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Abstract

In this paper we exploit a class of univaria®, interpolating four-point subdivision schemes featuredlpjecewise
uniform parameterization, to define non-tensor productisigion schemes interpolating regular grids of control
points and generating! limit surfaces with a better behavior than the well-estiigid tensor product subdivision
and spline surfaces. As a result, it is emphasized that gisbmhi methods can be moréective than splines, not
only, as widely acknowledged, for the representation ofess of arbitrary topology, but also for the generation of
smooth interpolants of regular grids of points.

To our aim, the piecewise uniform parameterization of thigamate case is generalized to angmentegbarameteri-
zation, where the knotintervals of thih level grid of points are computed from the initial ones hyipdating relation
that keeps the subdivision algorithm linear. The particplrameters configuration, together with the structuréef t
subdivision rules, turn out to be crucial to prove the cantinand smoothness of the limit surface.
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1. Introduction

Subdivision curves and surfaces have so far becom@ectige alternative to the well known parametric splines.
While approximating subdivision schemes represent a géination of either uniform or non-uniform splines [10,
22, 25, 26], this is no longer true for interpolating subsiioh methods, which require ad hoc definition and analysis
[1-5, 11-14, 17, 21, 23, 24]. In this respect, uniform intdapory schemes have been investigated in detail, both for
the curve and surface cases, and by now fully understocgtpolatory methods with non-uniform parameterization,
were introduced in the seminal work by Daubechies et al. #i@] more recently they have been the topic of several
papers (see [6, 7, 17]). This renewed interest has ariser giwas observed that the non-uniform parameterization
may significantly reduce interpolation artifacts (like tanvted undulation, cusps and self-intersections) witheetsp
to the uniform. This behavior is analogous to that of spliriisstrated with an example in Figure 1, where the
class of locally supported cardinal spline functions in][5exploited. According to several works, the centripetal
parameterization appears to be the best for curve inteipolaln [8] the authors show that for a whole family of
non-uniform interpolating splines with fierent approximation order, support width and continuity gentripetal
parameterization provides a good-looking interpolandjding or minimizing interpolation artifacts. Moreover(p
gives a formal mathematical explanation of the fact thatctic splines, such parameterization significantly baund
the global and local deviation of the resulting curve fromdata polygon. In a similar way, it is proven in [28]
that, for cubic Catmull-Rom curves, the centripetal par@mzation is the only one to guarantee no cusps and self-
intersections within curve segments. As concerns intetpa subdivision curves, a result confirming the advantage
of the centripetal parameterization was presented in [1¥@re, the authors propose a non-linear 4-point scheme
derived by up-sampling from the cubic non-uniform Lagrairderpolant, with underlying parameterization recom-
puted at each subdivision step. For such scheme, the unifdrandal and centripetal parameterizations have been
compared, showing that the centripetal one minimizes tstadce between the data polygon and the limit curve.
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Figure 1: Comparison between quadratic spline curvesgatating highly non-uniform data through uniform (left)canentripetal (right) para-
meterization.

Our work originates from the observation that, even if basgthe centripetal parameterization, a tensor product
spline surface may not generate a good quality interpolantinderstand why, let us denote fgy ;}i jez the vertices
of the given regular quadrilateral mesh and{ky} the associated non-uniform parameter values (also catietsk
In order to compute the tensor product surface interpajatie verticeg ; in correspondence to the parameters
itis necessary to work out only two parameter sets corredipgrio the two grid directions. The solving strategy is to
compute the average of the parameter vakyggpreviously defined along the two directions, thus loositigrimation
that turn out to be crucial to the quality of the interpoldntparticular, each section curve of the mesh is not allowed
to maintain its own non-uniform parameterization, as wdgdespecially desirable in the interpolation context, but
it is parameterized by the average of the parameterizatibals section curves in the related grid direction. The fact
that the strict structure of the tensor product may compserttie quality of the interpolation is well-known, see e.g.
[19], §7.5.1.
The main novelty of this paper is a method to get a good qusilitface interpolating the vertices of a regular quadrilat-
eral mesh: the proposed approach is based on a non-uniformiensor product interpolatory subdivision algorithm
where, instead of constraining the parameterization tdghsor product structure, a possiblytdrent knot interval
can be associated to each edge of the initial control mesthidiway, each section polyline is individually interpo-
lated together with its parameters, thus maintaining ite parameterization.
For approximation purposes, a similar non-tensor produafiguration was firstly studied in [26] and most recently in
[10, 22], where the authors propose non-uniform subdiuisigorithms based on biquadratic and bicubic B-splines.
In the interpolatory context, this paper is the first addresa non-tensor product setting. The non-uniform, non-
tensor product surface subdivision scheme is defined asexaeation of a class of piecewise uniform, univariate,
interpolatory 4-point schemes derived by upsampling fumelstal bases for interpolation, as those in [6, 8, 16]. As
a consequence, the deients of the scheme depend on the non-uniform, local kretvals upon which the under-
lying cardinal spline basis is defined. These univariatesws, termedeference schemgare exploited as a basis
to derive refinement rules for regular grids, that, besidgdod#ing the advantages of the centripetal parameteriza-
tion, are linear and capable of generat@fgcontinuous surfaces of good quality. To this aim, the piésewniform
parameterization of the univariate reference scheme isrgéred to a so calledugmentegbarameterization, where
the parameters of thigh level grid of points are computed from the initial ones loyugpdating relation that keeps
the subdivision algorithm linear. To prove continuity amdaothness of the limit surface we strongly rely on the fact
that the scheme interpolates all the section polylinesalatreated at each step and we exploit the linearity of the
subdivision rules as well as the asymptotical behavior efghrameterization.

The remainder of the paper is organized as follows. In Se@iave recall the refinement rules of the class of
non-uniformC? interpolatory 4-point schemes that can be convenientljoitea as reference schemes. In Section 3
we describe the key ideas at the basis of our non-uniforntensor product interpolatory subdivision scheme for
regular quadrilateral meshes and we explain in detail tlye @thd face point rules it relies upon. Then, in Section 4
we perform the continuity and smoothness analysis of thpgeed surface scheme and in Section 5 we show some
numerical examples confirming th&ectiveness of our proposal and its advantages with regpaoti-uniform tensor
product subdivisions and splines. A summary of the mainrdmurtions of this paper and the outline of our future
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work are described in Section 6.

2. A class of non-uniform interpolatory 4-point schemes

The novel surface scheme we aim to define is conceived as eadjeaton of a univariate, non-uniform interpola-
tory 4-point scheme, that we call tieference schem@& hus, before defining the surface refinement rules, we riefl
overview the related univariate method.

Denoted by p’} the vertices of the initial polyline and Hy"} the associated parameter values, also caitexds for
all k > 0 the general refinement equations of a non-uniform intetpoy 4-point scheme are

k+1

k
p2| pi ’
k+1

P = ey el ol el P, e pl
where the coﬁuentsa';l, ¢ =0,..,3, depend on the kno(sx,} of the kth level polyline. In order to emphasize the

locality of the scheme itis convenlent to rewrite theseitcients in terms of the length of the three consecutive knot

mtervalsdk = x']‘+1 1’ j =i-1,i,i+1,introducing the notation

1)

a([dk,dd ], ¢=0,..,3

In this paper we focus on reference schemes whosécieats can be obtained by fitting a local analytic interpblan
through the p0|nts>(< 1 p::H), ¢ = 0,...,3, and evaluating it at an arbitrary parameter value indigecentral
interval [x |+1 From this point onward we restrict our attention to theegaty of the so calledemi-regular
insertion rules, where the cﬁeientsa';’i, ¢ =0,..,3, are obtained by evaluating the considered interpolatiteat
parameter value<f+ x:‘+1)/2. For these schemes, denotedd& the set of initial knot intervals, we compute the knot
intervals for the successive levels through the formula

ak

dstt = dstL = - k=0, )

which simulates a recursive midpoint refinement of the dasett parameterization. Thanks to this updating rule, the
subdivision algorithm is linear and, after a few rounds didivision, the knot intervals assume a piecewise uniform
configuration, namely the parameterization is uniform ywdere except at isolated points corresponding to theiniti
polyline vertices. Schemes of this kind have been the toppgeweral papers including [6, 7, 16, 27]. In this case the
insertion rule in (1) can be written as

k k
k+1 X+ X|+1 K
P = l//|+€ 1 Pive-10

whereyi, .1, ¢ =0,...,3, are non-uniform cardinal basis functions definedxﬁftﬁwhich
(i) satisfy the cardinality condition

1 ifi+l-1=],

. for j=i—-1,---,i+2;
0 otherwise

lpi+[—1(xlj() = {

(ii) are globallyC?;

(ii) are either polynomials or piecewise polynomialdip such that for anyf € I1,,,

3
F09 = D i1 (0 FO4n). X € [XOX].
=0



Examples of such fundamental functions can be found in [&n8)ngst others.

Since on the intervaly, X ,] the basisyi..-1, ¢ = 0,---,3, is invariant under uniform scaling of knots, the
resulting interpolant depends only on the local configoratif the knot intervals. Thus indicated the local parameter
triple by

o = [dk ,, dk o

i+11>

we introduce the notation

o
v, =i, €=0,...,3 3)
Moreover, without loss of generality, we can assurhg = 0 such that the cdﬁcientsa‘g’i, ¢=0,---,3, are equiva-
lently given by
K o .
a,(8) = y° (méik) with m. = o, + S 4)

We observe that any analytic interpolant obtained fromsbfsictions satisfying properties (i)-(iii) gives rise to a
different set of cofcients, so that a large number of reference schemes fitttogtlie considered framework is
available. However, to design@t surface subdivision scheme it is also necessary that teeeredfe scheme 2"

We conclude this section by providing two examples of scleetinat satisfy all the stated requirements. For instance,
if we exploit non-uniform cubic Lagrange interpolation,ia$16], the derived co@cients are

() (e + 2
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2

@) - (d)"+ 20k, + d ) di+ 4k dX -

- B, (@ + |
2

@) - (d)"+ 20k, + d ) di+ 4k dX

- B, @ )

2
@) = - (d)” (2d , + dk
- Bl (d+ o) (df, + v )

while if we interpolate through the non-uniform quadratiodlamental splines in [15] we obtain the set offiee
cients

Gl

o SN L —
2(57) 8dk , (df , +d¥)
2
a8 = (dnk ) +di(3dl, +diy) +4di df ©)
o 8 (" + o, ’
2
(@) - (k)™ + di(dl, + 3dk ;) + adi dk
- 8’ (0 + d) ’
2
(ck)
5 SN LV —
0 = e,

which was proposed in [6]. By construction, the two refeeeachemes with cdicients in (5) and (6) reproduce

polynomials respectively ifil3 andIl,; moreover, in the referenced papers, it was proven thatahe@! when the

parameterization is piecewise uniform. Being these sckesta¢ionary and uniform everywhere but at isolated points,
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corresponding to the initial polyline vertices, their donity and smoothness can be proved by spectral analysis of
the local subdivision matrix, as proposed in [27].

3. The Non-Uniform Local Interpolatory Subdivision Scheme(NULISS) for regular quadrilateral meshes

The existing literature has always considered subdivis@demes as advantageous alternatives to tensor product
constructions due to their ability to deal with extraordinpoints and model surfaces of arbitrary topology. Con-
versely, in this paper, we want to show that subdivision mag perform significantly better than tensor product
splines also in the context of interpolation of regular qilateral meshes. The goal of this section is to provide a
general formulation of a 4-point based interpolatory suisiin scheme for regular quadrilateral meshes tifars a
very dficient tool for interpolating a given grid of points takinganaccount the associated parameter values. Here-
inafter this scheme is called NULISS (Non-Uniform Localdrgolatory Subdivision Scheme). Its insertion rules are
conceived as a natural extension to the regular quadalateesh of a non-uniform interpolatory 4-point reference
scheme with the requirements stated in Section 2.

Let M° denote a regular quadrilateral grid of 3D points. Denote@ﬁﬁy}i,jez the vertices of the mesh, we associate

1 . .
with each edge along one grid direction a knot inted@lz ||p8j+l - pfjllg, according to the centripetal paramete-

1 .
rization. Analogously, along the other direction, we definet intervals:e?j = IIp?ﬂ,j - p8j||22. In the following we

consider an iterative subdivision algorithm that takesnasii the mesbM° with the associated initial knot intervals
and generates in the limit a smooth surface based on theatdpsed below.

Algorithm 1. For each refinement levelk 1, it

1. retains each vertex point (Figure 2-left, green bullgts)

2. computes a new edge point for each edge, using the unieaeiference scheme (Figure 2-left, magenta bullets);
3. computes a new face point for each face (Figure 2-lefe blullets);
4

. creates new edges by connecting each new face point tethedge points of the edges surrounding the face,
and connecting each vertex point to the new edge points &dges incident on that vertex;

5. creates new faces that have a loop of four new edges;
6. computes the knot interval values for the refined mesh asidmas them to the new edges.

The above steps 1.,2.,3. define the new geometry and stefasdéfine the connectivity. When this process step
continues, it yields a sequence of refined meshes which oges#o a limit surface.
Vertex, edge and face points are determined by the equations

o vertex pointsp7; = pf;;

3 3

Lokl Kk kel Kk )

e edge pointgy; ,; = Z brij Pirogj @ndpyis,q = Z Ceij Pijre-1s
r=0 =0

3 3

kil _ kK Kk ok
o face pointspy; 5,1 = Z Z B Crij Pior—1,jae-1-
r=0 (=0

As previously mentioned, in the tensor product case we reeddfine an average parameterization where
k
Z dy; Z €

k= and &=~

P fd< i e z) ek, jez)’
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Figure 2: Left: One step of the considered interpolatorydaudsion algorithm, the initial mesh is in black, while thefined mesh in red. Green,
magenta and blue bullets represent vertex, edge and faues paspectively. Right: Parameters configuration aradedlcoéicients for the tensor
product scheme.

o] that{d_'j‘}jez and{élk}iez are the knot intervals associated with the two grid diredi¢see Figure 2-right for a
graphical interpretation). Thus, according to (4), thefEoientsb’. . andcX. . are determined by the chosen univariate

r.i,j (AN
reference scheme as

Vi, B =a@ =uf(ma), r=0--,3 with & =[& & &

_ 1
Ny (1] and mg = e+ 16,

i,

vi, o =a@) =yl (M), €=0.---.3, with 5= [d .. ;] and mp: =y + 4.
The requirement for averaging the parameterization magraéhe a significant loss of quality in the limit surface.

Our goal is thus to generalize the above edge and face poimufas so as to consider a whole set of parameters

surrounding the location of insertion.

In order to describe the refinement rules of the sought schemaeed to properly define steps 2. and 3. of the

refinement Algorithm 1. Figure 3 illustrates the two stepfioe of the faces oM*. A new edge poinEX*! is placed

in the middle of the edge with verticgss; andp},,, by the formula

B = piioi = a0(6) Py + a1(8) P + 22(6) Pij.s + 2s(6F) P (7)
where coéiicientsa(6y), £ = 0, ..., 3, are computed by (4) with{'; = [y, ;. df,]; this means that the new edge

point is generated by applying the insertion rule of the ariate reference scheme to the related edgabf(see
Figure 3-left). The edge points along the other edges cartegrdined following the same approach.

To explain the insertion of a face point we observe that théoes of the face of insertion can be seen as the
intersection of 4 section polylines, two in each directiseq Fig. 3-right). We denote by

+dk

K k K L Ak k
dfj g+l df+d d i+1j+1

i,j—1 i,j i+1,] i,j+1
2 ’ 2 ’ 2

1+1,] +

2 2 ’ 2

i+1,j+1

elk—l,j + e|k—1,j+l elkj + é|(,j+1 e
b

k _
A=

and Ef = [
(8)

the triples of knot intervals that refer tdrtual edges (i.e. edges that do not belong toktielevel meshMX) in
the two grid directions. They are computed by averagingtiexjknot intervals on opposite edges of the considered
face and of its four adjacent faces, and can be respectigely as a local parameterization for the two virtual section
polylines represented by dashed lines in Fig. 3-right. Regeequation (4) we can now compuig(A!fj) andag(E!fj),
¢ =0,...,3, and determine the location of each face p%‘ﬁ'{l = P50 @S



K 3 3 k S(EF .
Pizj1 Pz} Piszjr1 Piszjr2 as( L) pif2,1+2
k
pk k k k az(El‘j) p.k )
#1j-1 Piy; P Piipji2 4142
k k Bt
diy dilj dig . 2
o 00— {1 ai(E7)) .
N » k P,
Pij-1 P gl B Piji2 L+2
an(E} ) Oy . . K
pifl,j—l pifl,j pifl,j+1 pifl,j+2 Praja Py Prsjn Pripe
- - & ! (AE k
[ a(6}) a(0;) a(0; ) as(87) | ao(A7)) a(Af) az(A)) as(A;)
Figure 3: Edge point rule (left) and face point rule (right) the NULISS scheme.
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Figure 3-right illustrates the insertion of the considefiazk point.

We immediately observe that, oppositely to the tensor pcbdanstruction, the edge point rules of NULISS
ensure that the vertices that describe each section pelyfithe mesh are interpolated at the corresponding cet#tipe
parameters. In this way, each section curve of the limitaagrimaintains its own parameterization (instead of being
parameterized by the global average of the parametenizaiticthe related grid direction) and thus it has the optimal
behavior guaranteed by the centripetal parameterization.

Moreover the face point insertion rule of NULISS does nobime the complete set of parameters associated with
the 4 x 4 grid of vertices that determines a new face point, but ohé/ garameters of the vertices related to the
face of insertion and to the four adjacent faces. In fact,akes sense to require that the virtual parameterization
adopted to insert a face point, does not significantly devfiaim the parameterization of the section curves that define
a face. Conversely taking into account the whote 4 grid of parameters may generate undesired distortiorigein t
parameterization.

So far we have described steps 1.-5. in Algorithm 1. The ¥ahlig subsection illustrates the strategy pursued to
accomplish step 6. of the considered subdivision algorithm

3.1. The augmented parameterization and its parameteratuypygrule

Each subdivision step generates a refined mesh, with motieagredges and faces, and as a consequence a
suitable parameterization should be set in correspondentte newly created edges. The method that we choose
to compute the values of the knot intervals influences thealily and stationarity of the scheme as well as the
properties of the limit shape, thus it should be carefullyisied. In order to guarantee that the refinement rules of
NULISS identify a linear subdivision process, we use an tipgatrategy to deduce thih level knot intervals from
those computed at level 0. The method to update the parasrfeden level O to 1 is shown in Fig.4 and can be
repeated iteratively at each stiep> 1: the knot intervals defined in correspondence to edgesafdhrse mesh are
halved and duplicated, while those in correspondence taveedge created inside a face are obtained by averaging
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Figure 4: Knot intervals on one face #f° (left) and on the corresponding refined faceAdt (right).

knot intervals on the opposite new edges of the refined fate¢hi$ way, for the illustrated face, theh level knot
intervals are expressed by the updating formulas

1
k+1 _ Ak+1 _ —qk k+1 — dk+1 1 k k
d2i,2j - d2i,2j+1 T2 di,j’ d2i+l,2j - d2i+l,2j+1 T4 (di,j + di+l,j)’
1
+1 _ ok+1 R +1 — gk+1 1
%i,Zj - é§i+l,2j ) eik,i’ e;i,2j+l - e§i+1,2j+l T4 (eik] + él(,j+1)'

After a global rescaling by 2 of the knot intervals (which do®t change the next level ddeients of the scheme
being the basis functions in (3) scaling invariant), we getdimplified expressions

k+1 _ ~k+1 _ Ak k+1 _ Ak+1 _1 k k
dai%; = dooj41 = i d2i+1,2] = d2i+1,2]+1 =3 (di,j + di+1,j)*
+1 _ k+1 _ +1 _ ~k+1 _1
%i,zj = %Hl,zj = ek, egi,2j+l =241 7 2 (elkj + elk,j+l)' (10)

Remark 1. If we restrict our attention to a single face o, for instance the one in Fig.4, we observe that after
k > 1refinements its parameters can be written in terms of th@almarameters via

€©, -
k _ 40 i+1j T _ K p_ k
Ghsrpgee = O+ 10— =002 0=0.. 21,
e e
Sz = 6+ =T, 1=0... 21 0=0.... 28 (11)

The iterated application of the knot intervals updatinghodtgenerates a particular parameterization that we call
augmentedif we focus on one refined initial face we observe that &frbdivisions the knot intervals on the inserted
edges are equal along each section polyline inside thedadkuystrated in Figure 5 (left), whereas they change when
moving to the neighboring initial faces. This allows us toke#he following observation which is crucial to analyze
the continuity and smoothness of NULISS.

Remark 2. We notice that, since the cfieients of the scheme are invariant under uniform scalinghef knot
intervals, in the interior of each initial face the knot intals can be equivalently thought as uniform in both grid
directions (Fig. 5(right)). As a consequence, all the psmitthe grid delimited in bold in figure are actually genexate
by the tensor product of the reference scheme with unifomarpeterization.
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Figure 5: Knot intervals configuration on the edges of the fdlastrated in Fig. 4 after 3 subdivisions (left) and regishere the uniform tensor
product scheme has been applied (right).

3.2. The non-uniform tensor product scheme: a subcase of S&JL

We consider the special case in which the initial paramedédn for NULISS is chosen as the cartesian product
of two non-uniform sequences of knot interval8 = {d°}; and&° = {e?},— in the two grid directions. In this case,
according to the updating rule (10), the refined mashis associated with the cartesian product of two non-uniform
parameterizations

k_Jq0 0 40 0 40 0
D =1dg,...,dy,d7,....d7,d5,...,d5 .. .0, (12)
e — o —
2k 2« 2k
k_ )0 0 0 0 0 0
& =16,....6,€,....6,6,...,6,...0, (13)
e e e e
ok ok ok

and thus NULISS becomes a non-uniform tensor product scheme

Moreover, it can be easily observed that thefiorents of NULISS in (7) and (9) are independent of the ldvel
and thus generate a stationary subdivision operator mgpp@points of the control mesk¥ into points of Mk+?
for anyk > 0. The following result derives straightforwardly from thgsumption that the reference schem@'is

Theorem 1. The NULISS scheme with cartesian product parameterizggmerates € continuous limit surfaces.

4. Convergence and smoothness analysis

In this section we analyze the convergence and smoothnepsnties of NULISS. In particular, we prove that,
assumed that the reference scheme satisfies the requisestaterd in Section 2, NULISS genera@scontinuous
limit surfaces independently of the initial parametersfigumration.

The approach we follow strongly relies on the limit behawibthe augmented parameterization as well as on the fact
that NULISS can be also interpreted as a scheme generatingisees of curve networks. For a better understanding
of these two key ingredients at the basis of our analysigémext section we describe in detail the structurd/tsf

and its behavior in the limit.

4.1. The structure oMK and its limit behavior

The insertion rule for edge points in (7) implies that eadttiea polyline, either of the initial mesM° or of any
of the refined meshes(, is refined independently from the underlying control mestmely the points inserted along
the polyline depend on the polyline vertices only. As a cqaseice NULISS can be also viewed as an interpolatory
subdivision scheme for curve networks. Specifically, thgesf the control meshk define a polyline network that,
when subdivided, generates in the limit a curve networkginefter denoted bf*. Being the scheme interpolatory,
the curves inFX intersect at the vertices 0¥ and7° ¢ F! c ...FX, Vk. Figure 6 illustrates the situation.
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Obviously, if NULISS admits a limit surface, then such sagfanterpolates not only the vertices of eatktf, but all

the curves of each netwofkK, ¥k > 0.

Now, if we focus our attention on a subregion 8¢ corresponding to a refined face #M°, as already observed

in Remark 2, we have that the parameters on its edges are agghdhus can be thought as scaled to uniform; so
in the innermost area of each refined initial face NULISS ithimg but the tensor product of the reference scheme,
which isC!. Extending the reasoning to the whole meh we observe that there exists a 4-wide strip of faces (see
first illustration in Figure 7), surrounding the boundarytioé refined faces oM°, where the parameters cannot be
interpreted as uniform and thus the parameterization isatlgtaugmented. As illustrated in Figure 7, during the
subdivision process the augmented area shrinks at eaatigterwhile the tensor product area progressively extends
to the refined section polylines a¥°, which in the limit become the curves Gf°. As a consequence the limit
surface of NULISS i€C! everywhere, except at points belongingfi8. Based on this reasoning, the limit surface
is everywhere continuous if th@! limit surface patches generated by NULISS in the innermiest af each refined
initial face join with continuity along the curves &f°. Moreover, it is evelt? if such patches join witkC! continuity
across the curves 6f°.

(@) M® and#° (blue) (b) M? and7° (blue) (c) M?, 79 (blue) andF? (blue
and red)

Figure 6: Meshes\X and curve networkg ¥ generated by NULISS.

Figure 7: Curve networkr® andC? tensor product limit surface patches at subsequent refimesteps. The tensor product area progressively
extends to the boundary of the refined faces\df, which in the limit is7©, while the augmented area shrinks.

4.2. Continuity and smoothness analysis of NULISS

In this section we firstly prove that, at any arbitrary poif 7@, the limit surface is continuous and then e@n
We start proving continuity. To this aim we observe that guicient to show that the limit surface is continuous at
any dyadic point, i.e. at any point @k N 7°, Yk > 0. In fact suppose® is an arbitrary point 0§, and being any
curve in7° continuous, thef® is the limit of a sequence of dyadic points belongingta So, if the limit surface is
continuous at any point of the sequence, it is certainlyioous also aP. Based on this observation, from this point
onward we focus on a dyadic point, hereinafter denoteW pyelonging toMk N 79, vk > 0 and we prove that the
NULISS limit surface is continuous at such point. To analtiz continuity of NULISS we study the asymptotical

10



behavior of the augmented parameterization in a suitabtghberhood oV and show that the local matrix operator
of NULISS is asymptotically equivalent to the local matrigevator of a bivariate convergent subdivision scheme.
This implies that NULISS is also convergent [18]. In part@ouwve compare the local matrix operator of NULISS
with that of the tensor product scheme described in Sectidndgfined on the parameterization of the two section
polylines of Mk n ¥ intersecting av.

We also observe that NULISS has support of width 6 in eachdijr&ttion. This property is a direct consequence of
the well known fact that the 4-point reference scheme hagatipf width 6. Thus the parameters that influence the
subdivision process are limited to the 3-neighborhood.of

Assuming the poinV is created at subdivision levkl, thenV e M N #°, Vk > K. Before starting the analysis, we
make a preliminary observation that allows us to signifilyasitnplify the proof. We consider the two cases

1. K=0=V e MO (Fig. 8-left);

2. K>0= Ve MM N FO(Fig. 8-right).

Figure 8: lllustration of the two possible cases of the pvimntepicted by a black bullet.

In case 1., aftek subdivision steps, the parameters on the edges of sucmrdgjend on the initial parameters
of the four faces ofM° meeting atv (Fig.8-left) and they are augmented in both grid directiohs case 2., the
parameters depend on those of the two face$8fhaving in common the edge from whishis generated by the
iterative refinement (Fig.8-right); in such situation thergmeters can be thought as uniform in the direction paralle
to the edge and augmented across it . Thus this second clsmfalthe first, and in the following we focus the
analysis on case 1. only.

Without loss of generality, we can assume that the pdiaround which we want to prove the convergence, is the
initial vertex pﬁj and, being the scheme interpolatoyy, = pﬁj = pgki 2kj,Vk > 0. Figure 9 represents the face
containingV in the top-right quadrant (Fig.9(a)) and the corresponﬂiﬁg\es refined face (Fig.9 (b)).

We consider now the sequences of parameters of the twd setidion polylines intersecting &t

D) =(d)))j, and &) = (e})i

1
and the non-uniform tensor product scheme defined from thiesian product of them as described in Section 3.2.

Definition 1. We denote by §5(V) the tensor product scheme obtained from NULISS when thal iparameteri-
zation is chosen as the cartesian product of the parametioizs of the two initial section polylines intersecting at
V.

In the following we prove that the local matrix operators dfiINSS andSys(V) are asymptotically equivalent.
To this aim we start by introducing preliminary results whitrongly rely on the properties of the basis functions
from which the co#icients of the reference scheme are derived according to (4).

Lemma 1. Forany k> 1, leté = [u+27XC, v+ 27%D, v+ 27D], with uv> 0, C, D € R, be a triple of knot intervals
associated to knots;xj = 0, ..., 3with x) = 0. Let also J= [0, max(u+ 2v, u+ 2v+<22)] be the interval containing
Xj, j=0,...,3,forallk > 1. Thenforany k> 1and¢ =0,...,3,

11



(a) |(//?(z)| < Aforall ze J, with A a generic constant independent of k;

(b) zﬁ? is Lipschitz continuous on J, with a constant L independéhkt o

Proof: We prove the two statements wh@&rD > 0 since for eithe€, D or both negative we can proceed analogously.
Since the cardinal basis functions are invariant under gormiscaling of the knot intervals, we can assuéne

[x 1, 1], with x € | := [min(¥, 2£€) max(@, 2=C)]. In this way, varyingxin |, we obtain all possible triples of knot

intervals fork > 1. Then, forallf =0, - - - , 3, we consider the continuous functidix, 2) := 1,0?(2) onl x J.

(a) From the continuity of,(x, z) we can conclude tha = maxy »eixJ | f¢(X, 2)|, which is independent d.

(b) Due to property (ii) of the cardinal basis functions wevénghat, for all¢ = 0,...,3, f/(x,2) is differ-
entiable with respect ta and its partial derivativ<=g—Z f;(x,2) is continuous orl x J. Thus we can conclude that

L = maXxgeixa | fo(x, 2)|, which is independent df.

O

Lemma 2. Forany k> 1, let§ = [u+27C, v+ 27D, v+27*D], with u v > 0, C, D € R, be a triple of knot intervals
associated to knotsjxj = 0,...,3 with X, = 0. Letd = [u,V,V] be a trlple of knot intervals associated to kn@js
j=0,...,3with % = 0. Denote also iy = u+ ¥ + &2 and m; = u+ 3. Then for any k> k, with k a suitable

positive integer,

w8 (mg) —ud (mg)] < £=0,..,3,
with A a generic constant independent of k.

Proof: Let us start assuming th@tandD are non-negative values. From the property of cardinafitg@fundamental
functionswj onxj, j=0,...,3, we can write

mg) = Zw?( ACH

Moreover, since the fundamental functiq&éreproduce polynomials of degrpeandngS is a polynomial of degree
on [x1, Xo], by property (i) of the fundamental functions we get

3 A
smg) = 3 b mgud 3,
=0

Fork > k, with k a suitable positive integer dependingaw, C, D, we havemy, mg € I = [u+ 2°kC,u + v]. Now,
letl, = [0,u+ 2v+ £22] be the smallest interval containing the knasaiidx;, j = 0,...,3 for allk > 1. For
(z1, 2) € 11 x 12, we define the bivariate functia{zi, z) := zﬁ?(zl)(//?(zz). Sincewf and(/és are Lipschitz continuous,
the functiong is also Lipschitz continuous with constant

L = L maxiy®(z0)l + Ly maxiud ()1
z1€ly 2€l2

WhereL5 andL are the Lipschitz constants ;bf and¢6 , respectively. We observe that all the contributionk ire

independent of: this is trivial forL6, maX,el, |(//J (z1)l and derives from Lemma 1(a) and (b) for may |(//6(zz)| and
L, respectively. Thus,

. 3 . . 3
w8 mg) = wlmg) =3 (40 el (%) - wdmpu? ()| < D |otms. %) - omg; x)
j=0 j=0

<4L max {|m5 m8|,|f<,- - x,—|}.
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Considering that

2C+D C C+D C+2D Cc+2D
..... 5 j kL KTk Tk [T Tk

we have .

w8 (mg) - v (mg)] < 274L(C + 2D) = A2,
for a generic constat independent ok. This proves our statement fGrandD non-negative. If eithe€, D or both
are negative, we can repeat the proof in a similar way. O

Exploiting the above lemmas and the asymptotical behafitt@augmented parameterization we can now for-
mulate the following result.

Theorem 2. At any dyadic point V the local matrix operator of NULISS igraptotically equivalent to the local
matrix operator of the tensor product schemgsv).

Proof: We formalize the subdivision process of NULISS in the nemtiood ofV in terms of the local subdivision
matrix M, mapping the vertices of theh level meshMK into those ofMK*! via

PR = M PX. (14)

The non-zero entries of each row Wl are the cofficients of the vertex, edge and face point refinement equsation
of NULISS and depend on the local parameterization as®utiaith k-level edges. Since the reference scheme has
support width 6, it is easy to see thdi has 49 rows and columns. We introduce the following locahtionh (see

Figure 9(g)-(h))
Prs = |:“'g'<i+r,2‘<j+s’ Ors = 6lgki+r,2kj+s’ €rs .= egki+r,2kj+s’ rs=-3....3 (15)

The pointspys, I,s = —3,..., 3 are the entries dP* to the right hand side of (14), and they constitute the submes
of the three rings of faces g%/ aroundV. We denote this submesh, illustrated in color red in Figod,&),(f), by
G¥(V). Similarly 8, s ande, s are the parameters on the edgegt(V) that contribute to the entries M. The points
P« to the left of (14) are the vertices gi*1(V) (Figure 9(d) in color red).

We also denote byl the subdivision matrix having as rows the ffagents of vertex, edge and face pointsSefs(V).
The local matrix operators of NULISS ar®s(V) are asymptotically equivalent i, Mk — M|lc < oo [18].
Being||Mx — M|l = max |rr{j —m |, we prove that,

2l —myl <Az v, (16)
i

with A a generic constant independenkof

In the following we thus focus our attention on the rowdkfandM corresponding to vertex, edge and face points
and show that relation (16) holds for each of them. By symyneftthe subdivision rules we can limit ourselves to
consider only rows corresponding to points @+1(V) inserted in the top-right quadrant (Figure 9(e)-(f)).

e Being the two schemes interpolatory, if title row represents a vertex point, nothing needs to be proved.

e Suppose now that thigh row of My — M corresponds to an edge pola(Figure 9(e)). We can express any edge
point of NULISS in the horizontal direction and in the togit quadrant by the formula

3 3
E= ; Pr.s+c-1 A (Or.s) = g Prste-1 l//?r‘s(m&.s), r,s=0,1.
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0 0 K k
Pit1,5 Pit1,5+1 Pokjqok okj Pakiyok okjio

»
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V=p;; Dij+1 V =5k, 95  Porjonjyor
(a) face ofM° containingV (b) face in (a) aftek refinements
- — . B s
1
| |

(c) local gridg*(V) c MK (d) local gridgk*1(V) c M1 (e) edge points in one quadrant (f) face points in one quadrant

P3,—3 |P3,—2 |P3.-1 P30 P31 P32 P33

p2,-3 |P2.—2 |P2.—1 20 |P21 P22 P23 09,2 | 02,—1 | 020 | d21
€1,-2 |€1,—-1 f€1,0 €1,1 €1,2

P1,—-3 |P1,—-2 |P1,—-1 P10 D1,1 D1,2 D1,3 01,2 51‘—1 51‘0 51,1

1) ] ] B 0 -5 O
Po,~3 |Po,—2 |Po,—1 fPoo |[Po1 |Po2 P03 0,—2 | 90,—1 [ %00 | do:1
€-1,-2|€-1,—1€-10 [€-11 [€-12

p—1,—3|P—1,—2|P—1,—1p—10 |P-11 |[P-12 |[P-13 0_1,—2[0_1,—1f0—1,0 | 0-11
€ _2|€_2_1fe_20 [€—21 |€—22
D—2,-3|P—2,—2|P—2,-1p—2,0 |P-21 |[P-22 |P-23 02, 2|02 1§20 |0-21

P-3,-3 P-3,-2 P-3,-1P-30 P-31 P-32 P-33

(9) points ofGK(V) with indexing in (15) (h) parameter sequences 8K(V) for NULISS

—2 1 €0 €1 €2
0o | o1 f b | 0 |
[ €1 & €1 éo
O | o1 [ o0 | 01 |
FE FAPR FRE PR A
O | 6 I b | & |
€2 e féo €1 €2

(i) parameter sequences gh(V) for Spg(V)

Figure 9: lllustration of the local configuration of pointscaparameters used in the proof of Theorem 2.
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An analogous equation holds in the vertical direction. Bitplg equation (11) we can wrii& s in dependence
of the knot intervals ofM°, namely forr = 0,1,

[do dl+1] 1k dl] 1 dO d|0+11 ij do dgll—;d'ol] WhenS: O
i,j— 1 2 2 '

Ors = -d? a7
[do +r it '*1‘ i O '*“ % A+ '*1‘ ”] whens=1.

Furthermore we denote the edge pointSefs(V), corresponding to the same location®fby E. E is de-

fined as the linear combination (7), with ¢beients obtained evaluating the basis functiqyﬁ%* associated to
the parameterizatiofiys, s = 0,1. Notice that such parameterization is common to all thesictamed rows.
As a consequence of théfiae invariance of the basis functions the parameterizaij@rgenerates the same
codficients as (Figure 9(i))

i,j-1> M) i,

do,do,d0 whens = 1.
[P, o o]

R {[do dP. do] whens = 0,
s = (18)

Thus we can write
3 3

= = Z Pr,see-1 a{(gs) = Z Pr,s+e-1 lﬂ?s(m&)’ r,s=0,1,

=0 =0
from which we get

3 |
S a5 ) - g
=0

We now observe that fdk big enoughg, s in (17) andds in (18) fall into the hypothesis of Lemma 2 with
u=d ,v=d,C=r(d,; ,-d ), D=r(d’,;-d)andthus
6r\s 85 N —k —
W7 (Mg, ) — vy (M)l < A2, ¥e=0.--.3, (19)

whereA is a generic constant independenkof herefore, when the rowidentifies an edge point rule,

3 "
6[5 s —
Z It - mjl = Z (Mg, ) = y? (M)l < A2
i =0

which proves relation (16).

For a face point inside the considered region (Figure 9(@Yecall that the cd&cients of NULISS depend on
local averages of knot intervals in the two grid directioa$ma(8). We introduce the following notation, similar
to (17),

Ars = AK rs=-2...2.

2Kitr,2j+s°

Er,s = Ek

2Kitr,2j+s’

Also, in analogy to (18), we séis := Ags andE; := E;o. Thus

3 3
Prh-1,s+¢-1 ah(Ar,s) a{(Er,s) - Z Z Prih-1,s+6-1 ah(As) a{(Er)
h=0 ¢=0

DM I

3 3 ~ N
Pran-ter-1Un My DU (M, ) = D 3 Prenase1 v (g ) v (me )

h=0 ¢=0

Pron-sosc [V (mE, ) (v (my ) - wi(my )) - ity ) (vF (e ) - wF“(mEm))]} .
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As above, for a sfliciently largek, we can show tha, s andAs, E;sand E, satisfy the hypothesis of Lemma
2. Therefore, whenidentifies a face point rule,

Zm{,——m,n:i]{i
]

-0 (=0
3
—k > Er,s As N
<2 Ay Y (e (me )1+ We(my )

e, ) (v (m, ) - vamg )) = v (mg ) (w (mg) - u(me )

wE (e ) - v (mg, )

+lgpe(my )l

Uremy, ) — v (my )

<> > |wrme, )

h=0 ¢=0

3
3
h=0 ¢=0
< 27%A. (20)

The last inequality follows from Lemma 1(a) and shows th&) (iolds. This concludes the proof.

Corollary 1. NULISS is convergent and generatés&ntinuous limit surfaces.
The previous result naturally implies the following
Theorem 3. NULISS generates'ccontinuous limit surfaces.

Proof: As already observed in Section 4a% smoothness of the limit surface in the inner region of each t&f M°
is trivially established considering the limit behaviortbé augmented parameterization.

We recall also that the subdivision process generates &seqwfC? curve net\Norks{Tk} , Where each member

k=0

of the sequence is the curve network defined by the limit giagsociated to the polylines 8i¥. Thus, any dyadic
pointV € M*n F0is the intersection of tw&* curves ofF ¥ in the two independent grid directions, which implies
that first partial derivatives of the surface are continuaté.

At an arbitrary (non dyadic) point of ©, the first derivative of the limit surface is certainly cantous in the direction

of the curve ofF° containing the point. Such curve is the boundary of @fopatches of the continuous limit
surface: so, in the transversal direction, the derivataees continuously anywhere inside the patches and, taking
into account that it is also continuous across the boundanyyadyadic point, we can conclude that it must necessarily
be continuous everywhere. O

5. Numerical examples

We conclude by presenting some numerical experimentatimutaNULISS in order to show the quality of
NULISS surfaces and compare it with uniform and non-uniftensor product interpolation methods.

The surfaces shown in the following figures are generatetyusULISS with reference scheme in (6), where the
initial knot intervals have been computed via the centdpparameterization and, in the case of open initial meshes,
exploiting linear extrapolation along the cross-boundhrgction.

We start with two simple, yetfeective examples. To produce the examples in Figure 10 wefiaddhe regular
torus mesh, so as to obtain an initial mesh whose sectioripetyhave corresponding edges of remarkabffedént
lengths (Fig. 10 (a)). In such situation, the uniform pargarieation introduces a significant distortion with reggec
the parameterization of the individual initial sectionydmles. As a consequence, an unwanted artifact appears in th
limit surface of the uniform scheme (Fig. 10 (b) and (d)), e¥his not present in the NULISS surfaces generated from
the same initial meshes (Fig. 10 (c) and (e)). The kind ofatihighlighted by this example is particularly evident
if we look at one section curve of the uniform and NULISS limitrfaces, as illustrated in Fig. 11 for the upper-row
mesh (Fig.10 (a)). While in the uniform case each sectiomechas the same parameterization in both directions, in
the latter one each section curve maintains its own (cestaipparameterization.
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(a)Initial mesh (b) Uniform, 3 steps (c) NULISS, 3 steps (d) Uniform limit (e) NULISS limit

Figure 10: Comparison between uniform tensor product hicsgpline surface and NULISS.
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Figure 11: Section polyline of the initial mesh on the top mifFigure 10 (a) ; corresponding section curve of the unifetridivision limit surface
(d) and of NULISS (e).

To give a general idea of the quality of the surfaces, we jgi®in Figure 12 the results that we got by applying
NULISS to a variety of initial meshes. The lamp mesh is oladihy revolution of a profile polyline with extremely
short and long edges, and thus it is essentially uniform i grid direction and highly non-uniform in the other.
The middle row mesh represents the upper part of a fire hydtasnot a revolution mesh and it evidently presents
highly non-uniform section polylines in both grid direatm Finally, the vase mesh is obtained by scaled versions
of one section polyline, shifted along the vertical axishalitng and short shift steps. The considered meshes are
characterized by highly non-uniform initial section pahgds, so that the uniform scheme fails on all of them.

We have also tested NULISS on a wide set of data, acquiredighra needle scanning device. We have recon-
structed the data by means of NULISS and non-uniform tensmiyzt bicubic spline surfaces. As shown in Figure
13, NULISS provides a faithful reconstruction, preserviing details present in the data. Oppositely, in some areas -
see, e.g., along the top border of the wings or top of headsetgeroduct splines generate more undulations than the
ones present in the acquired data.

Finally, an application of NULISS was presented in [9]. lattiwvork, NULISS was used to generate a surface starting
from some of its feature curves, acquired through an inte&apen-like device (Fast Interactive Reverse Engineer-
ing). While the user interactively scans the feature curthessurface underneath needs to change accordingly, so it
is fundamental to have at disposal a quick method that atatmeedime allows for updating the surface shape and
interpolating all the acquired data with satisfactory @yaln this context NULISS proved to be optimal in terms of
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Figure 12: NULISS surfaces and the related initial meshes.

surface quality and speed of reconstruction, but none aytic properties were known, which was an additional
motivation for the present paper.

6. Summary and future work

Non-uniform tensor product interpolants often give rissigmificant undulation artifacts, due to the strict struc-
ture of the underlying parameterization. For this readoa centripetal parameterization, that is proven to be adtim
in the univariate case, does not significantly improve theli®r of the surface in the tensor product bivariate sgittin
In this paper, we have presented a novel class of non-unjfaomtensor product, local interpolatory subdivisionsur
faces that generalizes non-uniform interpolatory 4-psatitemes to regular quadrilateral meshes. This new proposal
generate€!-continuous limit surfaces with a better behavior than tedl-established tensor product subdivision
and spline representations. To a large extent, the advaofafis new construction is that a local parameterization
is used, instead of a global average of the parameters, masway that each section curve is interpolated together
with its parameters, thus maintaining its own centripegabmeterization. This allowed us to transpose to the sairfac
setting the demonstrated benefits that the centripetahpteaization shows in curve interpolation.

Our future objective is the generalization of the proposdgieand face point subdivision rules to meshes with ex-
traordinary vertices, pursuing the idea that the advastage suitable non-uniform parameterization, with respect
a uniform, might be significant also when interpolating nessbf arbitrary topology.
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Initial data (32x 57 vertices) NULISS Tensor product

Initial data (65x 114 vertices) NULISS Tensor product

Figure 13: Reconstruction of scanned data through NULISSnam-uniform bicubic tensor product splines.
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