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Abstract

This paper is devoted to the construction of polynomial 2-surfaces which possess a polynomial area element.
In particular we study these surfaces in the Euclidean space R3 (where they are equivalent to the PN surfaces)
and in the Minkowski space R3,1 (where they provide the MOS surfaces). We show generally in real vector
spaces of any dimension and any metric that the Gram determinant of a parametric set of subspaces is
a perfect square if and only if the Gram determinant of its orthogonal complement is a perfect square.
Consequently the polynomial surfaces of a given degree with polynomial area element can be constructed
from the prescribed normal fields solving a system of linear equations. The degree of the constructed surface
depending on the degree and the quality of the prescribed normal field is investigated and discussed. We use
the presented approach to interpolate a network of points and associated normals with piecewise polynomial
surfaces with polynomial area element and demonstrate our method on a number of examples (constructions
of quadrilateral as well as triangular patches).
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1. Introduction

Rational surfaces with Pythagorean normal vector fields (PN surfaces) were introduced by
Pottmann (1995) as a surface analogy to Pythagorean hodograph (PH) curves defined previously by
Farouki and Sakkalis (1990). For a survey of shapes with Pythagorean property see e.g. (Farouki, 2008)
and references therein. It holds that PH curves in plane and PN surfaces in space considered as hypersur-
faces share some common properties, e.g. they both yield rational offsets. Nevertheless there exist lot of
significant differences between these classes of rational varieties. For instance, the curves with Pythagorean
hodographs were introduced as planar polynomial shapes and a compact formula for their description based
on Pythagorean triples of polynomials is available. On the other hand, a description of rational Pythagorean
normal vector surfaces reflecting their dual description was revealed first in (Pottmann, 1995) and it is still
not known how to specify these formulas to obtain from them the subclass of polynomial PN surfaces. This
could be probably one of the reasons why the PN surfaces do not have as many particular applications as
the PH curves. Nonetheless, new attempts to study PN surfaces has again begun recently, see (Kozak et al.,
2016; Lávička et al., 2016).

Indeed, when working with PH curves and PN surfaces then focusing only on the rationality of their
offsets can conceal other important properties and it does not offer a full overview of their useful features.
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zbynek.sir@mff.cuni.cz (Zbyněk Š́ır), vrsekjan@kma.zcu.cz (Jan Vršek)

Preprint submitted to Computer Aided Geometric Design September 20, 2016

http://arxiv.org/abs/1609.05328v1


In the curve case, another (or maybe the main) very important practical application is based on the fact
that the parametric speed (or the length element), and thus also the arc length, of polynomial PH curves
is polynomial, too. This is important for formulating efficient real time interpolator algorithms for CNC
machines. We recall that the interpolators for general NURBS curves are typically computed using Taylor
series expansions. Of course, this approach brings truncation errors caused by omitting higher-order terms.
When the Pythagorean hodograph curves are applied for describing the tool path, this problem is over-
come. The concept of planar polynomial PH curves was generalized also to spatial polynomial PH curves
(Farouki and Sakkalis, 1994) which are not hypersurfaces anymore and thus we do not construct their offsets
as in the plane case. This can be taken as another reason for preferring the polynomiality of the parametric
speed over the rationality of their offsets as a main distinguishing property. Later, planar and spatial PH
curves were studied also as rational objects (Pottmann, 1995; Farouki and Š́ır, 2011). However, we would
like to emphasize that for rational PH curves their arc length does not have to be expressible as a rational
function of the parameter as the integral of a rational function is not rational, in general.

Analogously to the parametric speed and the arc length in the curve case we recall the area element and
the surface area for surfaces. Clearly, the area element, and thus also the surface area, of polynomial PN
surfaces is polynomial but the surface area of rational PN surfaces is again not rational, in general. This
underlines a prominent role of polynomial PN surfaces and shows a more natural relation between polynomial
PH curves to polynomial PN surfaces rather then the rationality of their offsets. Moreover, as the curves
with the polynomial/rational line element (i.e., PH curves) can be defined in any arbitrary dimension, the
same holds also for the surfaces with the polynomial/rational area element, whose special instances the PN
surfaces in 3-space are. Unfortunately, there is not known very much about polynomial PN surfaces. As a
particular result we can mention the investigation of a remarkable family of cubic polynomial PN surfaces
with birational Gauss mapping, which represent a surface counterpart to the planar Tschirnhausen cubic,
the simplest planar polynomial PH curve. A full description of these PN surfaces, among which e.g. the
Enneper surface belongs, was presented and their properties were thoroughly discussed in Lávička and Vršek
(2012). Recently an approach for a construction of polynomial PN surfaces based on bivariate polynomials
with quaternion coefficients was presented by Kozak et al. (2016).

As concerns modelling techniques formulated for PN surfaces, in particular the Hermite interpolation
schemes by piecewise PN surfaces, there are not many results from this area. One can find a few indirect
algorithms for the interpolations with PN surfaces, where ‘indirect’ means that the resulting surfaces become
rational PN only after a suitable reparameterization – we recall e.g. (Jüttler and Sampoli, 2000; Bastl et al.,
2008); however these must be always followed by non-trivial trimming of the parameter domain. One can find
also a few direct algorithms based on the dual approach, which is especially convenient for PN surfaces, see
e.g. (Peternell and Pottmann, 1996; Lávička et al., 2016). Nevertheless these approaches produce rational
PN surfaces and are inapplicable when polynomial parameterizations are required. As far as we are aware, the
algorithm presented in this paper is the first functional and complex method solving the Hermite problem
directly (i.e., without a need of any consequent reparameterization) and formulated without a need of
envelope formula (necessary when dual approach is used) and thus yielding polynomial parameterizations.
We will show that in our approach the interpolation problem can be always transformed to solving a system of
linear equations. In addition, after a slight modification we present an analogous approach for interpolating
with polynomial medial surface transforms yielding rational envelopes (so called MOS surfaces), which are
further surfaces playing an important role in solving practical problems originated in technical practice.

The remainder of this paper is organized as follows. Section 2 recalls some basic facts concerning
curves with polynomial/rational length element (PH and MPH curves) and mainly surfaces with polyno-
mial/rational area element (especially PN and MOS surfaces) that are the principal topic of this paper. A
certain generalization of the presented ideas to an n-dimensional space and to an arbitrary rational k-surface
is revealed. In Section 3, we present a simple method for describing and generating all polynomial surfaces
with polynomial area element. The results are formulated in the simplest possible way to be later eas-
ily applicable for formulating functional algorithms for the Hermite interpolation by piecewise polynomial
PN/MOS surfaces. This section contains also a theoretical part devoted to the problem of finding relation
between the degree of prescribed normal vector fields, the degree of the obtained surfaces and the dimension
of the set of solutions. Efficient tools from the commutative algebra, as e.g. syzygy modules, complexes
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and Hilbert functions, are used to answer the natural questions, important also for the interpolation. In
Section 4, the results from the previous parts are applied to a practical problem of Hermite interpolation by
piecewise polynomial surfaces with polynomial area element. Simple methods for smooth surface interpo-
lation using polynomial patches with rational offsets in R3, or using polynomial medial surface transforms
in R3,1 yielding rational envelopes are presented and thoroughly discussed. We will show that in our ap-
proach the interpolation problem can be always transformed to solving a system of linear equations. The
functionality of the designed algorithms is shown on several examples. Finally, we conclude the paper in
Section 5.

2. Preliminary

We start with PH curves in plane, and consequently we generalize the approach to an n-dimensional
space and to an arbitrary rational k-surface. Especially, we will focus on 2-surfaces in spaces R3 and R3,1.

A parametric curve x(u) = (x1(u), x2(u))
⊤ in R2 is called a Pythagorean hodograph curve (a PH curve

for short) if there exists a rational function σ(u) such that it is satisfied

x′
1(u)

2 + x′
2(u)

2 = σ(u)2. (1)

This means that for PH curves the squared length element

ds2 = x′(u)·x′(u) du2 = ‖x′(u)‖2 du2, (2)

where ’·’ is the standard Euclidean inner product, is a perfect square. Hence, these curves can be also
denoted as curves with rational length element. Furthermore, this approach is applicable for introducing the
PH curves in any dimension and one can speak about PH curves (or curves with rational length element)
in an arbitrary space Rn. It is evident that all polynomial PH curves in any space Rn possess polynomial
arc length ℓ(u) =

∫
‖x′(u)‖ du.

Next, we follow the same approach for 2-surfaces in R3 (or in Rn, in general). The squared area element
has the form

dA2 =
xu ·xu xu ·xv

xu ·xv xv ·xv
du2dv2 = (EG− F 2) du2dv2, (3)

where xu = ∂x/∂u, xv = ∂x/∂v, and E = xu ·xu, F = xu ·xv, G = xv ·xv are the coefficients of the first
fundamental form. Then a parametric surface x(u, v) is called a surface with rational area element if there
exists a rational function σ(u, v) such that it is satisfied

EG− F 2 = σ(u, v)2. (4)

Again all polynomial surfaces in space Rn with polynomial area element possess polynomial surface area
A(u, v) =

∫∫ √
EG− F 2 dudv.

For later use, we mention some fundamental facts extending the previous ideas. Let be given a ra-
tional parameterization x(u) : Rk → Rp,q, where u = (u1, . . . , uk), and Rp,q is a real space of dimension
n = p + q equipped with the inner product 〈 · , · 〉 of signature (p, q) (especially, if q = 0 we have the stan-
dard Euclidean space, if q = 1 we have the Minkowski space). We consider a system of tangent vectors
(∂x(u)/∂u1, . . . , ∂x(u)/∂uk), or

(
x1(u), . . . ,xk(u)

)
for short, and compute its corresponding Gram deter-

minant (or Gramian)

Γ(x1, . . . ,xk) = det(gij), where gij =
〈
xi(u),xj(u)

〉
, i, j = 1, . . . , k. (5)

As known the Gram determinant of given k vectors is equal to the square of the k-dimensional volume
of the parallelotope spanned by these k vectors. Hence the squared volume element has the form

dV 2 = Γ(x1, . . . ,xk) du
2
1 · · ·du2

k. (6)
3



To sum up, x(u) is called a k-surface with rational volume element if there exists a rational function
σ(u) ∈ R(u) such that

Γ(x1, . . . ,xk) = σ2(u). (7)

In particular, if k = 1, p = n, q = 0 then (7) describes (Euclidean) Pythagorean hodograph curves. For
k = 1, p = n− 1, q = 1 we obtain Minkowski Pythagorean hodograph (MPH) curves. If k = 2, p = 3, q = 1
then we get the so called MOS surfaces, i.e., medial surfaces obeying a certain sum of squares condition.
Finally, when k = n− 1, p = n, q = 0 we arrive at (Euclidean) hypersurfaces with rational volume element.
As in the curve and surfaces case, a special role is played by polynomial varieties with polynomial volume
element as they possess polynomial volume V (u) =

∫∫
· · ·
∫ √

det(gij) du1 · · · duk.
Moreover, as it holds for a hypersurface x(u)

Γ(x1, . . . ,xn−1) = ‖x1 × · · · × xn−1‖2 , (8)

where x1 × · · · × xn−1 is the generalized cross product providing a normal vector n, condition (7) yields in
this case hypersurfaces with Pythagorean normals (shortly PN hypersurfaces) in Rn. Their distinguishing
property is that they admit two-sided rational δ-offset hypersurfaces

xδ = x± δ
n

‖n‖ = x± δ
x1 × · · · × xn−1

σ
. (9)

It holds that planar PH curves (i.e., curves with rational length element) in R2 are PN curves (i.e., rational
offset curves), and surfaces with rational area element in R3 are PN surfaces (i.e., rational offset surfaces).

As concerns the formulas for rational/polynomial k-surfaces with rational volume element (suitable e.g.
for formulating interpolation algorithms), these are known only in special cases. For instance, it was proved
in (Farouki and Sakkalis, 1990; Kubota, 1972) that the coordinates of hodographs of polynomial planar PH
curves and σ(t) form the following Pythagorean triples

x′
1(u) = k(t)

(
a2(u)− b2(u)

)
,

x′
2(u) = 2k(u)a(t)b(u),
σ(u) = k(u)(a2(u) + b2(u)),

(10)

where a(u), b(u), k(u) ∈ R[u] are any non-zero polynomials and a(u), b(u) are relatively prime. The param-
eterization of the PH curve is then obtained by integrating the hodograph coordinates from (10). Obviously
this approach cannot be used for rational planar PH curves as the integral of a rational function is not ratio-
nal, in general. Analogous formulas, derived using a similar approach, were found by Farouki and Sakkalis
(1994) for polynomial PH curves in R3 and by Moon (1999) for polynomial MPH curves in R2,1. Later, formu-
las describing rational PH curves in R3 and rational MPH curves in R2,1 were presented in (Farouki and Š́ır,
2011; Kosinka and Lávička, 2010).

The next k-surfaces with rational volume element for which compact formulas exist are PN hypersurfaces.
In this case, the construction is based on their dual representation. Any rational PN hypersurface can be
represented as the envelope of its tangent hyperplanes

n(u) · x = h(u), (11)

where n(u) is a polynomial normal vector field such that ||n(u)||2 is a perfect square, see (Dietz et al., 1993),
and h(u) is a rational function. Differentiating (11) with respect to ui gives the system of n linear equations
in variables xi

M · x = H, where M =

(
n, . . . ,

∂n

∂ui

, . . .

)⊤

and H =

(
h, . . . ,

∂h

∂ui

, . . .

)⊤

. (12)

Solving (12) we arrive at a general representation x(u) = M−1H of PN hypersurfaces with non-degenerate
Gaussian image, cf. (Pottmann, 1995); PN hypersurfaces with degenerate Gaussian image for which M is
non-invertible, e.g. developable surfaces in R3, need a special treatment.
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3. Two remarkable classes of polynomial surfaces with polynomial surface area element

The method discussed in the previous section, formulated for rational PN hypersurfaces, is not suitable
for computing parameterizations of polynomial PN surfaces, coinciding with the class of surfaces with
polynomial area element in R3. And polynomial MOS surfaces as 2-surfaces with polynomial area element
in 4-dimensional space R3,1 are not hypersurfaces, thus the presented dual approach cannot be applied
inherently. So in what follows, we will reveal another method for describing polynomial surfaces with
polynomial area element.

When studying varieties with polynomial volume elements then it is sometimes more convenient to
prescribe the tangents space (e.g. in case of spatial PH or MPH curves) and sometimes it is more convenient
to start with the normal space (e.g. in case of PN surfaces). In the following subsection we will show
that both ways are equivalent and thus one can always choose an approach which is computationally more
accessible.

3.1. Gram determinants of k-parametric families of vector subspaces and their orthogonal complements

Consider a set of 0 < m < n = p + q parameterizations of polynomial vector fields Rk → Rp,q given
by u = (u1, . . . , uk) 7→ vi(u) for i = 1, . . . ,m. Assuming that for almost all u the corresponding vectors
are linearly independent, we may understand the m–tuple (v1, . . . ,vm) as a k–parametric family of m-
dimensional subspaces V (u). Define the reduced Gram determinant Γ0(v1, . . . ,vm) to be a square-free part
of the Gram determinant Γ(v1, . . . ,vm) = det(〈vi,vj〉)mi,j=1.

Lemma 3.1. Let (v1(u), . . . ,vm(u)) and (v′
1(u), . . . ,v

′
m(u)) be two parameterizations of the same V (u).

Then there exists a non-zero constant c ∈ R such that Γ0(v1, . . . ,vm) = c · Γ0(v
′
1, . . . ,v

′
m),

Proof. Let A(u) be a change-of-basis matrix such that A(u)vi(u) = v′
i(u). Then the Gram determinants

are linked by the relation

det(〈v′
i,v

′
j〉)mi,j=1 = (det(A))

2 · det(〈vi,vj〉)mi,j=1 (13)

Since (det(A))2 is a square it is omitted when taking the square-free part. Thus the reduced Gram deter-
minants may differ only by a constant.

Hence, the quantity Γ0(v1, . . . ,vm) does not depend on a particular parametrization and we may define
the reduced Gram determinant Γ0(V (u)) of the k-parametric set of m-subspaces V (u) = span{v1, . . . ,vm}.

Recall now that for a subspace V ⊂ Rp,q the totally orthogonal subspace (or the orthogonal complement)
V ⊥ is defined as the set of all vectors from Rp,q orthogonal to all vectors of V .

Lemma 3.2. Γ0(V (u)) = c · Γ0(V
⊥(u)).

Proof. To prove this lemma we will use the tools from exterior algebra. Let a = a1 ∧ · · · ∧ ak and b =
b1 ∧ · · · ∧ bk be two k-vectors. We recall that ∧ is the exterior product. Next, the product 〈·, ·〉 on Rp,q

induces the product on the k-th exterior power
∧k

(Rp,q) via the relation

〈a,b〉 = det(〈ai,bj〉)ki,j,=1. (14)

Recall that for n = p+ q the Hodge star operator is the isomorphism ⋆ :
∧k(Rp,q) → ∧n−k(Rp,q) fulfilling

a ∧ (⋆b) = 〈a,b〉I, (15)

where a,b are as above and I is the normalized n–vector. For a = a1 ∧ · · · ∧ ak the ⋆a can be written as
ã1 ∧ · · · ∧ ãn−k where {ãi} is the basis of the subspace totally orthogonal to the one spanned by ai’s.

Now, let V (u) be spanned by the vectors vi(u) and set v(u) = v1(u) ∧ · · · ∧ vk(u). We have

det(〈vi(u),vj(u)〉)ki,j=1I = v(u) ∧ ⋆v(u). (16)
5



Since there exists a basis wi(u) of V
⊥(u) such that ⋆v(u) = w1(u) ∧ · · · ∧wn−k(u) we may write

det(wi(u),wj(u))
n−k
i,j=1 = ⋆v(u) ∧ ⋆ ⋆ v(u) = (−1)qmod2v(u) ∧ ⋆v(u), (17)

where we have used the formulas ⋆⋆v = (−1)k(n−k)(−1)qmod 2v and ⋆v∧v = (−1)k(n−k)v∧⋆v. Comparing
(16) with (17) we see that the reduced Gram determinants of subspaces differ only by multiplication of a
non-zero constant.

3.2. Polynomial PN surfaces in R3

We recall Lemma 3.2 and reformulate the statement for 2-surfaces in 3-dimensional space. Let be given
a polynomial parameterized surface x(u, v). Consider the tangent space V (u, v) = span{xu(u, v),xv(u, v)}
and the normal space V ⊥(u, v) = span{n(u, v)}. Then it holds

Γ(xu,xv) = f2 Γ(n), (18)

where f(u, v) ∈ R(u, v) is a non-zero factor.
Thus when looking for some parameterized polynomial PN surface (polynomial surface with polynomial

surface element in R3) it is natural to start with a polynomial normal vector field n(u, v) of degree k such
that ||n(u, v)||2 is a perfect square. Its parameterization can be easily gained from polynomial Pythagorean
quadruples, cf. (Dietz et al., 1993). By (18) the Pythagorean property of n(u, v) guarantees the polynomi-
ality of area element.

In addition, to determine an associated polynomial PN parameterization of degree ℓ+1 in a direct way,
we have to find suitable polynomial vector fields

q(u, v) =


 ∑

i+j≤ℓ

q1iju
ivj ,

∑

i+j≤ℓ

q2iju
ivj ,

∑

i+j≤ℓ

q3iju
ivj




⊤

,

r(u, v) =



∑

i+j≤ℓ

r1iju
ivj ,

∑

i+j≤ℓ

r2iju
ivj ,

∑

i+j≤ℓ

r3iju
ivj




⊤

,

(19)

which will play the role of xu, xv, respectively. Thus, q, r must satisfy the following conditions

q · n ≡ 0,
r · n ≡ 0,

∂q

∂v
− ∂r

∂u
≡ 0,

(20)

where the third equation expresses the condition for the integrability. Since a polynomial of degree n in two
variables possesses

(
n+2
2

)
coefficients, the problem is now transformed to solving a system of 2

(
k+ℓ+2

2

)
+3
(
ℓ+1
2

)

homogeneous linear equations with 6
(
ℓ+2
2

)
unknowns q1ij , q2ij , q3ij , r1ij , r2ij , r3ij . The corresponding PN

parameterization is then obtain as

x(u, v) =

∫
q(u, v) du+ c(v), where c(v) =

[∫
r(u, v) dv −

∫
q(u, v) du

]

u=0

. (21)

For ℓ large enough, system of equations (20) is solvable. In this case we arrive at a polynomial PN
parameterization such that xu×xv = f(u, v)n(u, v), where f(u, v) is a factor balancing suitably the degrees
of n and x. We can formulate

Proposition 3.3. Given in R
3 a polynomial vector field n(u, v) such that ||n(u, v)||2 is a perfect square.

Then there exists a polynomial PN surface, i.e., a polynomial surface with polynomial surface area element,
possessing n(u, v) as its normal vector field.
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When computing q(u, v) orthogonal to a given normal field of degree k it is always necessary to prescribe
first a suitable degree ℓ for which we have guaranteed the existence of q. This degree is of course in a direct
relation to the dimension of the solution, which depends on the number of equations and unknowns. From
this reason we will study the independence of the linear equations in the system.

For the normal field n(u, v) = (n1(u, v), n2(u, v), n3(u, v)) the set of all vector fields q = (q1, q2, q3) ∈
R3[u, v] orthogonal to n forms a module over the ring R[u, v]. This is called a syzygy module, i.e.,

Syz(n) = {q ∈ R
3[u, v] | q · n ≡ 0}. (22)

Theorem 3.4. The Syz(n) is a free module of rank two. Moreover, two vector fields q(u, v) and r(u, v)
form its basis if and only if there exists a constant c ∈ R such that q(u, v)× r(u, v) = cn(u, v).

Proof. As the particular steps of the proof would directly follow the ideas and results on syzygies of four
polynomials in two variables from (Chen et al., 2005) we omit it and refer the readers to the mentioned
paper.

Example 3.5. Let n = (2u, 2v, 1− u2 − v2) be a polynomial normal field related to a parameterization of
the unit sphere. It can be easily verified that the two vector fields

q = (u2 − 1, uv, 2u) and r = (uv, v2 − 1, 2v) (23)

fulfils q×r = n and thus they form a basis of Syz(n). In other words any polynomial vector field p orthogonal
to n can be uniquely written as p = aq+ b r for some polynomials a, b ∈ R[u, v].

Remark 3.6. Let us demonstrate in more detail the main added value of knowing a basis of Syz(n), i.e.,
that any vector field orthogonal to n can be uniquely generated as an algebraic combination of this basis.
In this situation, one does not have to consider (and thoroughly discuss) situations when polynomial vector
fields are obtained from generating set using rational functions as multiplying coefficients. Moreover, then
the fundamental question must read: Which rational coefficients yield polynomial combinations? We recall
e.g. Section 4.1 in Kozak et al. (2016) in which the generating set

{
(−u2 + v2 + 1,−2uv, 2u), (2uv,−u2 +

v2 + 1,−2v)
}
(not being a basis) is used for determining cubic polynomial PN surfaces applying particular

quadratic rational functions.

Let n(u, v) be a polynomial vector field of degree k and in addition assume gcd(ni) = 1. Then there
exist only finitely many points (u, v) such that ni(u, v) = 0, for i = 1, 2, 3. These points are called base
points of the vector field. The consecutive result depends on the existence of such base points, which must
be considered over C and also at infinity (i.e., common roots of the terms of ni(u, v) of degree k).

Lemma 3.7. The system of linear equations q · n ≡ 0 has the full rank if and only if n is basepoint-free.
Then the dimension of the set of vector fields q of degree at most ℓ orthogonal to n is equal to

Λ(ℓ, k) := 3

(
ℓ+ 2

2

)
−
(
k + ℓ+ 2

2

)
(24)

Proof. Because of its technical nature the proof is postponed to Appendix.

Lemma 3.8. The system of linear equations qv ≡ pu has the full rank. Thus, the dimension of the set of
pairs (q, r) of compatible polynomials of degree at most ℓ is equal to

Ω(ℓ) =

(
ℓ+ 3

2

)
− 1. (25)

Proof. This problem can be directly transformed to computing the non-absolute coefficients of a polynomial
of degree ℓ + 1 since after the computation of its partial derivatives one immediately obtains pairs of
compatible polynomials of degree ℓ.
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To sum up, if we have prescribed a polynomial normal vector field n(u, v) of degree k then the family
of polynomial parameterized surfaces x(u, v) of degree ℓ + 1 (up to translation) with n(u, v) as its normal
vector field has the dimension

2Λ(ℓ, k) + 3Ω(ℓ)− 6

(
ℓ+ 2

2

)
+∆, (26)

where ∆ ≥ 0 represents a correction responsible for the quality of the normal vector field. For instance
∆ > 0 for n(u, v) possessing base points (which is a typical property of parameterizations of sphere-like
surfaces, used in this paper).

Let us emphasize a main importance of (26) for practical applications studied in this paper. Although
∆ is generally difficult to compute, (26) immediately reveals a clear effect, i.e., we can easily find to any
prescribed k the upper bound for ℓ. Moreover, as non-standard vector fields n(u, v) lead to solutions with
more free parameters, we are usually able (especially for Pythagorean normal vector fields) to construct
parameterizations x(u, v) of lower degree than the computed upper bound, see Example 3.9.

The previous observations and equations (20) will be used later for formulating an algorithm for the
Hermite interpolation by piecewise polynomial PN surfaces.

Example 3.9. Consider the normal vector field n(u, v) = (2u, 2v, u2 + v2 − 1)⊤. Using (26) we have
guaranteed that linear equations (20) possess a solution for ℓ ≥ 3. However Pythagorean normal vector field
n(u, v) has base points and thus we obtain a 3-parametric solution already for quadratic polynomials (19).
In particular, we arrive at the following family of PN surfaces (up to translation)

x(u, v) =

(
1

3
λ1u

(
u2 + 3v2 − 3

)
− 1

3
λ2v

(
−3u2 + v2 + 3

)
+ λ3u

(
−u2 + v2 + 3

)
,

2

3
λ1v

(
v2 − 3

)
− 1

3
u
(
λ2

(
u2 − 3v2 + 3

)
+ 6λ3uv

)
, u (3λ3u− 2λ2v)− λ1

(
u2 + 2v2

))⊤

(27)

with the area element equal to
σ(u, v)2 = f(u, v)2(u2 + v2 + 1)2, (28)

where

f(u, v)2 =
[
−6λ2

3u
2 + 2λ1

(
λ3

(
u2 − v2 − 3

)
− 2λ2uv

)
− λ2

2

(
u2 + v2 + 1

)
+ 4λ2λ3uv − 2λ2

1

(
v2 − 1

)]2
.
(29)

This also confirms the result from paper (Lávička and Vršek, 2012) in which the polynomial cubic surfaces
were thoroughly investigated and the same three generating surfaces were found.

Remark 3.10. In addition, we would like to stress that a non-constant factor f(u, v) indicates the existence
of a curve on the surface x(u, v) where the normal field vanishes. In Fig. 1, the cubic PN surface from
Example 3.9 (for chosen values λ1 = λ3 = 1 and λ2 = 1/10) with such a curve is shown.

3.3. Polynomial MOS surfaces in R3,1

MOS surfaces, i.e., Medial surfaces Obeying the Sum of squares condition, were introduced by
Kosinka and Jüttler (2007) as a surface analogy of MPH curves in four-dimensional Minkowski space R3,1.
The distinguishing property of MOS surfaces is that if considered as an MST (medial surface transform) of
a spatial domain, the associated envelope and its offsets admit exact rational parameterization.

For the sake of brevity, we recall at least an expression of the envelope associated to a medial surface
transform x(u, v) = (x, y, z, r)⊤(u, v) in R3,1. If we denote by x̂(u, v) = (x, y, z)⊤(u, v) the corresponding
medial surface in R3 then the closed-form envelope formula has the form

b±(u, v) = x̂(u, v)− rn±(u, v), (30)

8



x(u, v)

0

1

1 u

v

f(u, v) = 0

Figure 1: Left: Parametric domain with the ellipse (red) given by the factor f(u, v) = 0. Right: The cubic surface
x(u, v) with the curve (red) on it corresponding to f(u, v) = 0 at which points the normal vector field vanishes.

where

n± =
1

ÊĜ− F̂ 2

[(
∂r

∂u
Ĝ− ∂r

∂v
F̂

)
x̂u +

(
∂r

∂v
Ê − ∂r

∂u
F̂

)
x̂v ∓

√
EG− F 2(x̂u × x̂v)

]
, (31)

where n± is a unit vector perpendicular to b±. The components E,F,G of the first fundamental form of
x(u, v) are computed using the indefinite Minkowski inner product with the signature (3,1), whereas the
components Ê, F̂ , Ĝ of the first fundamental form of x̂(u, v) are determined using the standard Euclidean
inner product in R3. Then MOS surfaces are rational surfaces characterized by the condition

EG− F 2 = σ2(u, v), where σ(u, v) ∈ R(u, v), (32)

that guarantees the rationality of (31) and thus of the envelope b±(u, v). From this it is evident that MOS
surfaces are simultaneously surfaces with rational area element in R3,1.

If points in the projective closure of R3,1 are described using the standard homogeneous coordinates
(x0 : x1 : x2 : x3 : x4) then the equation x0 = 0 describes the ideal hyperplane as the set of all asymptotic
directions, i.e., of points at infinity. The subset of the ideal hyperplane which is invariant with respect
to transformations maintaining Minkowski inner product (i.e., Lorentz transforms) is called the absolute
quadric Σ and characterized by

Σ : x2
1 + x2

2 + x2
3 − x2

4 = x0 = 0. (33)

Now, consider in R3,1 a surface given by the parametrization x(u, v). At regular points (i.e., where the
vectors xu,xv are linearly independent), the normal vectors of x (vectors orthogonal to the tangent 2-plane
τ(u, v) with respect to Minkowski inner product, cf. Fig. 2) satisfy the two linear equations

〈n,xu〉 ≡ 0,
〈n,xv〉 ≡ 0.

(34)

Among them, the isotropic normal vectors are described by

〈n,n〉 ≡ 0. (35)
9



x(u, v)

xu

xv

τ(u, v)

n1 n2

π∞ : x0 = 0

Figure 2: Normal plane ν = span{n1,n2} at x(u, v) and the ideal line of the corresponding tangent 2-plane τ(u, v).

As shown in (Bastl et al., 2010), these isotropic normal vectors of x(u, v) have the form (31) and play a
significant role in the envelope formula (30).

The isotropic normals n± can be identified with points of the oval quadric (33) considered as the unit
sphere in R3. For each point x(u, v) we obtain two isotropic normal vectors n±, which correspond to two
points on Σ obtained as intersection of the line conjugated with the ideal line of τ(u, v) with respect to
Σ. The set of these points forms two components G±, which is usually called the isotropic Gauss image of
x(u, v), cf. (Bastl et al., 2010)

To find a method for deriving parameterizations of polynomial MOS surfaces, later applicable for Hermite
interpolation, we use the approach that worked before for PN (hyper)surfaces in R3. Firstly, we again
recall Lemma 3.2 and reformulate the statement for 2-surfaces in 4-dimensional space. Let be given a
polynomial parameterized surface x(u, v) in 4-dimensional space. Consider the tangent space V (u, v) =
span{xu(u, v),xv(u, v)} and the normal space V ⊥(u, v) = span{n1(u, v),n2(u, v)}. Then it holds

Γ(xu,xv) = f2 Γ(n1,n2), (36)

where f(u, v) ∈ R(u, v) is a non-zero factor.
This means that it is again possible to start with suitable normal vectors when constructing parameter-

izations of polynomial MOS surfaces as the condition on the polynomiality of the area element depends on
Γ(n1,n2). Clearly, when at least one of the normal vectors n1, or n2 is isotropic, i.e., its squared norm is
zero, then Γ(n1,n2) is automatically a perfect square.

Therefore after a slight modification we can use the main ideas from the approach discussed in the
previous section. We start with the normal space span{n+(u, v),n−(u, v)} given by the polynomial isotropic
vectors of degree k, i.e., 〈n±,n±〉 ≡ 0. Their parameterizations can be again obtained from polynomial
Pythagorean quadruples, cf. (Dietz et al., 1993).

To determine an associated polynomial MOS parameterization of degree ℓ + 1, we are supposed to find

10



suitable polynomial vector fields

q(u, v) =


 ∑

i+j≤ℓ

q1iju
ivj ,

∑

i+j≤ℓ

q2iju
ivj ,

∑

i+j≤ℓ

q3iju
ivj ,

∑

i+j≤ℓ

q4iju
ivj




⊤

,

r(u, v) =


 ∑

i+j≤ℓ

r1iju
ivj ,

∑

i+j≤ℓ

r2iju
ivj ,

∑

i+j≤ℓ

r3iju
ivj

∑

i+j≤ℓ

r4iju
ivj




⊤

,

(37)

which will play the role of xu, xv, respectively. Thus, q, r must satisfy the following conditions

〈q,n±〉 ≡ 0,
〈r,n±〉 ≡ 0,

∂q

∂v
− ∂r

∂u
≡ 0,

(38)

where the third equation expresses the condition for the integrability. For ℓ large enough, system of linear
equations (38) with unknowns q1ij , q2ij , q3ij , q4ij , r1ij , r2ij , r3ij , r4ij is solvable and we arrive at the corre-
sponding MOS parameterization

x(u, v) =

∫
q(u, v) du+ c(v), where c(v) =

[∫
r(u, v) dv −

∫
q(u, v) du

]

u=0

, (39)

for which it holds EG− F 2 = f(u, v)2Γ(n+,n−), where f(u, v) is a factor balancing suitably the degrees of
n± and x. Hence, we can formulate

Proposition 3.11. Given in R3,1 isotropic polynomial vector fields n+(u, v) and n−(u, v). Then there
exists a polynomial MOS surface, i.e., a polynomial surface with polynomial surface area element, possessing
span{n+(u, v),n−(u, v)} as its normal space.

Remark 3.12. Obviously, for generating arbitrary MOS parameterizations it is sufficient when only one of
the vectors n1,n2 is isotropic. This guarantees that Γ(n1,n2) is a perfect square. However, for interpolation
purposes it is then necessary to ensure the continuity conditions in the other way, cf. Section 4.2.

Example 3.13. Consider the isotropic normal vector field n(u, v) = (2u, 2v, u2+v2−1, u2+v2+1)⊤. Solving
(38) for linear (37) yields 5-parametric family of quadratic MOS surfaces with the parametric description
(up to translation)

x(u, v) =

(
1

2
λ4

(
v2 − u2

)
+ λ5u+ λ3uv + λ2v,−

1

2
λ3u

2 + λ2u− λ4uv +
λ3v

2

2
+ λ1v,

1

2

(
λ5u

2 + 2λ4u+ 2λ2uv + λ1v
2 − 2λ3v

)
,−1

2
λ5u

2 + λ4u− λ2uv −
λ1v

2

2
− λ3v

)⊤

. (40)

And

σ2(u, v) =
[
−λ2

2 −
(
λ2
3 + λ2

4

) (
u2 + v2

)
+ 2λ2 (λ3u− λ4v)− λ5 (λ4u+ λ3v) + λ1 (λ5 + λ4u+ λ3v)

]2
. (41)

4. Smooth surface interpolation using polynomial patches with polynomial area element

In this section we will show how the ideas and results from the previous sections can be directly applied to
a practical problem of Hermite interpolation by piecewise polynomial surfaces with polynomial area element.
Mainly we will discuss a method for smooth surface interpolation using polynomial patches with rational
offsets. Then we sketch in short an analogous approach also for polynomial medial surface transforms
yielding rational envelopes.
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4.1. Hermite interpolation by piecewise polynomial surfaces with rational offsets

In what follows we present a direct method for interpolating given network of position data (points)
and first order data (normals) by piecewise polynomial surfaces with rational offsets (Pythagorean normal
surfaces). We start with the construction of one quadrilateral/triangular patch interpolating prescribed
corner points and normals, and consequently the approach will be extended also form×n points arranged in a
rectangular grid (for more details about quadrilateral mesh generation and processing see e.g. Bommes et al.
(2013) and also for smoothly joined triangular patches interpolating triangular meshes, cf. Farin (1986).

Consider four points pij , i, j = 0, 1, and four associated tangent planes τij determined by the unit
normal vectors Nij (for quadrilateral patches); or three points pij , i, j = 0, 1 and i + j < 2, and three
associated tangent planes τij determined by the unit normal vectors Nij (for triangular patches). Following
the ideas presented in the previous sections, we can see that the whole algorithm consists of two subparts:
(i) first, a suitable normal vector field n(u, v) interpolating data nij = λijNij , λij ∈ R, and having the
polynomial norm (i.e., satisfying the Pythagorean property) must be constructed; (ii) next, a polynomial
patch interpolating the points pij and possessing normal vector field n(u, v) (which guarantees the PN
property) is computed.

As concerns Part (i), any method for interpolating data Nij by a (quadrilateral/triangular) rational
patchN(u, v) on the unit sphere S2 can be utilized, see e.g. (Alfeld et al., 1996). For the sake of completeness
and to show the functionality and the simplicity of the designed algorithm, we recall one standard method
based on using the stereographic projection. Nonetheless, one significant limitation of this approach should
be noted – the points Nij on the unit sphere S2 must be suitably distributed and the Gauss image of the
interpolating surface cannot contain the chosen center of the stereographic projection. This means that in
some cases a preliminary coordinate transformation is needed.

So, we choose a suitable center of the stereographic projection π (preferably on the opposite hemisphere;
see the limitations mentioned above) and project data Nij ∈ S2 to the plane R2. Then, we construct a
suitable rational patch in R2 interpolating π(Nij). For instance, in the quadrilateral case one can consider
the bilinear patch

N̂(u, v) = π(N00) (1− u)(1− v) + π(N10)u(1− v) + π(N11)uv + π(N01) (1 − u)v, u, v ∈ [0, 1]; (42)

or in the triangular case one can consider the linear patch

N̂(u, v) = π(N10)u+ π(N01) v + π(N00) (1− u− v) u ∈ [0, 1], v ∈ [0, 1− u]. (43)

The inverse stereographic projection π−1 yields a rational patch N(u, v) on S2. In addition, as we
are interested not in rational but in polynomial normal vector field n(u, v) we can omit the least common
denominator and consider only numerators of the parameterization. Thus we arrive at a polynomial param-
eterization n(u, v) of a sphere-like surface, see (Alfeld et al., 1996), fulfilling the Pythagorean property and
moreover satisfying the prescribed interpolation conditions

n(i, j) = λij Nij , λij ∈ R. (44)

Once we have a suitable polynomial vector field n(u, v) of degree k we can continue with Part (ii) of
the algorithm. Our goal is to find a polynomial patch x(u, v) of prescribed degree ℓ + 1 possessing n(u, v)
as its associated normal vector field and interpolating given position data, i.e., it must hold

xu · n ≡ 0, xv · n ≡ 0, (45)

and
x(i, j) = pij . (46)

Thus for further computations, we prescribe a polynomial surface

x(u, v) =


 ∑

i+j≤ℓ+1

x1iju
ivj ,

∑

i+j≤ℓ+1

x2iju
ivj ,

∑

i+j≤ℓ+1

x3iju
ivj




⊤

(47)
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Figure 3: Quadrilateral (left) and triangular (right) polynomial PN patches of degrees 8 and 4, respectively,
interpolating points pij and possessing tangent planes at pij given by unit normal vectors Nij from Examples 4.1
and 4.2.

with its coefficients taken as free parameters to be determined by the above constraints.
Clearly differentiating (47) with respect to u, v we arrive at q(u, v), r(u, v), respectively, see (19). Let

us emphasize that starting with one polynomial parameterization (47) instead of two in (19) and computing
partial derivatives of (47) instead of integrating (21) is more appropriate for the purpose of interpolation
as one does not have to take care of the compatibility condition. Moreover, the number of the resulting
linear equations is significantly lower. On the other hand, for gaining the theoretical results as e.g. for the
estimation of degree of the resulting surface, prescribing two independent parameterizations q(u, v), r(u, v)
from (19) was more convenient.

To conclude the method, expressions (45) and (46) depend linearly on coefficients x1ij , x2ij , x3ij of x(u, v)
and therefore can be rewritten as a system of linear equations, which is easy to solve. Solving the equations
from systems (45) and (46) yields a polynomial PN patch interpolating the points pij and touching the
planes τij at these points.

Example 4.1. Consider four points

p00 = (−4, 3, 0)⊤, p10 = (4,−3, 0)⊤, p11 = (4, 9,−8)⊤, p01 = (−4, 15,−8)⊤, (48)

and the associated unit normal vectors

N00 =

(
−3

5
, 0,−4

5

)⊤

, N10 =

(
3

5
, 0,−4

5

)⊤

, N11 =

(
−2

7
,−6

7
,−3

7

)⊤

, N01 =

(
−6

7
,−3

7
,−2

7

)⊤

. (49)

Our goal is to construct a quadrilateral PN patch of a low degree interpolating the prescribed points and
normals.

The distribution of Nij on S2 shows that it is possible to use the standard stereographic projection

π : S2 \ {w} → R
2, (x1, x2, x3) 7→

(x1, x2)

1− x3
. (50)

with the center w = (0, 0, 1). We project Nij via π and construct the quadratic planar patch (42) in the
form

N̂(u, v) =
1

15
(−3uv + 10u− 5v − 5,−4uv− 5v) . (51)
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Then lifting N̂ back on S2 gives a rational spherical patch interpolating Nij . Omitting the denominator
we arrive at the polynomial vector field

n(u, v) = (2N̂, N̂ · N̂− 1) (52)

which fulfills the Pythagorean condition

n(u, v) · n(u, v) =
(
N̂ · N̂+ 1

)2
. (53)

and interpolates data n(i, j) = λij Nij , i.e., the prescribed normal directions. In this case we obtain the
polynomial vector field of degree 4

n(u, v) =
1

45
(−18uv+ 60u− 30v − 30, −24uv − 30v,

5u2v2 − 12u2v + 20u2 + 14uv2 − 14uv − 20u+ 10v2 + 10v − 40
)
. (54)

with the norm satisfying

‖n(u, v)‖2 =

[
1

45

(
5u2v2 − 12u2v + 20u2 + 14uv2 − 14uv − 20u+ 10v2 + 10v + 50

)]2
. (55)

Finally, we prescribe a polynomial parameterization (47) of degree 8 and solve the gained systems of linear
equations (45) and (46) – in particular, we obtain 2-parametric solution. One particular patch from this
two-parametric family of polynomial PN surfaces interpolating given data is shown in Fig 3 (left).

Example 4.2. Consider three points

p00 = (0, 0, 0)⊤, p10 = (10,−2, 5)⊤, p01 = (4, 8,−3)⊤, (56)

and the associated unit normal vectors

N00 = (0, 0,−1)
⊤
, N10 =

(
2

3
,−1

3
,−2

3

)⊤

, N01 =

(
− 2

11
,− 6

11
,− 9

11

)⊤

. (57)

Our goal is to construct a triangular PN patch of a low degree interpolating the prescribed points and
normals.

We use again the standard stereographic projection, cf. (50), and construct the linear triangular planar
patch (43), i.e.,

N̂(u, v) =

(
1

10
(4u− v),

1

10
(−2u− 3v)

)⊤

. (58)

Then lifting N̂ back on S2 and omitting the denominator yields the polynomial vector field

n(u, v) =

(
1

5
(4u− v),

1

5
(−2u− 3v),

1

50

(
10u2 + 2uv + 5v2 − 50

))⊤

(59)

fulfilling the Pythagorean condition

n(u, v) · n(u, v) =
[
1

50

(
10u2 + 2uv + 5v2 + 50

)]2
. (60)

Finally, we prescribe a polynomial parameterization (47) of degree four and solve the systems of linear
equations (45) and (46) which yields 1-parametric solution, see Fig. 3 (right) for one particular solution.
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Figure 4: Polynomial patches N̂ij interpolating π(Nij) in plane (left), and polynomial normal vector fields nij

interpolating λijNij (right) from Example 4.3.

In what follows, we present how the designed approach can be easily modified also for computing smoothly
joined quadrilateral patches. Suppose that we are given a network of arranged points pij with the associated
unit normal vectors Ni,j , where i ∈ {0, 1, . . . ,m} and j ∈ {0, 1, . . . , n}. Our goal is to construct a set of
m × n polynomial PN patches xi,j(u, v) for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Each patch will be defined on
the interval [0, 1] × [0, 1] and will interpolate the corner points pi−1,j−1, pi,j−1, pi−1,j , pi,j together with
the corresponding normals. In addition, the union of these patches x =

⋃
i,j xi,j is required to be globally

G1 continuous.
Using the method described above we construct the normal vector fields ni,j(u, v), i = 0, ...,m, j = 0, ..., n

for each part separately such that the constructed ni,j(u, v) are globally C0 continuous (or joined with higher
continuity when needed). We recall that local constructions as e.g. Coons patches of suitable degree, see
(Farin, 1988), are especially useful. Then for each patch we gather equations (45) and (46) which give us the
whole system of linear equations corresponding to a block-structured matrix. Finally we have to add to this
system of equations additional suitable linear equations responsible for the smooth joint of the constructed
patches. In particular for two patches xi,k and xi,k+1, it is enough to add the following equations ensuring
the C0 continuity:

xi,k(u, 1) ≡ xi,k+1(u, 0). (61)

As a result, the patches xik and xik+1 will join with G1 continuity since they have already prescribed normal
vector fields with are C0 continuous.

Example 4.3. Consider 16 points pij , i, j = 0, . . . , 3, and the associated unit normal vectors Nij , see
Fig. 5. The distribution of Nij on S2 shows again that also in this example it is possible to use the standard
stereographic projection (50)

We project the unit vectors Nij to plane, construct nine C0 planar patches, see Fig. 4 (left), and lift
them back to space, see Fig. 4 (right). Then, we construct nine polynomial patches of degree nine such that
each patch corresponds to equations (45) and (46). Moreover we will consider equations:

xik(u, 1) ≡ xik+1(u, 0), i = 1, 2, 3 k = 1, 2;
xkj(1, v) ≡ xk+1,j(0, v), j = 1, 2, 3 k = 1, 2.

(62)

Finally, by solving the whole system of linear equations we arrive at one-parametric solution. One particular
solution is shown in Fig. 5.

Now we present how the designed approach can be easily adapted also for constructing smoothly joined
triangular patches. The following example presents computing approximated polynomial PN parameter-
izations of patches on given surfaces, and thus also computing approximate (piecewise) polynomial PN
parameterizations either of non-PN surfaces, or of PN surfaces with rational PN parameterizations only.
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Figure 5: Nine polynomial PN patches xi,j(u, v) of degree 9 interpolating points pij and possessing tangent planes
given by the unit normal vectors Nij at pij from Example 4.3.

Example 4.4. Consider the ellipsoid E with the implicit equation

f(x, y, z) = 4x2 + 9y2 + 9z2 − 9 = 0. (63)

We approximate the ellipsoid with piecewise polynomial PN parametrization. In particular, we parameterize
one octant corresponding to unit normal vectors:

N00 = (0, 0,−1)
⊤
, N01 = (0, 1, 0)

⊤
, N10 = (1, 0, 0)

⊤
(64)

and by symmetry, we find the remainder seven octants. Solving

f(x, y, z) = 0, ∇f(x, y, z) = αij Nij , αij ∈ R, (65)

yields two points for each normal vector. From each pair we choose one point such that all chosen points
lie in the same octant, e.g.,

p00 = (0, 0,−1)
⊤
, p01 = (0, 1, 0)

⊤
, p10 =

(
3

2
, 0, 0

)⊤

(66)

Next we interpolate vectors nij = λijNij by a polynomial vector field n(u, v) fulfilling the Pythagorean
property. In particular using stereographic projection (50) we project Nij to the plane and in the plane we
construct

N̂(u, v) =

( √
2uv − uv + v√
2uv − 2uv + 1

,

√
2uv − uv + u√
2uv − 2uv + 1

)⊤

, u, v ≥ 0, u+ v ≤ 1, (67)

as a rational triangular Bézier patch, see Fig. 6 (left).

Lifting N̂(u, v) via π−1 and omitting the denominator yields a Pythagorean normal vector field n(u, v)
of bi-degree two. The vector field was constructed such that the symmetry yields a C0 continuous normal
vector field of the whole ellipsoid, see Fig. 6 (right).

Now we construct a PN surface (one triangular PN patch) of degree 12. Solving equations (45) and (46)
together with equations

x(u, 0) · (1, 0, 0)⊤ ≡ 0, x(0, v) · (0, 1, 0)⊤ ≡ 0, x(u, 1− u) · (0, 0, 1)⊤ ≡ 0, (68)
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N00

N01

N10

Figure 6: Polynomial patch N̂ij interpolating π(Nij ) in plane (left), and a corresponding polynomial PN approx-
imation of the normal vector field of the whole ellipsoid (right) from Example 4.4.

Figure 7: The polynomial approximate PN parametrization of the ellipsoid from Example 4.4.

which guarantee a possibility to use the symmetry and thus to obtain all remaining seven patches, yields a
5-parametric solution. We choose the most suitable one by minimizing the following objective function

Φ(t) =

∫ 1

0

∫ 1−v

0

f2(x(u, v, t))

‖∇f(x(u, v, t))‖2 du dv, t = (t1, t2, t3, t4, t5)
⊤, (69)

which is responsible for the deviation of the parametrization x(u, v, t) from the implicit surface f = 0. In
this case we obtain the error smaller then 2.4 ·10−6. Finally using the symmetry we obtain the approximate
piecewise polynomial PN parametric description of the whole ellipsoid (63), see Fig. 7.

Remark 4.5. Let emphasize that when a higher continuity of the constructed interpolation piecewise
polynomial surface is needed, then the presented method can be still applied. It is enough to increase
the degree of the PN parameterizations (to have more free parameters) and add suitable extra continuity
constrains (again linear equations) to the original linear system. Especially, when e.g. the G2 continuity
of the joint between two patches is required it is necessary to construct C1 continuous normal vector fields
(e.g. applying the bi-cubic Coons construction in the quadrilateral case, or cubic Clough-Tocher or quadratic
Powell-Sabin elements in the triangular case).

4.2. Hermite interpolation by piecewise polynomial medial surface transforms yielding rational envelopes

The ideas formulated in the previous section for PN surfaces can be easily adapted also for Hermite
interpolation with polynomial MOS surfaces. We present the approach at least for one quadrilateral and
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one triangular patch. We recall that interpolations by MOS surfaces can be used, for instance, when rational
blending or skinning surfaces are constructed as the envelopes of two-parameter families of spheres.

Consider four points pij ∈ R3,1, i, j = 0, 1, and four associated tangent planes τij determined by the
vectors tij,1 and tij,2. We find the ideal lines of τij , compute the conjugated lines with respect to Σ (i.e., the
ideal lines of the normal planes νij at pij), and by intersecting them with the absolute quadric Σ, cf. (33),
we arrive at the isotropic vectors n±

ij . Next, we interpolate the isotropic Gauss image G± (see Section 3.3),

i.e., given data n±
ij , by suitable rational patches and taking them as the input for (38) we arrive at an MOS

patch interpolating given Hermite data {pij , τij}.

Example 4.6. Consider in R3,1 the points

p00 = (0, 0,−3, 1)⊤, p10 = (10, 0, 0, 2)⊤, p11 = (10, 8, 3, 3)⊤, p01 = (0, 8, 0, 2)⊤, (70)

and the tangent vectors

t00,1 = (1,−1, 0, 0)⊤, t10,1 = (7,−7, 4, 1)⊤, t11,1 = (53,−31, 1,−1)⊤, t01,1 = (9,−9,−7,−3)⊤;

t00,2 = (1, 1, 0, 0)⊤, t10,2 = (7, 7, 4, 1)⊤, t11,2 = (−23, 15, 1, 1)⊤, t01,2 = (9, 9, 7, 3)⊤,
(71)

determining the tangent planes τij at pij .
Then solving

〈nij , tij,1〉 = 0, 〈nij , tij,2〉 = 0, 〈nij ,nij〉 = 0, (72)

yields the following isotropic normal vectors:

n+
00 = (0, 0,−1, 1)⊤, n+

10 = (3, 0,−4, 5)⊤, n+
11 = (4, 7,−4, 9)⊤, n+

01 = (0, 4,−3, 5)⊤;

n−
00 = (0, 0, 1, 1)⊤, n−

10 = (−5, 0, 12, 13)⊤, n−
11 = (−2,−3, 6, 7)⊤, n−

01 = (0,−5, 12, 13)⊤.
(73)

W.l.o.g, we choose for instance n+
ij and compute the associated normals Nij = (n1, n2, n3)/n4 on the unit

sphere S2, i.e.,

N00 = (0, 0,−1)
⊤
, N10 =

(
3

5
, 0,−4

5

)⊤

, N11 =

(
4

9
,
7

9
,−4

9

)⊤

, N01 =

(
0,

4

5
,−3

5

)⊤

. (74)

Next we interpolate data Nij by a rational patch N(u, v) = (N1/N4, N2/N4, N3/N4) on the unit sphere S2,
see Section 4.1, and finally we arrive at n+(u, v) = (N1, N2, N3, N4) as the isotropic normal field interpolating
data λij n

+
ij .

Then we prescribe a polynomial parameterization

x(u, v) =


 ∑

i+j≤6

x1iju
ivj ,

∑

i+j≤6

x2iju
ivj ,

∑

i+j≤6

x3iju
ivj ,

∑

i+j≤6

x4iju
ivj ,




⊤

, (75)

of degree six and solve linear system of equations (34) together with the equations:

x(i, j) = pij , 〈xu(i, j),n
−
ij〉 = 0, 〈xv(i, j),n

−
ij〉 = 0, i, j = 0, 1. (76)

Let us emphasize that equations (76) must be added to ensure the prescribed interpolation conditions, i.e.,
that x(u, v) is tangent to τij at pij . Finally we obtain 8-parametric set of polynomial MOS surfaces of
degree six interpolating given Hermite data {pij , τij}, see Fig. 8 (left) for one particular example from the
set of solutions.

The triangular patch would be treated analogously to the quadrilateral one, see the following example.
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Figure 8: Quadrilateral and triangular medial surfaces (green) with associated rational envelopes (yellow, blue)
from Examples 4.6 and 4.7, respectively.

Example 4.7. Consider in R3,1 three points

p00 = (0, 0,−4, 1)⊤, p10 = (8,−5, 0, 2)⊤, p01 = (3, 6, 0, 2)⊤, (77)

and the three pairs of tangent vectors

t00,1 = (1,−1, 0, 0)⊤, t10,1 = (8,−8, 9, 2)⊤, t01,1 = (41,−41,−15,−7)⊤;

t00,2 = (1, 1, 0, 0)⊤, t10,2 = (16, 16, 5, 2)⊤, t01,2 = (41, 41, 61, 23)⊤,
(78)

determining the tangent planes τij at pij . By Solving (72) we arrive at the isotropic normal vectors:

n+
00 = (0, 0,−1, 1)⊤, n+

10 = (2,−1,−2, 1)⊤, n+
01 = (4, 7,−4, 9)⊤;

n−
00 = (0, 0, 1, 1)⊤, n−

10 = (−3, 2, 6, 7)⊤, n−
01 = (−2,−3, 6, 7)⊤.

(79)

Again, we choose e.g. n+
ij , compute the associated normals Nij = (n1, n2, n3)/n4 on the unit sphere S2 and

construct the spherical triangular patch interpolating Nij (see Section 4.1), i.e.,

N(u, v) =

(
52u+ 40v

13u2 + 2uv + 25v2 + 65
,

70v − 26u

13u2 + 2uv + 25v2 + 65
,
13u2 + 2uv + 25v2 − 65

13u2 + 2uv + 25v2 + 65

)⊤

. (80)

Then we arrive at n+(u, v) = (N1, N2, N3, N4) as the isotropic normal field interpolating data λij n
+
ij , where

(N1/N4, N2/N4, N3/N4) is given by (80).
Finally we prescribe a polynomial quartic parameterization (75) and solving linear system of equations

(34) together with the equations (76) (now for i+ j < 2) yields 7-parametric set of quartic polynomial MOS
surfaces interpolating given Hermite data {pij , τij}, see Fig. 8 (right) for one chosen triangular patch from
the set of all solutions.

5. Concluding remarks

In this paper the problem of Hermite interpolations by piecewise polynomial surfaces with polynomial
area element was investigated. It was shown that the interpolation problem can be always transformed to
solving a system of linear equations and the same approach is suitable not only for polynomial PN surfaces
but also for polynomial MOS surfaces. Simplicity and functionality of the designed algorithm was presented
on several examples. In our future work we would like to focus on better understanding of the quantity ∆
in (26) responsible for increasing free parameters in the construction, on the study of existence (or its
eliminating) of the factor f(u, v) which causes vanishing of the normals along a curve on the surface, and
finally on the construction of polynomial PN patches given by the boundary curves, which is a challenging
open problem in geometric modelling.
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A. Appendix

Let N(u, v, w) be the homogenization of the normal vector field n(u, v), i.e., it is a triple of homogeneous
polynomials Ni(u, v, w) of the same degree k. As already mentioned earlier, the result depends on the
occurrence of the base points of N over C. Denote R = C[u, v, w] the coordinate ring of P2

C
. Analogously to

Syz(n) we define Syz(N) which is a submodule of R3 in this case.
Next, it is known that R is a graded module over itself whose graded pieces Ri are formed by the sets of

homogeneous polynomials of degree i. Obviously each Ri is a finite–dimensional vector space over C. For
such a graded module S, the Hilbert function is defined as

HF(S, ℓ) = dimC Sℓ. (81)

We introduce the standard notation R(j) for the shifted module, i.e., R(i)j = Ri+j . Hence the Hilbert
function of this module is

HF(R(j), ℓ) =

(
j + ℓ+ 2

2

)
. (82)

Let us emphasize that unlike Syz(n) the homogeneous syzygy module Syz(N) is not free anymore. The
reason is that the basis of Syz(n) does not remain a basis of syzygy module after homogenization. To see
this let N(u, v, w) = (2uw, 2vw,w2−u2− v2) be the homogenization of the vector field n from Example 3.5.
Then obviously P = (v,−u, 0) ∈ Syz(N) but there is no way how to write it as R[u, v, w]-linear combination
of

Q = (u2 − w2, uv, 2uw) and R = (uv, v2 − w2, 2vw). (83)

In fact Syz(N) is generated by P, Q and R. Nevertheless they do not form a basis because of the dependence
relation w2P+ vQ− uR = 0.

Next let I = 〈N1, N2, N3〉 denote the ideal generated by the components of the normal field N. Then
there exists the so called Koszul complex

0 // R(−3k)
δ3

//

3⊕

i=1

R(−2k)
δ2

//

3⊕

i=1

R(−k)
δ1

// I // 0 , (84)

where the differentials are given by

δ3 =




N3

−N2

N1


 , δ2 =




N2 N3 0
−N1 0 N3

0 −N1 −N2


 and δ1 =

[
N1 N2 N3

]
(85)

This complex is known to be exact if and only if the sequence Ni, i = 1, 2, 3, is regular. If N admits the
base points then the sequence cannot be regular. Nevertheless we have, cf. (Cox and Schenck, 2003)

Lemma A.1. If I = 〈N1, N2, N3〉 has a codimension two in R then complex (84) is exact except at⊕3
i=1 R(−k).

Now we can formulate and prove the theorem that gives consequently a result presented in Section 3.2.
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Theorem A.2. Let N(u, v, w) be a homogeneous normal vector field of degree k as above. Then

HF(Syz(N), ℓ) ≥ 3

(
ℓ− k + 2

2

)
−
(
ℓ− 2k + 2

2

)
, (86)

where the equality holds if and only if the normal field is basepoint-free.

Proof. From (84) and (85) we immediately see that Syz(N) is the kernel of the map δ1. Hence

HF(Syz(N), ℓ) = HF(ker δ1, ℓ+ k), (87)

where the +k term comes from the shift R(−k) ⊃ ker(δ1).

By Lemma A.1 complex (84) is exact except at
⊕3

i=1 R(−k), hence it is possible to express Hilbert
function of the im(δ2)

HF(im(δ2)) = HF(R3(−2k))−HF(R(−3k)), (88)

Now im(δ2) is a submodule of ker(δ1) and moreover im(δ2) = ker(δ1) if and only ifN has no base point. Thus
we have HF(ker(δ1)) ≥ HF(im(δ2)) where the equality occurs whenever the normal field is basepoint-free.
Substituting (82) into (88) proves the theorem.

To sum up, Lemma 3.7 is only a direct reformulation of Theorem A.2 because the following identity
holds

3

(
ℓ− k + 2

2

)
−
(
ℓ− 2k + 2

2

)
= 3

(
ℓ+ 2

2

)
−
(
ℓ+ k + 2

2

)
, (89)

and HF(Syz(N), ℓ) is exactly the dimension of the set of fields q of degree at most ℓ orthogonal to n.
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Bastl, B., Jüttler, B., Kosinka, J., Lávička, M., 2010. Volumes with piecewise quadratic medial surface transforms: Computation
of boundaries and trimmed offsets. Computer-Aided Design 42 (6), 571–579.
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Lávička, M., Vršek, J., 2012. On a special class of polynomial surfaces with Pythagorean normal vector fields. In: Boissonnat,
J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (Eds.), Curves and Surfaces. Vol. 6920 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 431–444.

Lávička, M., Š́ır, Z., Vršek, J., 2016. Smooth surface interpolation using patches with rational offsets. Computer Aided Geo-
metric Design (submitted).

Moon, H., 1999. Minkowski Pythagorean hodographs. Computer Aided Geometric Design 16, 739–753.
Peternell, M., Pottmann, H., 1996. Designing rational surfaces with rational offsets. In: Fontanella, F., Jetter, K., Laurent, P.

(Eds.), Advanced Topics in Multivariate Approximation. World Scientific, pp. 275–286.
Pottmann, H., 1995. Rational curves and surfaces with rational offsets. Computer Aided Geometric Design 12 (2), 175–192.

22


	1 Introduction
	2 Preliminary
	3 Two remarkable classes of polynomial surfaces with polynomial surface area element
	3.1 Gram determinants of k-parametric families of vector subspaces and their orthogonal complements
	3.2 Polynomial PN surfaces in R3
	3.3 Polynomial MOS surfaces in R3,1

	4 Smooth surface interpolation using polynomial patches with polynomial area element
	4.1 Hermite interpolation by piecewise polynomial surfaces with rational offsets
	4.2 Hermite interpolation by piecewise polynomial medial surface transforms yielding rational envelopes

	5 Concluding remarks
	A Appendix

