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Convergence of univariate
non-stationary subdivision schemes

via asymptotic similarity

C. Conti∗, N. Dyn †, C. Manni ‡, M.-L. Mazure §

May 20, 2015

Abstract

A new equivalence notion between non-stationary subdivision schemes,
termed asymptotic similarity, which is weaker than asymptotic equiv-
alence, is introduced and studied. It is known that asymptotic equiv-
alence between a non-stationary subdivision scheme and a convergent
stationary scheme guarantees the convergence of the non-stationary
scheme. We show that for non-stationary schemes reproducing con-
stants, the condition of asymptotic equivalence can be relaxed to
asymptotic similarity. This result applies to a wide class of non-
stationary schemes.

Keywords: Non-stationary subdivision schemes, convergence, reproduction
of constants, asymptotic equivalence, asymptotic similarity

1 Introduction

This short paper studies univariate binary non-stationary uniform subdi-
vision schemes. Such schemes are efficient iterative methods for genera-
ting smooth functions via the specification of an initial set of discrete data
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f [0] := {f [0]
i ∈ R, i ∈ Z}, and a set of refinement rules, mapping at each ite-

ration the sequence of values f [k] := {f [k]
i ∈ R, i ∈ Z} attached to the points

of the grid 2−kZ into the sequence of values f [k+1] attached to the points of
2−(k+1)Z. At each level k, the refinement rule Sa[k] , is defined by a finitely

supported mask a[k] := {a[k]i , i ∈ Z}, so that

f [k+1] := Sa[k]f [k] with
(
Sa[k]f [k]

)
i
:=
∑
j∈Z

a
[k]
i−2jf

[k]
j . (1)

Each subdivision scheme {Sa[k] , k ≥ 0} we will deal with is assumed to be lo-
cal, in the sense that there exists a positive integer N such that supp (a[k]) :=

{i ∈ Z, | a[k]i ̸= 0} ⊆ [−N,N ] for all k ≥ 0.

The idea of proving the convergence of a non-stationary scheme by compa-
rison with a convergent stationary one was first developed in [6], via the
notion of asymptotic equivalence between non-stationary schemes. Two sub-
division schemes {Sa[k] , k ≥ 0} and {Sa∗[k] , k ≥ 0} are said to be asymptoti-
cally equivalent when

∞∑
k=0

∥Sa[k] − Sa∗[k]∥ < +∞,

which holds if and only if
∑∞

k=0 ∥a[k] − a∗[k]∥ < +∞. The main result of
the present work is that for convergence analysis of non-stationary schemes
reproducing constants, asymptotic equivalence can be replaced by the weaker
notion of asymptotic similarity. We say that two schemes are asymptotically
similar when

lim
k→∞

∥a[k] − a∗[k]∥ = 0. (2)

The class of subdivision schemes to which our result applies is wide and
important from the application point of view. For instance, this class contains
all uniform subdivision schemes generating spaces of exponential polynomials
with one exponent equal to zero, and in particular all subdivision schemes for
uniform splines in such spaces [3, 8]. Besides their classical interest in geo-
metric modelling and approximation theory, uniform exponential B-splines
are very useful in Signal Processing [4, 19] and in Isogeometric Analysis [11,
12]. In the latter context, exponential B-splines based subdivision schemes
permit to successfully address the difficult evaluation of these splines.

The article is organized as follows. In Sections 2 and 3 the analysis lead-
ing to the main result of this paper is presented. In Section 2 we derive a
sufficient condition for the convergence of non-stationary schemes reproduc-
ing constants, in terms of difference schemes. This condition replaces the
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well-known necessary and sufficient condition for convergence in the station-
ary case. In Section 3 we introduce the asymptotic similarity relation (2)
and develop some useful consequences for the analysis of non-stationary sub-
division schemes. In particular, we show that, if two subdivision schemes
reproduce constants, and if one of them satisfies the above-mentioned suffi-
cient condition, so does the other. This fact is important for the proof of the
convergence of non-stationary schemes reproducing constants by comparison
(in the sense of (2)) with convergent stationary ones. Finally, in Section 4 we
illustrate our result with non-stationary versions of the de Rham algorithm
and of the four-point scheme.

Throughout the article the notation ∥·∥ refers to the sup-norm, for either
operators, functions, or sequences in RZ and, in particular, we recall that

∥Sa[k]∥ :=max

(∑
i∈Z

|a[k]2i |,
∑
i∈Z

|a[k]2i+1|

)
.

2 A sufficient condition for convergence

Let {Sa[k] , k ≥ 0} be a given subdivision scheme, defining successive f [k],
k ≥ 0, via (1). At any level k ≥ 0, we denote by PL(f [k]) the piecewise

linear function interpolating the sequence f [k], i.e., PL(f [k])(i2−k) = f
[k]
i for

all i ∈ Z. The scheme is said to be convergent if, for any bounded f [0], the
sequence {PL(f [k]), k ≥ 0} is uniformly convergent on R. If so, the limit
function is denoted by S∞

{a[k], k≥0}f
[0].

The subdivision scheme can equivalently be defined by its sequence of sym-
bols, the symbol of the mask a[k] of level k being defined as the Laurent
polynomial a[k](z) :=

∑
i∈Z a

[k]
i zi. The scheme {Sa[k] , k ≥ 0} is said to repro-

duce constants if f
[0]
i = 1 for all i ∈ Z implies f

[k]
i = 1 for all i ∈ Z and all

k ≥ 0, which holds if and only if∑
i∈Z

a
[k]
2i =

∑
i∈Z

a
[k]
2i+1 = 1 for all k ≥ 0,

or if and only if the symbols satisfy

a[k](−1) = 0 and a[k](1) = 2 for all k ≥ 0. (3)

If (3) holds, each symbol can be written as a[k](z) = (1 + z)q[k](z), where

q[k](z) :=
∑

i∈Z q
[k]
i zi satisfies q[k](1) = 1, and we have

q
[k]
i =

∑
j≤i

(−1)i−ja
[k]
j , a

[k]
i = q

[k]
i + q

[k]
i−1, i ∈ Z, k ≥ 0. (4)
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From the right relation in (4) it is easily seen that the scheme {Sq[k] , k ≥ 0}
permits the computation of all backward differences ∆f

[k]
i := f

[k]
i − f

[k]
i−1,

namely
∆f [k+1] = Sq[k]∆f [k], with ∆f [k] := {∆f

[k]
i , i ∈ Z}.

The non-stationary subdivision scheme {Sq[k] , k ≥ 0} is called the difference
scheme of {Sa[k] , k ≥ 0}.

The scheme {Sa[k] , k ≥ 0} is stationary when its masks a[k] do not depend
on the level k, i.e., a[k] = a for all k ≥ 0. In that case we will use the simplified
notation {Sa}.

As is well known, reproduction of constants is necessary for convergence
of stationary subdivision schemes. Let us recall also the following major
convergence result about the stationary case (see e.g.[5]).

Theorem 1 Let {Sa} be a stationary subdivision scheme reproducing con-
stants, with difference scheme {Sq}. Then the scheme {Sa} converges if and
only if there exists a positive integer n such that µ := ∥(Sq)

n∥ < 1.

A similar necessary and sufficient condition for the convergence of non-
stationary subdivision schemes is not known. Nevertheless, a non-stationary
version of the sufficient condition is given in Theorem 3 below.

Definition 2 We say that a subdivision scheme {Sa[k] , k ≥ 0}, assumed
to reproduce constants, satisfies Condition A, when its difference scheme
{Sq[k] , k ≥ 0} fulfills the following requirement:

there exist two integers K ≥ 0, n > 0, such that

µ := sup
k≥K

∥∥Sq[k+n−1] . . . Sq[k+1]Sq[k]

∥∥ < 1. (5)

Let us recall that a scheme {Sa[k] , k ≥ 0} is said to be bounded, if supk≥0 ∥Sa[k]∥ <

+∞, or, equivalently, due to locality, if supk≥0 ∥a[k]∥ < +∞.

Theorem 3 Let {Sa[k] , k ≥ 0} be a bounded subdivision scheme reprodu-
cing constants and satisfying Condition A. Then, {Sa[k] , k ≥ 0} converges.
Moreover, there exists a positive number C, such that, for any initial f [0],

∥S∞
{a[k], k≥0}f

[0] − PL
(
f [k]
)
∥ ≤ C µ̂k∥∆f [0]∥, k ≥ 0, with µ̂ := µ

1
n , (6)

where µ and n are provided by (5), and where {f [k], k ≥ 0} are the sequences
generated by the subdivision scheme.

Before proving the theorem we prove two lemmas. Below, as well as whenever
we refer to a specific mask, we only indicate the non-zero elements.
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Lemma 4 Let {Sa[k] , k ≥ 0} be a bounded subdivision scheme which re-
produces constants, its locality being prescribed by the positive integer N .
Let h :=

{
1
2
, 1, 1

2

}
be the mask of the stationary linear B-spline subdivision

scheme. The symbols of the masks {d[k] := a[k]−h, k ≥ 0} can be written as

d[k](z) = (1− z2)e[k](z), (7)

where, for each k ≥ 0, the mask e[k] satisfies

e
[k]
i :=

∑
j≥0

d
[k]
i−2j, for all i ∈ Z, supp e[k] ⊂ [−N,N − 2]. (8)

Proof: The factorization (7) is valid for the difference of any two subdivision
schemes reproducing constants since their symbols take the same value at −1
and 1, see (3). The rest of the claim readily follows from (7). �

Lemma 5 Under the assumptions of Theorem 3 there exists a positive con-
stant C1 such that

∥∆f [k]∥ ≤ C1 µ̂k∥∆f [0]∥, k ≥ 0. (9)

Proof: Select any integers p, r, with p ≥ 0 and 0 ≤ r ≤ n − 1, where n is
given by (5). Repeated application of (5) yields:

∥∆f [K+pn+r]∥ ≤ µp∥∆f [K+r]∥,

≤ µ̂K+pn+r
∥Sq[K+r−1] . . . Sq[1]Sq[0]∥

µ̂K+r
∥∆f [0]∥.

(10)

From (10) and from the fact that µ̂ < 1 it can easily be derived that (9)
holds with

C1 :=
1

µ̂K+n−1
max

0≤k≤K+n−1
∥Sq[k−1] . . . Sq[1]Sq[0]∥.

�
Proof of Theorem 3: By standard arguments it is sufficient to show that
the sequence {F [k] := PL(f [k]), k ≥ 0}, of piecewise linear interpolants
satisfies

∥F [k+1] − F [k]∥ ≤ Γ µ̂k∥∆f [0]∥ , k ≥ 0, (11)

for some positive constant Γ. The constant C in (6) can then be chosen as
C := Γ/(1− µ̂). With the help of the hat function

H(x) =

{
1− |x|, x ∈ (−1, 1),
0, otherwise,

5



we can write F [k+1] and F [k] respectively as

F [k+1](x) =
∑
i∈Z

(
Sa[k]f [k]

)
i
H(2k+1x− i) ,

and
F [k](x) =

∑
i∈Z

f
[k]
i H(2kx− i) =

∑
i∈Z

(
Shf

[k]
)
i
H(2k+1x− i) ,

where Sh is the subdivision scheme for linear B-splines recalled in Lemma 4.
Hence, by the definition of d[k] in Lemma 4, we obtain

F [k+1](x)− F [k](x) =
∑
i∈Z

g
[k+1]
i H(2k+1x− i) with g[k+1] := Sd[k]f [k]. (12)

The left relations in (8) can be written as d
[k]
i = e

[k]
i − e

[k]
i−2 for all i ∈ Z,

implying that

g
[k+1]
i =

∑
j∈Z

e
[k]
i−2j

(
∆f [k]

)
j
, i ∈ Z. (13)

Now, Lemma 4 and the boundedness assumption ensure that

∥e[k]∥ ≤ C2 := N(sup
j≥0

∥a[j]∥+ 1) < +∞, k ≥ 0. (14)

Gathering (14), (13), (12), (9) leads to (11), with Γ := NC1C2. �

As in the stationary case, it can be proved that the limit function in Theorem
3 is Hölder continuous with exponent |Log2µ̂|.

Remark 6 Different proofs of the fact that Condition A is sufficient for con-
vergence already exist in the wider context of non-regular (i.e, non-uniform,
non-stationary) schemes, using non-regular grids, either nested [14] or non-
nested [15, 16]. Nevertheless, we did consider it useful to give a simplified
proof in the context of uniform schemes and regular grids. Indeed, in that
case the proof is made significantly more accessible by the use of the corre-
sponding classical tools.

3 Asymptotically similar schemes

Definition 7 We say that two subdivision schemes {Sa[k] , k ≥ 0} and {Sa∗[k],
k ≥ 0} are asymptotically similar if

lim
k→∞

∥a[k] − a∗[k]∥ = 0. (15)
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Clearly, asymptotic similarity is an equivalence relation between subdivision
schemes, which is weaker than asymptotic equivalence. By the locality of the
two schemes, proving their asymptotic similarity simply consists in checking
that

lim
k→∞

(a
[k]
i − a

∗[k]
i ) = 0 for −N ≤ i ≤ N ,

where [−N,N ] contains the support of the masks a[k], a∗[k] for k ≥ 0. Note
that (15) can be replaced by limk→∞ ∥Sa[k] − Sa∗[k]∥ = 0 as well. If two
subdivision schemes are asymptotically similar and if one of them is bounded,
so is the other.

Depending on the properties of the schemes, asymptotic similarity can be
expressed in different ways:

Proposition 8 Given two subdivision schemes {Sa[k] , k ≥ 0} and {Sa∗[k] , k ≥
0} which both reproduce constants, the following properties are equivalent:

(i) {Sa[k] , k ≥ 0} and {Sa∗[k] , k ≥ 0} are asymptotically similar;

(ii) the difference schemes {Sq[k] , k ≥ 0} and {Sq∗[k] , k ≥ 0} are asymptot-
ically similar.

If, in addition, one of the two subdivision schemes {Sa∗[k] , k ≥ 0} or {Sa[k] , k ≥
0} is bounded, then (i) is also equivalent to

(iii) for any fixed p ≥ 0, limk→∞
∥∥Sq[k+p] . . . Sq[k] − Sq∗[k+p] . . . Sq∗[k]

∥∥ = 0.

Proof: Without loss of generality we can assume that the locality of the two
schemes is determined by the same positive integer N . Then, by application
of (4) we can derive that suppq[k], suppq∗[k] ⊂ [−N,N − 1], and that

1

2
∥a[k] − a∗[k]∥ ≤ ∥q[k] − q∗[k]∥ ≤ 2N∥a[k] − a∗[k]∥ .

The equivalence between (i) and (ii) follows. Clearly, (ii) is implied by (iii).
As for the implication (ii) ⇒ (iii), it follows by induction from the equality

Sq[k+p+1]Sq[k+p] . . . Sq[k] − Sq∗[k+p+1]Sq∗[k+p] . . . Sq∗[k]

=
(
Sq[k+p+1] − Sq∗[k+p+1]

)
Sq[k+p] . . . Sq[k]

+ Sq∗[k+p+1]

(
Sq[k+p] . . . Sq[k] − Sq∗[k+p] . . . Sq∗[k]

)
, k ≥ 0 ,

and from the boundedness of the two schemes. �

Proposition 9 Let {Sa∗[k] , k ≥ 0} be a bounded subdivision scheme repro-
ducing constants and satisfying Condition A. Then, any subdivision scheme
{Sa[k] , k ≥ 0} which reproduces constants and is asymptotically similar to
{Sa∗[k] , k ≥ 0}, also satisfies Condition A.

7



Proof: Using the notation of Proposition 8, we conclude from Condition A
the existence of two integers K∗, n such that

µ∗ := sup
k≥K∗

∥∥Sq∗[k+n−1] . . . Sq∗[k]

∥∥ < 1.

Select any µ ∈ (µ∗, 1) and choose ε > 0 such that µ∗ + ε < µ. The two
schemes being asymptotically similar, and {Sa∗[k] , k ≥ 0} being bounded, we

know that (iii) of Proposition 8 holds. We can thus find K̃ ≥ 0, such that∥∥Sq[k+n] . . . Sq[k] − Sq∗[k+n] . . . Sq∗[k]

∥∥ ≤ ε for all k ≥ K̃.

Clearly, we have∥∥Sq[k+n] . . . Sq[k]

∥∥ ≤ µ < 1, for each k ≥ K := max(K∗, K̃). (16)

The claim is proved. �

Remark 10 We would like to draw the reader’s attention to the fact that we
have not proved that, when two bounded non-stationary subdivision schemes
reproducing constants are asymptotically similar, convergence of one of them
implies convergence of the other. Convergence of the second scheme is ob-
tained only when convergence of the first one results from Condition A. This
follows from Proposition 9 and Theorem 3. This is actually sufficient to prove
Theorem 11 below, which is the main application of all previous results.

Theorem 11 Let {Sa∗} be a convergent stationary subdivision scheme with
µ∗ := ∥(Sq∗)n∥ < 1. Let {Sa[k] , k ≥ 0} be a non-stationary subdivision
scheme reproducing constants which is asymptotically similar to {Sa∗}. Then,
the scheme {Sa[k] , k ≥ 0} is convergent and for any η ∈ (µ∗ 1

n , 1) there exists
a positive constant C such that, for any initial bounded f [0],

∥S∞
{a[k], k≥0}f

[0] − PL
(
f [k+1]

)
∥ ≤ C ηk∥∆f [0]∥, k ≥ 0.

Proof: The existence of a positive integer n with µ∗ := ∥(Sq∗)n∥ < 1 is due
to the convergence of the stationary scheme {Sa∗}, see Theorem 1. In other
words, {Sa∗} satisfies Condition A. We also know that {Sa∗} reproduces
constants. Accordingly, by application of Proposition 9, we can say that
{Sa[k] , k ≥ 0} satisfies Condition A too. Furthermore, we know that we can
apply Theorem 3 using any µ ∈ (µ∗, 1) (see (16)). �
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4 Illustrations

We conclude this work with two examples illustrating the convergence claim
in Theorem 11, and with an example showing the necessity of reproduction
of constants in this Theorem. In what follows we only write the non-zero
elements of the masks.

4.1 First example

The oldest instances of subdivision schemes are certainly the de Rham schemes
[18]. Given a positive parameter γ, the associated de Rham scheme consists
in placing on each segment of the polygonal line of any given level k, exactly
two consecutive points of the next level, so that they divide this segment
with ratios 1 : γ : 1. This corner cutting geometric construction yields a
stationary scheme {Sa∗}, with mask

a∗ =

{
1

2 + γ
,
1 + γ

2 + γ
,
1 + γ

2 + γ
,

1

2 + γ

}
, (17)

known to converge for any value of γ > 0. In a very natural way, a more
general geometric construction can be done using a sequence of positive pa-
rameters γk, k ≥ 0, instead of a single parameter γ for all levels. We now
divide each segment of level k with ratios 1 : γk : 1. The scheme {Sa[k] , k ≥ 0}
produced is a non-stationary version of the de Rham scheme. Its mask a[k]

of level k is obtained by replacing γ by γk in (17). All masks have the same
support and

a∗i − a
[k]
i = ± γk − γ

(2 + γk)(2 + γ)
for all i ∈ supp (a) and for all k ≥ 0.

Accordingly, for the scheme {Sa[k] , k ≥ 0} to be asymptotically similar to
the classical stationary de Rham scheme {Sa∗} of parameter γ, it is necessary
and sufficient to choose the sequence γk, k ≥ 0, so that

lim
k→∞

γk = γ. (18)

Since {Sa[k] , k ≥ 0} obviously reproduces constants, we deduce from Theo-
rem 11 that if the sequence {γk, k ≥ 0}, converges to a limit in (0,+∞) the
corresponding non-stationary de Rham scheme {Sa[k] , k ≥ 0} converges.

We illustrate this in Figure 1, where, for γ = 2, and γ = 1.5, limit
functions corresponding to two sequences γk, k ≥ 1, are shown, starting
from the initial sequence f [1] := δ = {δi,0, i ∈ Z}. For γ = 2, {Sa∗}

9
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Figure 1: Limit functions obtained via non-stationary de Rham schemes starting
from f [1] = δ, with γk = γ + α

k , k ≥ 1. Left: γ = 2. Right: γ = 1.5. For both
pictures the displayed functions correspond to α = 2.5 (blue); α = −1.5 (green).

is simply the Chaikin algorithm with mask a = {1
4
, 3

4
, 3

4
, 1

4
}. In either

illustration, the non-stationary subdivision scheme {Sa[k] , k ≥ 1} is not
asymptotically equivalent to the corresponding de Rham scheme {Sa∗} since∑

k≥1 ∥Sa[k] − Sa∗[k]∥ = +∞.

4.2 Second example

We now start with another famous example of stationary scheme, the four-
point scheme {Sa∗} [7]. Given a fixed parameter w, at any level k ≥ 0, the
values at level (k + 1) are computed from those at level k according to the
following formulas:

f
[k+1]
2i = f

[k]
i , f

[k+1]
2i+1 = (

1

2
+ w)(f

[k]
i + f

[k]
i+1)− w(f

[k]
i−1 + f

[k]
i+2). i ∈ Z. (19)

It is known that convergence holds when w ∈ (−1
2
, 1
2
).

Here too a very natural approach consists in trying not to keep the same
parameter w at each level. This idea already appeared in [2, 10, 13], where
even non-uniform versions of the four-point scheme were addressed. Let us
limit ourselves to a uniform non-stationary four-point scheme, associated
with a sequence of parameters wk, k ≥ 0. The scheme {Sa[k] , k ≥ 0}, is
simply obtained by replacing w by wk in (19) at any level k ≥ 0. Clearly

∥a[k] − a∗∥ = |wk − w|, k ≥ 0,

which means that {Sa[k] , k ≥ 0} is asymptotically similar to {Sa∗} if and only
if limk→∞wk = w, while it is asymptotically equivalent to {Sa∗} if and only if

10
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1

Figure 2: Limit functions obtained via (19) starting from f [1] = δ. Left wk := w+
α
k , k ≥ 1, w = 1

8 and α = −0.125 (blue); α = 0.125 (green). Right wk := w(1− 1
kα ),

k ≥ 1, w = 1
8 and α = 1 (blue), α = .1 (green).

∑
k≥0 |wk−w| < +∞. Accordingly, by Theorem 11, we can state that a non-

stationary four-point scheme converges as soon as its sequence of parameters
converges to a limit in the interval (−1

2
, 1
2
). The convergence is illustrated

in Fig. 2 for two sequences of parameters wk. In all these illustrations,
the schemes are not asymptotically equivalent to the corresponding classical
four-point scheme.

4.3 About reproduction of constants

Let us now consider the family of masks {a[k], k ≥ 1}, with

a[k] =

{
1

4
+

1

k
,
3

4
+

1

k
,
3

4
+

1

k
,
1

4
+

1

k

}
, k ≥ 1. (20)

Fig. 3 shows the results after 8, 12, 16 iterations in the left, in the center
and in the right, respectively. It clearly shows that the corresponding non-
stationary scheme is not convergent. Still, it is asymptotically similar to
the Chaikin scheme. This is not in contradiction with Theorem 11 since
reproduction of constants is not satisfied. Indeed,

∑
i∈Z a

[k]
2i =

∑
i∈Z a

[k]
2i+1 =

1+ 2
k
̸= 1 for all k ≥ 1. This enhances the importance of all assumptions for

the validity of Theorem 11.

5 Conclusions

Non-stationary subdivision schemes are harder to analyze than their station-
ary counterparts. Analyzing them by comparison with a simpler scheme is
quite a natural idea. Up to now, the main tool for such a comparison was the
asymptotic equivalence, as developed in [6], see also [9]. In the present article,
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Figure 3: From left to right: 8; 12; 16 iterations of (20) starting from f [1] = δ.

we have replaced it by asymptotic similarity, a simpler and weaker equiva-
lence relation between non-stationary schemes. Our work presents a twofold
interest. It was clearly important on the theoretical side to point out that
asymptotic equivalence may be a too demanding requirement. Indeed, pro-
vided that it reproduces constants, a non-stationary scheme which is asymp-
totically similar to a convergent stationary one is convergent. Certainly,
many among the known converging non-stationary schemes are asymptoti-
cally equivalent to stationary analogues. Still, we have presented two simple
examples which show that asymptotic similarity can also be useful in the
design of new converging non-stationary schemes.

It was remarked by D. Levin that asymptotic similarity combined with
the notion of smoothing factors of [6] yields smoothness of the generated
limits.

To enhance the significance of asymptotic similarity, we would like to
mention that this notion was first introduced for non-regular (non-uniform,
non-stationary) schemes in [17] (simply named there equivalence). However,
the non-uniformity made it necessary to define it locally. In this non-regular
framework, it proved to be a forceful tool to analyze not only the convergence
of a subdivision scheme but also the regularity of the limit functions it pro-
duces.In the uniform setting, further results concerning asymptotic similarity
can be found in [1] along with several important extensions of this notion.
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