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cMathematical Institute, Charles University in Prague, Sokolovská 83, 186 75 Praha 8, Czech Republic

Abstract

We present a simple functional method for the interpolation of given data points and associated normals
with surface parametric patches with rational normal fields. We give some arguments why a dual approach
is especially convenient for these surfaces, which are traditionally called Pythagorean normal vector (PN)
surfaces. Our construction is based on the isotropic model of the dual space to which the original data are
pushed. Then the bicubic Coons patches are constructed in the isotropic space and then pulled back to the
standard three dimensional space. As a result we obtain the patch construction which is completely local
and produces surfaces with the global G1 continuity.

Key words: Hermite interpolation, surfaces with Pythagorean normal fields, rational offsets, isotropic
model, Coons patches

1. Introduction

This paper is devoted to the Hermite interpolation with the surfaces possessing Pythagorean normal
vector fields (PN surfaces). These surfaces were introduced by Pottmann (1995). We can understand them
as surface counterparts to the Pythagorean hodograph (PH) curves first studied by Farouki and Sakkalis
(1990). PN surfaces have rational offsets and thus provide an elegant solution to many offset-based problems
occurring in various practical applications. In particular, in the context of the computer-aided manufactur-
ing, the tool path does not have to be approximated and it can be described exactly in the NURBS form,
which is nowadays a standard format of the CAD/CAM applications.

For the survey of the theory and applications of PH/PN objects, see Farouki (2008) and references
therein. Many interesting theoretical questions related to this subject have been studied in the past years.
Let us mention in particular the analysis of the geometric and algebraic properties of the offsets, such as the
determination of the number and type of their components and the construction of their suitable rational
parameterizations (Arrondo et al., 1997, 1999; Maekawa, 1999; Sendra and Sendra, 2000; Vršek and Lávička,
2010).

Despite natural similarities between the PH curves and the PN surfaces, the two classes of Pythagorean
objects exhibit also some important differences. For example, the set of all polynomial PH curves within
the set of all rational PH/PN curves was exactly identified in (Farouki and Pottmann, 1996). On the other
hand for the PN surfaces only the rational ones are described explicitly using a dual representation and
the subset of the polynomial ones have not been revealed yet. Polynomial solution of the Pythagorean
condition in the surface case started in (Lávička and Vršek, 2012) for cubic parameterizations and recently
an approach based on bivariate polynomials with quaternion coefficients was presented by Kozak et al.
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(2016). A survey discussing rational surfaces with rational offsets and their modelling applications can be
found in (Krasauskas and Peternell, 2010).

The previous problem is also strongly related to the construction techniques for PN surfaces, in particular
to the Hermite interpolation, which is the main topic of this paper. There exist many Hermite interpolation
results for the polynomial and rational PH curves yielding piecewise curves of various continuity, see (Farouki,
2008; Kosinka and Lávička, 2014). Concerning direct algorithms for the interpolations with PN surfaces the
situation is different. By ‘direct’ we mean in this context the construction of the object together with
its PN parameterization. Indeed, some constructions for special surfaces, which become PN only after a
suitable reparameterization, were designed. For instance in Bastl et al. (2008), there was designed a method
for the construction of the exact offsets of quadratic triangular Bézier surface patches, which are in fact
PN surfaces. However their PN parameterizations were gained via certain reparameterization. A similar
approach based on reparameterization was also used in the paper (Jüttler and Sampoli, 2000) devoted to
the surfaces with linear normals (Jüttler, 1998), which generally admit a non-proper PN parameterizations,
see Vršek and Lávička (2014) for more explanations.

First we emphasize that our method requires that given points being interpolated are arranged in a
rectangular grid; for further details about quadrilateral mesh generation and processing, including surface
analysis and mesh quality, simplification, adaptive refinement, etc. we refer to survey paper (Bommes et al.,
2013) and references therein. Next, unlike the approaches presented in the papers cited in the previous
paragraph we plan to interpolate a set of given points pij with the associated normal vectors nij by a
rational parameterized PN surface in a direct way, i.e., without the necessary subsequent reparameterization.
The advantage of such direct PN interpolation techniques is obvious – no complicated trimming procedure
in the parameter space is necessary. As far as we are aware, a similar method was discussed only in
(Peternell and Pottmann, 1996), where a surface design scheme with triangular patches on parabolic Dupin
cyclides was proposed. In addition, in (Gravesen, 2007) the interpolation of triangular data using the support
function is studied. The Gauss image is first constructed and then the support function interpolating the
values and gradients at certain points (the given normals) is determined. Our approach interpolates the
normals and the support function simultaneously in the isotropic space. This way we are able to produce
local patches with global G1 continuity.

In the beginning of this paper, we also very shortly address the related open problem of the Hermite
interpolation with the polynomial PN surfaces. Rather than solve this problem, we show its complexity.
Indeed, by simply considering the required number of free parameters we show that this problem is much
harder than in the curve case. We use this consideration as a certain defense for using a dual technique,
which leads to rational solutions. Even so we consider the Hermite interpolation with polynomial PN surfaces
directly as a promising and challenging direction for our future research.

The remainder of this paper is organized as follows. Section 2 recalls some basic facts concerning surfaces
with Pythagorean normal vector fields. We will also briefly sketch how to satisfy the PN condition in the
polynomial case, i.e., how to find polynomial PN parameterizations. In Section 3 the representation of PN
surfaces in the Blaschke and in the isotropic model is presented. We also discuss the usefulness of these
representations for the solution of the interpolation problem. Section 4 is devoted to bicubic Coons patches
in the isotropic model and their usage in the construction of smooth PN surfaces. The method is described,
discussed and presented on a particular example in Section 5. Finally, we conclude the paper in Section 6.

2. Surfaces with Pythagorean normals

In this section we recall some fundamental facts about surfaces with rational offsets.

Definition 2.1. Let X be a real algebraic surface in R
3, let X r denote the set of regular points of X , and

let us denote by np ∈ S2 a unit normal vector at a point p ∈ X r. Then the d-offset Od(X ) of X is defined
as the closure of the set {p± dnp | p ∈ X r}.

If X is rational and x : R2 → R
3 is its parameterization, we may write down a parameterization of the

offset explicitly in the form
x(u, v)± dnx(u, v), (1)
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where nx(u, v) is the unit normal vector field associated to the parameterization x(u, v). It turns out that
(1) is rational if and only if nx(u, v) is. This is equivalent to the existence of a rational function σ(u, v) such
that

‖xu × xv‖
2 = σ2, (2)

where xu and xv are partial derivatives with respect to u and v, respectively.

Definition 2.2. C1 regular parametric surfaces fulfilling condition (2) are called surfaces with Pythagorean
normal vector fields (or PN surfaces, in short) and condition (2) is referred to as PN condition or PN
property.

PN surfaces were defined by Pottmann (1995) as surface analogies to Pythagorean hodograph (PH) curves
distinguished by the PH condition ‖x′(t)‖2 = σ(t)2. These curves were introduced as planar polynomial
objects. Later, the concept was generalized also to the rational PH curves, see (Pottmann, 1995). The
interplay between the different approaches to polynomial and rational curves with Pythagorean hodographs
was studied by Farouki and Pottmann (1996) and the former were established as a proper subset of the
latter by presenting simple algebraic constraints.

Unfortunately more than 20 years from their introduction, the situation is still completely different for
the PN surfaces. This is also reflected when solving the interpolation problems, in which the points and
the normal vectors are prescribed as input data. The most natural (and expected) way of handling the PN
surfaces would be probably similar to the one used for PH curves, see e.g. Farouki (2008). Let us show
it on the polynomial case. All the polynomials satisfying the PH condition x′(t)2 + y′(t)2 = σ(t)2 can be
described explicitly using polynomial Pythagorean triples. The corresponding PH curve x(t) = (x(t), y(t))
is then obtained simply by integration. In the surface case, however, we cannot reproduce this approach.

It is possible to describe explicitly all the polynomial Pythagorean normal fields N(u, v) of degree k
having the polynomial length, i.e., ||N(u, v)||2 is a perfect square; cf. (Dietz et al., 1993). To determine an
associated PN parameterization of degree ℓ+ 1 in a direct way, we have to find suitable polynomial vector
fields

P(u, v) =





∑

i+j≤ℓ

p1iju
ivj ,

∑

i+j≤ℓ

p2iju
ivj ,

∑

i+j≤ℓ

p3iju
ivj



 ,

Q(u, v) =





∑

i+j≤ℓ

q1iju
ivj ,

∑

i+j≤ℓ

q2iju
ivj ,

∑

i+j≤ℓ

q3iju
ivj



 ,

(3)

which will play the role of xu, xv, respectively, that satisfy the following conditions

P ·N = 0,
Q ·N = 0,

∂P

∂v
−

∂Q

∂u
= 0,

(4)

where the third equation expresses the condition for the integrability. Since a polynomial of degree n in two
variables possesses

(

n+2
2

)

coefficients, the problem is now transformed to solving a system of 2
(

k+ℓ+2
2

)

+3
(

ℓ+1
2

)

homogeneous linear equations with 6
(

ℓ+2

2

)

unknowns p1ij , p2ij , p3ij , q1ij , q2ij , q3ij . The corresponding PN
parameterization is then obtain as

x(u, v) =

∫

P(u, v) du + c(v), where c(v) =

[∫

Q(u, v) dv −

∫

P(u, v) du

]

u=0

. (5)

However, we must stress that not for every given polynomial Pythagorean normal field N(u, v) there
exists a corresponding polynomial surface x(u, v) for which xu × xv = N(u, v). For this to hold we need
ℓ = k/2. Nevertheless, in this case the number of unknowns is less than the number of equations so one
cannot expect a solution, in general. On the other hand for ℓ large enough, the system of equations (4) is
solvable. In this case we obviously arrive at a PN parameterization such that xu × xv = f(u, v)N(u,v),
where f(u, v) is some non-constant polynomial.
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3. PN surfaces in the isotropic model of the dual space

As the offsets have a considerably simplier description if we apply the dual approach, we recall in this
section the representation of PN surfaces in the Blaschke and isotropic model of the dual space. Moreover,
this concept is later used for formulating our Hermite interpolation algorithm.

For the sake of brevity, we exclude developable surfaces from our considerations and assume a non-
degenerated Gauss image γ(X ) of all studied surfaces X in what follows. This means that the duality δ
maps a surface X to its dual surface X ∗. Recall that a non-developable surface X : f(x) = 0 has the dual
representation

X ∗ : F ∗(n, h) = 0, (6)

where F ∗ is a homogeneous polynomial in n = (n1, n2, n3) and h. If F ∗(n, h) = 0 then the set of all planes

Tn,h : n · x = h (7)

forms a system of tangent planes of X with the normal vectors n (i.e., X ∗ is considered as the set of tangent
planes of X ). Furthermore, if we assume ‖n‖ = 1 then the value of h is the oriented distance of the tangent
plane to the origin. Moreover, if the partial derivative ∂F ∗/∂h does not vanish at (n0, h0) ∈ X ∗, then (6)
implicitly defines a function

n 7→ h(n) (8)

in a certain neighborhood of (n0, h0). The restriction of this function to the unit sphere S2 is called the
support function of the primal surface, see Gravesen (2007); Aigner et al. (2009); Gravesen et al. (2008);
Lávička et al. (2010); Š́ır et al. (2008) for more details. Let us stress out that that the dual representation
(6) does not require the normal vectors n to be unit vectors. However, whenever we use the support function
then its argument n will be assumed to be a unit vector.

Conversely, from any smooth real function on (a subset of) S2 we can reconstruct the corresponding
primal surface by the parameterization xh : S2 → R

2

xh(n) = h(n)n+∇S2h(n), (9)

where the vector ∇S2h is obtained by embedding the intrinsic gradient of h with respect to S2 into the space
R

3, see Gravesen et al. (2008) for more details. The vector-valued function xh gives a parameterization
of the envelope of the set of tangent planes (7). Hence, all surfaces with the associated rational support
function are rational. It is enough to substitute into (9) any rational parameterization of S2, for instance
n(u, v) = (2u/(1 + u2 + v2), 2v/(1 + u2 + v2), (1− u2 − v2)/(1 + u2 + v2)).

Furthermore, several important geometric operations correspond to suitable modifications of the support
function, see Š́ır et al. (2008). In particular the one-sided offset of a surface at the distance d is obtained
by adding the constant d to the support function h. For using the support function for computing the
convolutions (i.e., the general offsets) of two hypersurfaces see e.g. Š́ır et al. (2007).

In Pottmann and Peternell (1998), the rational surfaces with rational offsets were studied in the so-called
Blaschke model. Consider in R

4 the quadric B = S2 × R : ‖n‖2 − 1 = 0. This quadratic cylinder is called
the Blaschke cylinder. It holds that parallel tangent planes are then represented as points lying on the same
generator (a line parallel to the x4-axis) of B. In what follows the map that sends a point in X to the
tangent plane, i.e., a point in X ∗, is called the Blaschke mapping and is denoted β.

Proposition 3.1. Any non-developable PN surface is the image of a rational surface on the Blaschke
cylinder B via the mapping φ = δ−1 ◦ β.

Next, consider the generator line w of B containing the point w = (0, 0, 1, 0). Let I be the hyperplane
x3 = 0 in R

4, which is parallel to w. We use the new coordinate functions y1 = x1, y2 = x2, y3 = x4 and
define the isotropic mapping

ι : B \ w → I, (x1, x2, x3, x4) 7→ (y1, y2, y3) =
1

1− x3

(x1, x2, x4). (10)
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x3

x4

x1, x2

y3
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ι(p)

n

Figure 1: The Blaschke cylinder B and the isotropic model I of the dual space.

I is called the isotropic model of the dual space, see Fig. 1. Clearly, the tangent planes with the unit normal
(0, 0, 1) do not have an image point in I. Other parallel tangent planes are represented as points on the same
line parallel to the y3-axis; these lines are called the isotropic lines. By a direct computation one obtains

ι−1 : I → B \ w, (y1, y2, y3) 7→ (x1, x2, x3, x4) =
1

1 + y21 + y22
(2y1, 2y2, 1− y21 − y22 , 2y3). (11)

All the above mentioned properties and mappings are summarized in the following proposition and
diagram, which are essential for our method, see (12).

B
ι

//

β

��

φ

~~⑦⑦
⑦
⑦
⑦
⑦
⑦
⑦

I

ξ




θ

��⑧⑧
⑧
⑧
⑧
⑧
⑧
⑧

X
δ

// X ∗

(12)

Corollary 3.2. Any non-developable PN surface is the image of a rational surface in I via the mapping
ξ = φ ◦ ι−1.

The effectiveness of the construction presented later is guaranteed by the following continuity result.

Proposition 3.3. Let y be a piecewise rational C1 surface in I. If x = ξ(y) is regular then it is a G1

piecewise rational surface with Pythagorean normals.

Proof. By the regularity of x we mean that at every point there is a suitable tangent plane so that the
projection of the surface to this plane is a homeomorphism on some neighborhood of this point. This
essentially means that we exclude the sharp edges (ridges). Conditions for the regularity are discussed in
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Figure 2: Curves with cusps and continuous tangent line. The support function (blue) is C∞ on the left and C1

on the right. The value of h+ h′′ (radius of curvature) is displayed in red.

more detail in the paragraph following this proof. We have ξ = φ ◦ ι−1. The mapping ι (and its inverse)
is a diffeomorphism which does not change the continuity. So the patch ι−1(y) on the Blaschke cylinder is
clearly also C1. The mapping φ is given by formula (9), which contains the first order differentiation. For
this reason the surface x = ξ(y) is only C0. However, in fact the continuity of ι−1(y) describes a continuous
variation of a certain well defined plane. It is shown in (Gravesen, 2007) that if x is regular then the inversion
of the projection to this plane is locally C1 which shows the global G1 continuity of x.

As it has been noticed earlier (Peternell and Pottmann, 1996; Gravesen, 2007; Š́ır et al., 2008;
Blažková and Š́ır, 2014) despite the fact that the variation of the planes in the previous proposition is
continuous, the resulting surface may sometimes exhibit sharp edges (ridges). To understand this phenom-
ena let us first investigate, for the sake of simplicity, two examples of planar curves, see Fig. 2. In this case
h(n) is univariate and the function h + h′′ gives the oriented radius of curvature (Š́ır et al., 2008). If this
expression vanishes the curve exhibits a cusp at which the curvature goes to infinity.

The first example is a part of a hypocycloid (Fig. 2, left) where the support function h(n) is perfectly
smooth but still a cusp occurs. The second example (Fig. 2, right) shows two circle segments connected
tangentially and producing a sharp jump in the signed curvature.

A similar behavior can be described for surfaces. In this case the critical expression (corresponding
to h + h′′) is the matrix function HessS2h + hI, where HessS2 denotes the intrinsic Hessian with respect
to the unit sphere S2 (the base of the Blaschke cylinder B) and I is the identity. In fact as shown in
(Š́ır et al., 2008), it holds that dxh = HessS2h + hI, so this quantity allows us to control the features of
the resulting surface. Vanishing of the det (HessS2h+ hI) or a jump in the signs of one its eigenvalues
indicates the occurrence of a sharp edge. For practical modeling purposes let us remark, that a sharp edge
typically occurs when the data from a surface with parabolic curves are interpolated. In other cases this
phenomena will disappear under subdivision. Furthermore, as our method is based on the construction of
Coons patches with boundaries being Fergusson cubics determined by suitably chosen tangent vectors at
given points in the isotropic space (see Section 4), it is theoretically also possible to avoid ridges by optimizing
the lengths of the tangent vectors (which can serve as free modelling shape parameters, see Section 5) with

a suitable objective function. One can for example use the function
∫

Ω
det (HessS2h+ hI)

−2
dAS2 , where

dAS2 is the area element on the sphere and Ω ⊂ S2 is the Gauss image of the constructed surface. In fact
det (HessS2h+ hI)

−2
= K2 and when minimizing its integral we can avoid the ridges at which the Gauss

curvature K tends to infinity, see also (Gravesen, 2007).

6



PSfrag replacements a00

c0(u)

a10

d0(v)

y(u, v)

d1(v)

a01

c1(u)

a11

Figure 3: The Coons patch y(u, v) determined by (13).

4. Coons patches in the isotropic model and PN patches in the primal space

We will use rectangular patches throughout this paper. In order to construct a piecewise PN interpolation
surface x in the primal space, we will consider rational patches in the isotropic model.

Suppose we are given four C1 continuous boundary curves c0(u), c1(u), d0(v), d1(v) in the isotropic space
I which meet at the four corners

c0(0) = d0(0) = a00, c0(1) = d1(0) = a10, c1(0) = d0(1) = a01, c1(1) = d1(1) = a11, (13)

see Fig. 3. Then we can apply the construction of the so called bicubic Coons patch, see e.g. Farin (1988).
It is a parametric surface y(u, v) : [0, 1]× [0, 1] → R

k (k = 3 in our case) determined by the identity

(

F0(u),−1, F1(u)
)

·





a00 d0(v) a01
c0(u) y(u, v) c1(u)
a10 d1(v) a11



 ·
(

F0(v),−1, F1(v)
)T

= 0, (14)

where the blending functions F0, F1 are two of the basic cubic Hermite polynomials used in the construction
of the Ferguson cubic, i.e., F0(t) = 2t3 − 3t2 + 1 and F1(t) = −2t3 + 3t2.

We recall that the matrix in (14) directly reflects the scheme in Fig. 3. Formula (14) ensures that the
constructed patch interpolates all the given boundary curves c0(u), c1(u), d0(v), d1(v). Note that if only
two tangent vectors at every point aij instead of the whole boundary curves are given then one has to
first construct some boundary curves via interpolating these points and vectors by a suitable C1 Hermite
interpolation curves.

By a direct computation (Farin, 1988) it can be proved a fundamental property satisfied by the bicubically
blended Coons patches

Lemma 4.1. Two bicubic Coons patches sharing the same boundary curve and the same tangent vectors at
the end points of the adjacent transversal boundary curves are connected with the C1 continuity.

From this lemma follows one of the nicest application properties of the bicubic Coons construction.
Specifically, given a network of curves, the global interpolating surface that one gets using the bicubic
Coons construction is globally a C1 surface. Combined with Proposition 3.3 we obtain the fundamental
theoretical result justifying our Hermite PN construction.

Proposition 4.2. Let y be a globally C1 continuous network of piecewise rational Coons patches in the
space I. Then x = ξ(y) is a piecewise G1 surface with Pythagorean normals.

7



The observations and results above allow us to design a simple construction algorithm which is essentially
local. More precisely, for a given network of position data (points) and first order data (normals) we will
construct a family of PN patches yielding a piecewise surface which is globally G1 continuous. Specifically,
a modification of some of these data will modify only the adjacent patches.

Suppose we are given a network of the points pi,j with the associated unit normal vectors ni,j in the
primal space, where i ∈ {0, 1, . . . ,m} and j ∈ {0, 1, . . . , n}. Our goal is to construct a set of rational PN
patches xi,j(u, v) for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Each patch will be defined on the interval [0, 1]× [0, 1]
and will interpolate the corner points pi−1,j−1, pi,j−1, pi−1,j , pi,j together with the corresponding normals.
Moreover the union of these patches x =

⋃

i,j xi,j is required to be globally G1 continuous.
Based on the theoretical results from the previous sections, we will construct the patches xi,j(u, v) as

the images of the rational patches yi,j(u, v) in the isotropic space I, i.e.,

xi,j(u, v) = ξ(yi,j(u, v)). (15)

First, for each point we evaluate the support function hi,j = pi,j · ni,j , cf. (7). Next we obtain the
corresponding network of points in the isotropic space I as

ai,j = ι(ni,j , hi,j). (16)

In order to apply the bicubic Coons patch construction, we need to construct boundary curves between
the points ai,j . From the identity

n(u, v) · x(u, v)− h(u, v) = 0, (17)

it follows
(nu, hu) · (p,−1) = 0,
(nv, hv) · (p,−1) = 0.

(18)

So, let us observe that any curve c(t) lying on the piecewise surface y such that c(t0) = ai,j must satisfy

[J(ι−1)c′(t0)] · (pi,j ,−1) = 0, (19)

where J(ι−1) denotes the Jaccobi matrix of the mapping ι−1. It means that the patch possessing ai,j as its
corner point (in the isotropic space) must be tangent to the 2-plane τi,j given as

τi,j = {v : [J(ι−1)v] · (pi,j ,−1) = 0} (20)

at this point.
Let us stress out that the original PN interpolation problem (prescribed points and normal vectors, i.e.,

tangent planes) in the primal space was difficult to solve. Using the methods presented above we have
transformed it to the same kind of the interpolation problem (prescribed points and normal vectors, i.e.,
tangent planes), now in the isotropic space I. However, after the transformation we do not have to care
about the PN property – this property is now obtained for free.

Remark 4.3. One limitation of the presented method should be noted. As the north pole w, see Fig. 1, is
the center of the stereographic projection, the points on the unit sphere S2 (the unit normals ni,j) must be
suitably distributed. In other words, the Gauss image of the interpolating surface cannot contain w. This
means that in some cases a preliminary coordinate transformation is needed.

Let us also remark that one can alternatively interpolate the Gauss image (given data ni,j) and the
support function (data hij computed from given data ni,j and pi,j) separately, cf. (Gravesen, 2007). Firstly,
one interpolates data ni,j by a piecewise rational C1 surface on S2, see e.g. (Alfeld et al., 1996). Then using
(18) we arrive at the values of the partial derivatives hu, hv at the points pi,j and computing e.g. one-
dimensional Coons patches we arrive at the piecewise C1 function h(u, v). The sought PN parameterization
is obtained just by switching from the dual to the primary space. For the sake of lucidity we prefer to apply
the isotropic model as this approach is more illustrative and needs less steps.
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5. PN patches interpolating given data

To start the Coons construction in I, we must first construct curves ci,j(u) connecting the points ai,j
and ai+1,j and curves di,j(v) connecting the points ai,j and ai,j+1, simultaneously satisfying the condition
that they are tangent to the planes τi,j at each of the two boundary points. Clearly, any arbitrary curve
fulfilling these constraints may be considered as one of the input boundary curves for scheme (14). For
the sake of simplicity we can, for instance, take the Ferguson cubics interpolating with C1 continuity the
given points and some suitably chosen associated boundary vectors. Other possible polynomial curves of
low parameterization degree, which can be easily used, might be e.g. parabolic biarcs.

We have considered the following boundary vectors at the points from the network in I, which represent
a natural choice for the tangent vectors of the boundary curves:

• for an inner point ai,j (see Fig. 4, green) we have taken the projections of the difference vectors
ai+1,j − ai−1,j and ai,j+1 − ai,j−1 into the tangent plane τi,j ;

• for a non-corner point ai,0, or ai,n on the u-boundary (see Fig. 4, blue) we have taken the projections
of the difference vectors ai+1,0 − ai−1,0 and 2(ai,1 − ai,0), or ai+1,n − ai−1,n and 2(ai,n − ai,n−1),
respectively, into the tangent plane τi,0, or τi,n, respectively;

• in a similar way, for a non-corner point a0,j , or an,j on the v-boundary (see Fig. 4, blue) we have
taken the projections of the difference vectors 2(a1,j − a0,j) and a0,j+1 − a0,j−1, or 2(an,j − an−1,j)
and an,j+1 − an,j−1, respectively, into the tangent plane τ0,j , or τn,j , respectively;

• for the corner point a0,0 (see Fig. 4, red) we have taken the projections of the difference vectors
2(a1,0 − a0,0) and 2(a0,1 − a0,0) into the tangent plane τ0,0, for the corner point an,0 we have taken
the projections of the difference vectors 2(an,0−an−1,0) and 2(an,1−an,0) into the tangent plane τn,0,
for the corner point a0,n we have taken the projections of the difference vectors 2(a1,n − a0,n) and
2(a0,n−a0,n−1) into the tangent plane τ0,n, and for the corner point an,n we have taken the projections
of the difference vectors 2(an,n − an−1,n) and 2(an,n − an,n−1) into the tangent plane τn,n.

Of course, the lengths of the chosen vectors can be easily modified and serve as possible modelling shape
parameters. This is useful, for instance, when we want to avoid ridges by optimizing these lengths with
respect to a suitable objective function, cf. the final paragraph in Section 3. Subsequently, we construct
the rational patches yi,j using formula (14) and applying ξ we obtain the patches xi,j and thus the sought
piecewise smooth PN surface x.

In what follows we will show the functionality of the designed algorithm on a particular example. We will
demonstrate the whole technique on one macro-element consisting of nine ordered points with the associated
normals, i.e., a smooth surface consisting of four PN patches is constructed. For a bigger network the process
will be the same, as the designed method is strictly local.

Example 5.1. Let be given a network of the points pi,j

(pi,j) =



















(0, 0, 0)

(

0,−
11

72
,−

1

12

) (

0,−
2

9
,−

1

3

)

(

11

72
, 0,

1

12

) (

7

36
,−

7

36
, 0

) (

23

72
,−

11

36
,−

1

4

)

(

2

9
, 0,

1

3

) (

11

36
,−

23

72
,
1

4

) (

5

9
,−

5

9
, 0

)



















(21)

with the associated (non-unit) normal vectors ni,j

(ni,j) =







(0, 0,−1) (0, 4,−3) (0, 1, 0)

(4, 0,−3) (2, 2,−1) (4, 8, 1)

(1, 0, 0) (8, 4, 1) (2, 2, 1)






, (22)
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Figure 4: A net of points in I – corner points (red), non-corner boundary points (blue) and inner points (green).

Figure 5: A network of given points pi,j with the associated normal directions ni,j .

where i, j = 0, 1, 2, see Fig. 5.

Using (16) we find the nine points ai,j (4 corner points, 4 non-corner boundary points, 1 inner point) in
I, see Fig. 6, with the associated tangent vectors of the boundary curves obtained by the approach from the
beginning of this section. Next, we construct 12 Fergusson cubics, see Fig. 6, as the input boundary curves
for the bicubic Coons construction.
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Figure 6: 4 corner points (red), 4 non-corner boundary points (blue), 1 inner point(green) in I with the associated
tangent vectors of the boundary curves spanning the tangent planes τij , and the constructed Fergusson cubics
(orange).

After computing the four bicubic Coons patches and applying the mapping ξ on each of them we obtain
a smooth piecewise PN surface (given by PN parameterizations of each patch) interpolating given Hermite
data, see Fig. 7. Finally, computations show that det (HessS2h+ hI) 6= 0 at all points so no sharp edges
occur for given data, cf. Section 3.

Figure 7: A smooth piecewise interpolation surface consisting of four PN patches.

Remark 5.2. One of the advantages of the designed method (based on exploiting the Coons patches) is
the possibility to use the length of the tangent vectors in the isotropic space as free construction parameters
(as already mentioned at the end of Section 3). Figure 8 shows how a suitable choice of these vector can
improve the resulting patch and help to avoid the ridges.

Remark 5.3. A natural question is why not to use the Coons (or some other boundary-curves) construction
already in the primal space. A possible way could be for instance to prescribe some boundary curves
satisfying given data, construct a patch given by this boundary and then to modify suitably the obtained
patch (simultaneously preserving the conditions at the boundary) to gain a new patch which is PN. However,
this construction assumes a necessary requirement that the prescribed curves must be PSN, i.e., curves on
the surfaces along which the surface admits Pythagorean normals, cf. Vršek and Lávička (2014). Using the
dual approach and the isotropic model for this is considerably simpler.
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Figure 8: PN patches interpolating the same boundary data. A suitable choice of the tangent vectors leads to a
smooth patch (right), while some choices may produce ridges (left).

6. Conclusion

The main goal of this paper was to present a simple functional algorithm for computing piecewise Hermite
interpolation surfaces with rational offsets. The obtained PN surface interpolates a set of given points with
associated normal directions. The isotropic model of the dual space was used for formulating the algorithm.
This setup enables us to apply the standard bicubic Coons construction in the dual space for obtaining the
interpolation PN surface in the primal space. The presented method is completely local and yields a surface
with G1 continuity. Moreover the method solves the PN interpolation problem directly, i.e., without the
need for any subsequent reparameterization, which must be always followed by trimming of the parameter
domain. Together with its simplicity, this is a main advantage of the designed technique. It can be used by
designers anytime when surfaces with rational offsets are required for modelling purposes.
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