g = 4
we offer an alternative method based on the fact that such curves are known
to be trigonal (that is, they admit a 3 : 1 map to the line).

We see Cs as a space curve in F(s)3. Then we can consider a projection
π : F(s)3 → F(s)2 mapping Cs birationally onto a plane curve. Thus, we may
assume w.l.o.g. that Cs is indeed a pencil of plane curves. Let us also assume
w.l.o.g. that its defining polynomial is F (x, y, s).

In the following reasoning we will apply to Cs the radical parametrization
algorithms for curves given in Sendra & Sevilla (2011). So, for the sake of
completeness, we recall here the main steps of the two main algorithms.
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Algorithm 4.1 (Radical parametrization of curves of genus≤ 3). LetG(x, y, w)
be the homogeneous form defining a projective plane curve of genus g ≤ 3
and degree d, then the algorithm computes a radical parametrization of the
affine curve defined by G(x, y, 1) in terms of the variable t.

1. Compute the linear system of adjoints Ad−2 of degree d− 2.

2. Take (d− 3) + g simple points on the curve.

3. Compute the linear subsystem A∗d−2 of Ad−2 obtained by forcing Ad−2
to pass through all the simple points computed in Step 2. Let A∗d−2 be
defined by the polynomial H∗(x, y, w, t).

4. Determine

S1(x,w, t) = ppt(Resy(G,H
∗)), S2(y, w, t) = ppt(Resx(G,H∗))

where ppt denotes the primitive part with respect to t.

5. Solve by radicals S1(x, 1, t) and S2(y, 1, t). Combining the roots of both
polynomials (see Sendra & Sevilla (2011) for further details on how to
combine the roots) one gets the radical parametrization.

Algorithm 4.2 (Radical parametrization of curves of 2 ≤ genus ≤ 4). Let
G(x, y, w) be the homogeneous form defining a projective plane curve of genus
2 ≤ g ≤ 4 and degree d, then the algorithm computes a radical parametriza-
tion of the affine curve defined by G(x, y, 1) in terms of the variable t.

1. Compute the linear system of adjoints Ad−3 of degree d− 3.

2. Take g− 2 simple points on the curve.

3. Compute the linear subsystem A∗d−3 of Ad−3 obtained by forcing Ad−3
to pass through all the simple points computed in Step 2. LetH∗(x, y, w, t)
be the defining polynomial of A∗d−3.

4. Follow Steps 4 and 5 in Algorithm 1.

The idea now is to apply either Algorithm 4.1 or Algorithm 4.2 to Cs as a
curve over the algebraic closure of F(s). In both cases the problem appears
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Figure 2: Surface in Example 4.4

in the execution of Step 2, since we need to compute simple points that are
radical over F(s), i.e. points whose coordinates are over a root tower of F(s).
In the following we see how to do that for the cases of genus 2 and 3, and
some special cases of genus 1 and 4. Note that, in this section, we are slightly
changing the notation since the parameters t are now (s, t).

4.1 Genus 2

Theorem 4.3 (Case of genus 2). If S has a genus 2 pencil of curves, then
S is radical.

Proof. Note that no simple point is needed in Algorithm 4.2.

Example 4.4. We consider the surface S (see Fig. 2) defined by

F (x, y, z) = y2 + 2y2z + 2y2z6 + y3 + xy − xyz − 2yz6x− 4xy2 − 2xy2z−
xy2z6 + z6x3 + zx3y + x3y2 .

S has degree 9, but degx(f) = 3 and hence one can parametrize using case 1
in Section 2. Nevertheless, we observe that S contains the pencil of curves
Cs (see some of the curves in Fig. 3) defined by

g(x, y) = F (x, y, s) ∈ F(s)[x, y].

12



Figure 3: Some curves in the pencil of Example 4.4

Note that Cs, as a curve over the algebraic closure of F(s), has degree 5.
Moreover, its singular (projective) locus is

{(0 : 1 : 0), (1 : 0 : 0), (0 : 0 : 1), (1 : 1 : 1)}

where all points are double. So the genus of Cs is 2, and hence Algorithm 4.2
is applicable. We consider the linear system of adjoints of degree d− 3 = 2.
Its (affine) defining polynomial is

h(x, y, t) = (−1− t)y + x+ txy

Now, we compute the primitive part with respect to t of the resultant of g
and h w.r.t. y and x respectively, and get

S1(t, s, x) = −tx2 − x2s6t3 + x2st2 − 2stx+ 3xs6t2 − tx+ xs6t3 + x
+2 + s+ t2 − st2 − 2s6t− 2s6t2 + 3t

S2(t, s, y) = −t3y2 + 2yst2 − ys6t3 + ys6t2 − 3yt− 2yt2 − y − 2 + st
−s− t+ 2s6t

By theory degx(R1), degy(R2) ≤ 4; indeed the degree is 2 in both cases. Now,
computing by radicals the roots of R1 and R2 as polynomials in x and y
respectively, we get the radical parametrization of S(

−2 st+ 3 s6t2 − t+ s6t3 + 1 +
√
A(t, s)

2t(1 + s6t2 − st)
,

−
−2 st2 + s6t3 − s6t2 + 3 t+ 2 t2 + 1 +

√
A(t, s)

2t3
, s

)
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where

A(t, s) = 1 + 6 t+ 4 t3 + 13 t2 − 4 s6t3 − 4 st2 − 2 s6t2 + 4 s7t4 + s12t4

−2 s12t5 + 10 s6t4 + s12t6 − 16 st3 + 4 s6t5 − 4 s7t5 − 4 st4 + 4 s2t4

4.2 Genus 3

Now we deal with the case of genus 3. Let Cs denote the projective closure of
Cs and let Ad−3(Cs) be the system of adjoints to Cs of degree d−3. If we apply
Algorithm 4.1, d simple points are required and if we apply Algorithm 4.2 we
need one simple point. Now, we observe that dim(Ad−3(Cs)) = g− 1 and the
number of simple intersection points in Ad−3(Cs)∩Cs is, in general, 2(g−1) =
4. Therefore this intersection contains, in general, 4 radical simple points on
the curve. Taking one of them we generate a radical parametrization of Cs,
and hence of S. Thus, we have the following result.

Theorem 4.5 (Case of genus 3). If S has a genus 3 pencil of curves, then
S is radical.

Computationally, the question remains on how to compute one of these
4 radical simple points. The idea is as follows. Take an element in Ad−3(Cs);
for almost all selections it will work. Say that M(x, y, w) is its defining
polynomial. Then take A1(x, s) = Resy(F (x, y, s),M(x, y, 1)) and A2(y, s) =
Resx(F (x, y, s),M(x, y, 1)). The roots of A1 are the x-coordinates of the
affine points in Ad−3(Cs) ∩ Cs; similarly for A2. So, crossing out the factors
coming from the singularities of Cs, we get two univariate polynomials (one
in x and the other in y) of degree at most 4. Solving them by radicals and
recombining the results one gets the radical points.

Example 4.6. We consider the surface S (see Fig. 4) defined by

F (x, y, z) = 2 y − 2 y2 − y2z5 − 2 y3 + 2 y3z5 − y4z5 + 2 y4 + z5x2y2

+x3 + x3y2 − 2x4 − 2x4y + x5

S has degree 9 and contains the pencil of curves Cs defined by

g(x, y) = F (x, y, s) ∈ F(s)[x, y].

Note that Cs, as a curve over the algebraic closure of F(s), has degree 5.
Moreover, its singular (projective) locus is

{(0 : 1 : 1), (1 : 1 : 0), (1 : 0 : 1)}
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Figure 4: Surface in Example 4.6

where all points are double. So the genus of Cs is 3. We apply the ideas in
Theorem 4.5. The adjoints of degree d− 3 = 2 are defined by

H(x, y, w, λ1, λ2, λ3) = (−λ1 − λ2)w2 + (λ3 + 2λ1 + λ2) yw + (−λ3 − λ1) y2
+λ2xw + λ3xy + λ1x

2.

We take a curve in the system. For instance

M(x, y, 1) := H(x, y, 1,−1, 1, 0) = −y + y2 + x− x2.

Now, computing the intersection of the curve defined by M(x, y, 1) and Cs
we get, at most, 4 (affine) radical simple points on Cs. For this purpose, we
compute

A1(x, t) = Resy(F (x, y, s),M(x, y, 1)),
A2(y, t) = Resx(F (x, y, s),M(x, y, 1)).

We get

A1 = 4 x3 (x+ 1) (x− 1)2 (2 s5x2 − x2 − 2x− s5x+ 2)

A2 = 4 y3 (y − 2) (−1 + y)2 (2 y2s5 − y2 − 2 y − ys5 + 2)

which generate the following affine radical points in Cs:

{(−1, 2), (0, 0), (0, 1), (1, 0),(
1

2

2 + s5 −
√

12− 12 s5 + s10

2 s5 − 1
,
1

2

2 + s5 −
√

12− 12 s5 + s10

2 s5 − 1

)
,
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(
1

2

2 + s5 +
√

12− 12 s5 + s10

2 s5 − 1
,
1

2

2 + s5 +
√

12− 12 s5 + s10

2 s5 − 1

)}
.

Note that (1, 0) and (0, 1) are singular. We now use one of these simple
points, say (−1, 2), to reduce the dimension of the system of adjoints down
to one. We get that the defining polynomial of the 1-dimensional resulting
subsystem is

H∗(x, y, w, t) = −w2 − tw2 + (2w + tw) y − y2 + txw + x2

In this situation, the theory ensures that the intersection of H∗ and Cs leaves,
at most, 4 intersections points different to the singularities and to the sim-
ple point (−1, 2). Computing these intersection points we reach the radi-
cal parametrization. For this purpose, we determine the primitive part with
respect to t of the resultant of H∗(x, y, 1, t) and F (x, y, s) w.r.t. y and x
respectively to get

S1(x, t, s) = 8x3 + 10x3t− 2 s5tx3 + x3t2 + 18x2t+ 4x2 − 5 s5t2x2

+12 t2x2 − 4x2s5t− 4xs5t3 + 8 tx+ 8 t3x+ 18 t2x− 2xs5t
−6xs5t2 − 2 s5t3 + 6 t3 + 2 t4 + 4 t2 − s5t4 − s5t2

S2(y, t, s) = −8 y3 − 10 y3t+ 2 y3s5t− y3t2 + 3 t3y2 + 21 y2t2 − 2 y2s5t
+20 y2 + 36 y2t− y2s5t2 − 16 y − 20 t3y − 45 yt2 − 3 t4y
−42 yt+ t5 + 16 t+ 4 + 19 t3 + 7 t4 + 25 t2

As expected, degx(R1) = degy(R2) = 3. Solving by radicals these polyno-
mials we get the parametrization(

1

6

Σ

(−10 t+ 2 s5t− 8− t2) 3
√

Γ
,
1

6

Σ

(−10 t+ 2 s5t− 8− t2) 3
√

Γ
, s

)
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where

∆ = −(2 + t)2(−108 t8 − 304 t2 − 1284 t5s10 + 2932 t6s5 + 252 s15t4

+144 s15t2 + 264 s15t3 + 132 s15t5 − 662 s10t6 + 876 t7s5 + 36 s15t6

−204 s10t7 + 108 t8s5 + 32 s15t− 64 s5 − 3168 t3 + 256 s5t+ 128 t
+5240 t4s5 + 3384 t3s5 + 1408 s5t2 + 16 s10 − 27 t8s10 + 4 t7s15

−1616 s10t3 − 192 s10t− 888 s10t2 − 1731 s10t4 + 5156 t5s5 − 6944 t5

−3612 t6 − 968 t7 − 6880 t4)
Γ = 512 + 216 t8 − 10368 t2 − 5256 t5s10 + 2700 t6s5 + 96 s15t4 + 64 s15t3

+48 s15t5 − 1944 s10t6 − 72 t7s5 + 8 s15t6 − 288 s10t7 − 108 t8s5

−10368 t3 + 768 s5t− 2304 t+ 22176 t4s5 + 21312 t3s5 + 9024 s5t2

+24 t2
√

3
√

∆s5 − 12 t3
√

3
√

∆− 96 t
√

3
√

∆− 120 t2
√

3
√

∆
−5088 s10t3 − 1344 s10t2 − 7248 s10t4 + 11664 t5s5 + 7056 t5

+4752 t6 + 1512 t7 + 576 t4

Σ = Γ2/3 − 192 t− 1008 t2 − 1296 t3 − 600 t4 − 96 t5 + 272 s5t2 + 456 t3s5

+64 s5t+ 264 t4s5 + 16 s10t3 + 16 s10t2 + 4 s10t4 + 48 t5s5 + 64

+36 3
√

Γt+ 8 3
√

Γ− 10 3
√

Γs5t2 + 24 3
√

Γt2 − 8 3
√

Γs5t

4.3 Genus 1

For the case of genus 1, only Algorithm 4.1 is applicable and, in Step 2, d−2
simple points are required. So let us assume that Cs has a radical double point
P . Then, intersecting Cs with a line defined over F and passing through the
double point, one can take a family of d− 2 F(s)-conjugate points (see Def.
3.15 in Sendra et al. (2008)) that can be used in Step 2. Moreover, the
subsystem of adjoints A∗d−2 has defining polynomial over F(s) (see Lemma
3.19 in Sendra et al. (2008)). Therefore, we get the following theorem:

Theorem 4.7 (Case of genus 1; first part). If S has a genus 1 pencil of
curves with a double radical point, then S is radical.

Example 4.8. We consider the surface S (see Fig. 5) defined by

F (x, y, z) = y2 + 32 y2z + 80 y2z2 + y3 − 5
2
xy − 55xyz − 132xyz2 − 9

2
xy2

−22xy2z − 36xy2z2 + zxy3 + 3
2
x2 + 24x2z + 54x2z2 + 13

2
x2y

+32x2yz + 42x2yz2 − 3x3 − 12x3z − 9x3z2 + z2x3y2.

S has degree 7, but degz(F ) = 2 and hence one can parametrize using case
1 in Section 2. Nevertheless, we observe that S contains the pencil of curves
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Figure 5: Surface in Example 4.8

Cs defined by
g(x, y) = F (x, y, s) ∈ F(s)[x, y].

Note that Cs, as a curve over the algebraic closure of F(s), has degree 5. Its
singular (projective) locus is

{(0 : 1 : 0), (1 : 0 : 0), (0 : 0 : 1), (1 : 1 : 1), (2 : 3 : 1)}

where all points are double. So the genus of Cs is 1. Moreover it has rational
double points. Thus, Theorem 4.7 is applicable. So we apply Algorithm 4.1
taking, in Step 2, d− 2 = 5 points on a family of conjugate points. First we
consider the linear system of adjoints of degree d− 2 = 5. It is defined by

H(x, y, w) = (−7 a0,2 − 4 a1,1 − 16 a1,2 − 2 a2,0 − 10 a2,1) yw
2 + a0,2y

2w+
(6 a0,2 + 3 a1,1 + 15 a1,2 + a2,0 + 9 a2,1)xw

2 + a1,1xyw
+a1,2xy

2 + a2,0x
2w + a2,1x

2y.

Now, cutting with the line x+ y = 0, we get the family of 5 conjugate points

F = {(α : −α : 1) |m(α) = 0}

where m ∈ F(s)[X] is

m(X) = 5 + 111s+ 266s2 − 15X − 66Xs− 87Xs2 −X2s+X3s2.

Then, requiring the remainder of H(X,−X, 1) with respect to m(X) to be
zero, we get the conditions

{ a0,2 = a0,2, a1,1 = −5a1,2 − 4a0,2, a1,2 = a1,2,
a2,0 = 10a1,2 + 4a0,2, a2,1 = −2a1,2 }
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which provide the following 1-dimensional linear subsystem of adjoints:

H∗(x, y, w) = (1 + 4 t) yw2 + y2w + (−2− 8 t)xw2 + (−5 t− 4)xyw
+txy2 + (10 t+ 4)x2w − 2 tx2y

Now, we compute the primitive part with respect to t of the resultant of g and
H(x, y, 1) w.r.t. y and x respectively to get

S1(t, s, x) = 16 s2t3x2 + 320 s2t3x+ 20 s2t2x2 − 12 sx2t3 + 176 s2t2x
+4x2s2t+ 112 st3x− 3 t3x2 + 320 t2s2 + 40 s2tx+ 28 st2x
+16 t3x+ 160 ts2 + 4xs2 + 128 t2s− 16 t3 + 4 t2x+ 20 s2

+64 ts− 8 t2 + 8 s− t
S2(t, s, y) = −160 s2t3y + 832 t3s2 − 72 t2s2y − 56 st3y + 2 y2t2s− 2 y2t3

+768 t2s2 + 256 t3s− 46 t2sy + 12 t3y + 228 ts2 + 2 ys2

+256 t2s− 8 yts− 16 t3 + 3 yt2 + 22 s2 + 80 ts− 8 t2 + 8 s− t

By theory degx(R1), degy(R2) ≤ 4; indeed the degree is 2 in both cases. Now,
computing by radicals the roots of R1 and R2 as polynomials in x and y
respectively, we get the radical parametrization of S:

(
−2 t2 − 40 t2s2 − 14 t2s− 12 ts2 − 2 s2 +

√
∆
)

(1 + 4 t)

t (−12 t2s+ 4 s2 + 20 ts2 − 3 t2 + 16 t2s2)
,

(
−3 t2 + 40 t2s2 + 14 t2s+ 8 ts+ 8 ts2 − 2 s2 +

√
∆
)

(1 + 4 t)

4t2 (s− t)
, s


where

∆(t, s) = 4 s4 + 24 t3s+ 224 t3s2 + 12 t2s2 + 44 st4 + t4 + 372 t4s2

+1600 t4s4 + 1120 t4s3 + 448 t3s3 + 640 t3s4 − 96 t2s4

−104 t2s3 − 32 ts3 − 32 ts4.

Theorem 4.7 can be generalized as follows. If the pencil of genus 1 curves
has an r-fold radical point and r − 2 simple radical points (note that when
r = 2 we are in the situation of Theorem 4.7), we can proceed as follows.
In Step 2 of Algorithm 4.1 we need d − 2 simple points. Then, intersecting
Cs with a line defined over F and passing through the r-fold point, one can
take a family of d − r F(s)-conjugate points. Now, using the r − 2 simple
rational points we get a 1-dimensional subsystem of adjoints A∗d−2, definable
over F(s), that parametrizes the pencil by radicals. Therefore, we get the
following theorem.
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Theorem 4.9 (Case of genus 1; second part). If S has a genus 1 pencil of
curves with an r-fold radical point and r− 2 radical simple points, then S is
radical.

There is still another situation where we can solve by radicals a surface
that has a pencil of genus 1 curves, albeit in a different fashion (see for
example (Hartshorne , 1977, Prop. IV.4.6)). Let P be a radical regular
point of Cs, i.e. whose coordinates lie in a root tower over F(s). Then, by
the Riemann-Roch theorem (Hartshorne , 1977, Th. IV.1.3) we have

dim(L(nP )) = n , n ≥ 1

where L(nP ) is the vector space of rational functions defined on the curve
such that the only possible pole is P with order at most n. The computation
of bases for several of these spaces (see Hess (2002)) will provide a low degree
equation:

• L(2P ) = 〈1, f〉 where f has a double pole at P ,

• L(3P ) = 〈1, f, g〉 where g has a triple pole at P .

Now, we have L(6P ) = 〈1, f, g, f 2, fg, g2, f 3〉 where the last two elements
have pole order exactly 6 at P . Since we have 7 elements in a vector space of
dimension 6, there exists a nontrivial linear relation between these functions.
It follows that the map Q 7→ (f(Q), g(Q)) is birrationally equivalent to its
image, whose equation is precisely the linear relation just mentioned. In this
way we reduce Cs to a cubic curve, and hence to a curve parametrizable by
radicals; see Sendra & Sevilla (2011).

Theorem 4.10 (Case of genus 1; third part). If S has a genus 1 pencil of
curves with a regular radical point, then S is radical.

4.4 Genus 4

In Step 2 of Algorithm 4.2, two simple points are required. Therefore, the
following theorem holds.

Theorem 4.11 (Case of genus 4; first part). If S has a genus 4 pencil of
curves with two simple radical points, then S is radical.
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Figure 6: Surface in Example 4.12

Example 4.12. We consider the surface S (see Fig. 6) defined by

F (x, y, z) = −1 + y3 − 3x− xz7 − xz + xy2 + xy3 + x3y2.

S has degree 8, but degx(f) = 3 and hence one can parametrize using case 1
in Section 2. Nevertheless, we observe that S contains the pencil of curves
Cs defined by

g(x, y) = F (x, y, s) ∈ F(s)[x, y].

As a curve over the algebraic closure of F(s), Cs has degree 5. Its singular
(projective) locus is

{(0 : 1 : 0), (1 : 0 : 0)}

where all points are double. So the genus of Cs is 4. Moreover Cs has the
following two radical simple points:

{(
√
s7 + s+ 1 : 1 : 1), (−

√
s7 + s+ 1 : 1 : 1)}.

We apply Algorithm 4.2 to Cs. In Step 1 we get the d− 3 = 2 adjoints. They
are defined by

a0,0w
2 + a0,1yw + a1,0xw + a1,1xy.

Now, we consider the linear subsystem obtained by forcing the adjoints to
pass through the radical simple points. We get

H∗(x, y, w) = −w2 + yw − txw + txy.
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In this situation, the theory ensures that the intersection of H∗ and Cs leaves,
at most, 4 intersection points different to the singularities and to the 2 cho-
sen simple radical points. Computing these intersection points we reach the
radical parametrization. For this purpose, we determine the primitive part
with respect to t of the resultant of H∗(x, y, 1, t) and F (x, y, s) w.r.t. y and
x respectively, to get

S1(x, t) = − (1 + tx)3

S2(y, t) = −t3 + t3y3 + 3 t2 + t2s7 + t2s− t2y2 − t2y3 − y2

Solving by radicals we get the radical parametrization(
−1

t
,
1

6

Γ2/3 + 4 t4 + 8 t2 + 4 + 2 3
√

Γt2 + 2 3
√

Γ

t2 (t− 1) 3
√

Γ
, s

)

where

∆ = −12 + 4 t− 4 s+ 12 t3 − 4 s7 − 36 t2 − 36 t4 + 231 t6 + 270 t8s7

−378 t7s7 + 158 t6s7 + 270 t8s− 378 t7s+ 158 t6s− 54 t9s7 − 54 t9s
+27 t8s14 + 54 t8s8 − 12 t4s7 − 54 t7s14 − 108 t7s8 + 27 t6s14 + 54 t6s8

+27 t8s2 − 12 t4s− 54 t7s2 + 27 t6s2 − 216 t9 + 594 t8 − 644 t7 + 27 t10

+12 t5 − 12 t2s7 − 12 t2s
Γ = 108 t9 − 540 t8 + 756 t7 − 316 t6 − 108 t8s7 + 216 t7s7 − 108 t6s7

−108 t8s+ 216 t7s− 108 t6s+ 24 t4 + 24 t2 + 8 + 12
√

3
√

∆t4

−12
√

3
√

∆t3

In addition to the results above, with a different approach (also based
on adjoints) we can solve the non-hyperelliptic genus 4 case without extra
conditions. It is known by Brill-Noether theory (see (Arbarello et al. , 1985,
Chapter V) for example) that genus 4 curves are trigonal (they admit a 3 : 1
map to P1). A general characterization of trigonality was given by Enriques,
Petri and Babbage (see Saint-Donat (1973) for a modern account), here we
develop the relatively simple case of genus 4. See the end of the section for
comments on the hyperelliptic case.

The image of a non-hyperelliptic genus 4 curve by its canonical embedding
(which is given by a basis of the adjoint space) is a degree 6 curve in P3. By
the aforementioned result, the intersection of all the quadric hypersurfaces
containing the canonical image is a scroll, and any of its rulings determines
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a 3 : 1 map; but the ambient dimension is 3, so the scroll itself is the only
quadric hypersurface. Since the canonical embedding has as its coordinates
a basis of the space of adjoints (Walker , 1978, Chapter VI, §6),

φC : C → P3 , φC(p) = (a0(p) : a1(p) : a2(p) : a3(p)),

the scroll can be calculated explicitly by finding a homogeneous degree 2
relation

F (x0 : x1 : x2 : x3) , deg(F ) = 2 such that F (a0 : a1 : a2 : a3) = 0.

It remains to calculate a ruling. We have two cases, which we discern by
computing the singularities of the scroll, i.e. solving a linear system of four
equations in four variables. Either it has one singularity, and the coordinates
of the singularity are rational in the coefficients of the linear system (thus of
the adjoints), or it is regular.

• If the scroll is singular point, it is a cone. The lines that provide its
ruling can be calculated by projecting the cone from its vertex (we
obtain a plane conic), and then joining the vertex to each point of the
conic. Finding a point and the parametrization of the conic involves,
in the worst case, introducing one square root.

• If the scroll is not singular, we calculate one point in it (this can be
done, at worst, with one extra square root) and its tangent space. The
intersection of both is a reducible conic, thus a pair of lines. Let L
be one of them. The projection from L provides a ruling: each plane
containing L cuts the scroll in a union of L and another line.

Therefore, we have the following result.

Theorem 4.13 (Case of genus 4; second part). If S has a pencil of genus 4
non-hyperelliptic curves, then S is radical.

Example 4.14. We consider the surface S (see Fig. 7) defined by

F (x, y, z) = 2 z5 − yz4 + 2 y2z3 + 14 y3z2 + 8 y4z − y5 + xyz3 + xy2z2

+2xy3z + 2xy4 − 2x2yz2 − 9x2y2z + 2x2y3 − x3z2
−x3y2 − x4z − 7x4y + 5x5.
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Figure 7: Surface in Example 4.14

We observe that S contains the pencil of curves Cs defined by

g(x, y) = F (x, y, s) ∈ F(s)[x, y].

As a curve over the algebraic closure of F(s), Cs has degree 5. Its singular
(projective) locus is

{(0 : −s : 1), (s : 0 : 1)}

where all points are double. So the genus of Cs is 4, thus it is trigonal and
we can apply the procedure above (but note that the pencil of curves through
one of the singular points would already produce a 3 : 1 map). Its adjoints
are quadrics passing through the two points above, and a basis is

〈y2 + ys, y2 + x2 − s2, xy, x2 − xs〉.

A nontrivial quadratic relation between these four generators is given by the
polynomial in u0, u1, u2, u3

u0u2 + u0u3 − u1u2 + u2u3 − u22.

It is immediate to check that the only common zero of its partial derivatives
is the origin, therefore it is a nonsingular quadric surface in P3. To produce
a ruling, we choose a point in it, say (0 : 1 : 0 : 0). The tangent plane at this
point is u2 = 0. Setting this in the equation of the surface we obtain

u0u3 = 0

24



producing the two lines u2 = u3 = 0 and u2 = u0 = 0. We choose the first
line as our L. The planes containing L are of the form αu2 + βu3 = 0 with
(α : β) ∈ P1. Each one of them intersects the surface in

L ∪ {αu2 + βu3 = 0 , (β − α)u0 − βu1 − (α + β)u2 = 0}.

Then, the ruling is given by

(u0 : u1 : u2 : u3) 7→ (α : β) = (u0 − u1 − u2 : u0 + u2).

Composing this with the embedding by adjoints we obtain Cs → P1 given by

(x, y) 7→ (ys+ s2 − x2 − xy : ys+ y2 + xy)

We know that this map is 3 : 1. Indeed, if we define

H(x, y, s, t) = (ys+ s2 − x2 − xy)− t(ys+ y2 + xy)

then the primitive parts with respect to t of the resultants of F (x, y, s) and
H(x, y, s, t) w.r.t. y and x are

S1(x, s, t) = (−t2 + t3 − 8 t5 − 1 + 3 t4 − 2 t) y3

+ (−11 st3 + 30 st4 + 10 s− st2) y2
+ (13 s2t2 − 40 s2t3 + 15 s2 − 2 s2t) y + 4 s3 + 20 s3t2 − 6 s3t

S2(y, s, t) = (−t2 + t3 − 8 t5 − 1 + 3 t4 − 2 t)x3

+ (2 st4 − 4 st− 2 st3 + 3 st2 + 3 s− 6 st5)x2

+ (12 s2t2 − s2t3 − 4 s2t5 − 3 s2 + 14 s2t)x
+s3t4 − 8 s3t− 2 s3t3 − 14 s3t2 + s3 − 2 t5s3

from which we solve by radicals to calculate the parametrization.

We finish this section with the observation that for genus 4 in general the
surface is radical, though we do not provide an algorithm for the hyperelliptic
case. The idea is that every hyperelliptic curve can be transformed into one
of the form y2 = f(x) where deg(f) is 2g + 2 or 2g + 1; and there exist
algorithms to detect whether a curve is hyperellipic and put it in that form,
in such a way that at most a quadratic extension of F(s) is needed, thus we
can parametrize such curves by radicals using Case 1 of Section 2. Thus we
have the following result.

Theorem 4.15 (Case of genus 4; third part). If S has a pencil of genus 4
curves, then S is radical.
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5 The Role of Radical Parametrizations in

Geometric Constructions

In many geometric constructions, as for instance offset or conchoidal curves/surfaces,
one observes that even though one starts from a rational parametrization the
generated object is not, in general, parametrizable by means of rational func-
tions; see Peternell & Pottmann (1998), Arrondo et al. (1997), Arrondo
et al. (1999) for offsets and Peternell et al. (2011), Sendra & Sendra
(2010) for conchoids. However, if one starts from a radical parametrization
the offset (similarly the conchoid) is radical. In other words, the class of radi-
cal curves/surfaces (i.e curves/surfaces having a radical parametrization) are
invariant under offsetting and conchoidal constructions.

In this section, we state the above claim and we enlarge the family of po-
tential geometric constructions that preserves the class of radical parametriza-
tions. For this purpose, we see the geometric construction from the perspec-
tive of algebraic geometry by considering varieties of incidence. To clarify
ideas, let us start with two examples (offsets and conchoids) and afterwards
we present the more general frame.

5.1 Offset construction

Let F (x1, x2, x3) be the defining polynomial of an irreducible surface S and
δ ∈ F a non-zero element. Then, we consider the incidence variety (where
x = (x1, x2, x3) and y = (y1, y2, y3))

W =

(y, x, λ,W ) ∈ F3 × F3 × F× F

/ F (x) = 0∑3
i=1(xi − yi)2 = δ2

y = x+ λ∇(F )(x)

W
∏3

i=1
∂F
∂xi

(x) = 1

 .

The first equation ensures that x ∈ S, the second equation is the sphere
center at x with radius δ, the third equation is the normal line to S at the
point x, and the forth equation ensures that the gradient vector is not the
zero vector, i.e. that x is not singular. We observe that all y, being part of a
tuple in W , are indeed in the offset. Motivated by this fact, we consider the
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diagram

W ⊂ F3 × F3 × F× F

π1(W) ⊂ F3 S ⊂ F3

π1

��

π2

��

(Offset Incidence Diagram)

where π1, π2 are the natural projections

π1 : F3 × F3 × F× F −→ F3, π2 : F3 × F3 × F× F −→ F3

(y, x, λ,W ) 7−→ y (y, x, λ,W ) 7−→ x.

Then, the offset to S at distance d is defined as the Zariski closure of π1(W).

5.2 Conchoidal construction

Let F (x) be the defining polynomial of an irreducible surface S, δ ∈ F a non-
zero element and A ∈ F3 (called the focus). Then, we consider the incidence
variety

W =

(y, x, λ) ∈ F3 × F3 × F

/ F (x) = 0∑3
i=1(xi − yi)2 = δ2

y = A+ λ(x− A)

 .

The first equation ensures that x ∈ S, the second equation is the sphere
center at x with radius d, and the third equation is the line joining x ∈ S
with A. We consider the diagram

W ⊂ F3 × F3 × F

π1(W) ⊂ F3 S ⊂ F3

π1

��

π2

��

(Conchoidal Incidence Diagram)

where π1, π2 are the natural projections as above. Then, the conchoid to S
at distance δ from the focus A is defined as the Zariski closure of π1(W).
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5.3 General geometric construction

Now, in general, if F (x) and S are as above, we can define a geometric
construction as an incidence diagram

W ⊂ F3 × F3 × Fn (n ∈ N)

π1(W) ⊂ F3 S ⊂ F3

π1

��

π2

��

(General Incidence Diagram)

where π1, π2 are the natural projections as above, and W is the incidence
variety

W =

(y, x, z) ∈ F3 × F3 × Fn

/ F (x) = 0
G1(x, y, z) = 0

...
Gm(x, y, z) = 0

 .

where z = (z1, . . . , zn) are the auxiliary variables and G1, . . . , Gm are the
polynomials defining the algebraic conditions of the geometric construction.
In this situation, the Zariski closure of π1(W) is the geometric variety gen-
erated from S via the geometric construction. In addition, we define the
degree of a geometric construction as the degree of the map π2; that is, as the
cardinality of the anti-image via π2 of a generic element in S.

We finish this section with the following theorem.

Theorem 5.1. Let S be a radical irreducible surface, and let Z be the ge-
ometric variety generated from S via a geometric construction of degree at
most 4. Then Z is radical.

Proof. Let the incidence variety W of the geometric construction be defined
by {F (x), G1(x, y, z), . . . , Gm(x, y, z)}. Let P( t ) be a radical parametriza-
tion of S, and let E be the last field in the tower root defining P( t ). Since
the degree of the construction is at most 4 we know that the algebraic
system of equations {Gi(P( t ), y, z) = 0}i=1,...,m has at most 4 solutions
over the algebraic closure of E. Let G be the reduced Gröbner basis of
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{Gi(P( t ), y, z)}i=1,...,m with respect to a lex order with zn > · · · > z1 >
yn · · · > y1; note that the ideal is considered in E[y, z].

Since the ideal is zero-dimensional, G is of the form

{g1,1( t , y1), g2,1( t , y1, y2), . . . , g2,k2( t , y1, y2), . . .}.

Furthermore the degree of g1,1 is at most 4, and every solution of g1,1 over the
algebraic closure of E can be continued to a solution of the full system (see e.g.
Winkler (1996) p. 194). Therefore, solving by g1,1, we express y1 in terms of
radicals. Now, for each root α of g1,1, {g2,1( t , α, y2) = 0, . . . , g2,k2( t , α, y2) =
0} has at most 4 roots. Therefore, y2 can be expressed by radicals. So, by
induction we get all y expressed by radicals. Therefore, Z is parametrizable
by radicals.

Now, taking into account that the offset and conchoidal constructions are
of degree 2, we have the following corollaries.

Corollary 5.2. The offset of a radical irreducible surface is radical.

Corollary 5.3. The conchoid of a radical irreducible surface is radical.
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