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Abstract

Splines and subdivision curves are flexible tools in the design and manipu-
lation of curves in Euclidean space. In this paper we study generalizations
of interpolating splines and subdivision schemes to the Riemannian mani-
fold of shell surfaces in which the associated metric measures both bending
and membrane distortion. The shells under consideration are assumed to
be represented by Loop subdivision surfaces. This enables the animation
of shells via the smooth interpolation of a given set of key frame control
meshes. Using a variational time discretization of geodesics efficient nu-
merical implementations can be derived. These are based on a discrete
geodesic interpolation, discrete geometric logarithm, discrete exponential
map, and discrete parallel transport. With these building blocks at hand
discrete Riemannian cardinal splines and three different types of discrete,
interpolatory subdivision schemes are defined. Numerical results for two
different subdivision shell models underline the potential of this approach
in key frame animation.

Keywords cardinal splines, interpolatory subdivision, Riemannian calculus,
shape space, exponential map, logarithm, variational discretization
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1 Introduction

In this paper we investigate classical interpolation and approximation tools for
curves in the context of Riemannian manifolds and specifically a shape manifold
of subdivision shell surfaces. To this end we pick up the time-discrete geodesic
calculus developed by Rumpf and Wirth in [53] and applied to shell space by
Heeren et al. in [34, 32], and ask for effective and efficient generalizations of the
de Casteljau algorithm for Bézier curves, cardinal splines, and several interpo-
latory subdivision schemes.

Recently, Riemannian calculus on shape spaces and in particular on the space
of surfaces has attracted a lot of attention. Kilian et al. [41] studied geodesics
in the space of triangular surfaces to interpolate between two given poses. The
underlying metric is derived from the in-plane membrane distortion. Since this
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pioneering paper a variety of other Riemannian metrics on the space of surfaces
have been investigated [44, 42, 43, 5, 37, 4, 7, 2]. In [34, 32] a metric was proposed
that takes the full elastic responses including bending distortion into account.
We pick up this metric and the associated variational discretization, which are
briefly revisited below. Also based on this metric, Brandt et al. [6] proposed
an accelerated scheme for the computation of geodesic paths in shell space. To
this end they applied dimension reduction with respect to the surface models.
Winkler et al. [63] and Fröhlich and Botsch [26] considered a representation of
triangular meshes via a vector of edge lengths and dihedral angles and applied
a back projection onto the space of triangular surfaces. This approach has been
used by Heeren et al in [33] to simplify the computation of Riemannian splines
in the space of images. For the smooth interpolation of given key frames and
independent from the Riemannian concept, spacetime constraints were used by
Witkin and Kass [64] to compute optimal trajectories. Smooth interpolating
paths in high dimensional shape spaces have been investigated via a spacetime
constraint approach as generalizations of traditional cubic B-splines by Kass
and Anderson named wiggly splines [39]. These splines lack the theoretical
foundation of an underlying Riemannian shape manifold. Another alternative
approach is the animation approach by Schulz et al. [54, 55], which combines
the wiggly spline method, suitable vibration modes and a new warping scheme.
A discrete Riemannian approach for the smoothing of curves in a shape space
of triangular meshes has been proposed by Brandt et al. [6]. They apply a
gradient descent scheme for a discrete path energy on shell space picking up the
the concept of the discrete path energy introduced in [34].

In Euclidean space cubic splines minimize the total squared second deriva-
tive. Analogously, Riemannian cubic splines were introduced by Noakes et
al. [46] in a variational setting on Riemannian manifolds as smooth curves that
are stationary paths of the integrated squared covariant derivative of the veloc-
ity. Subsequently, Camarinha et al. [8] proved a local optimality condition of
this functional at a critical point and Giambo and Giannoni [27] established a
global existence results. A typical application of this kind of higher-order inter-
polation is for instance path planning as it occurs naturally in aerospace and
manufacturing industries. The associated Euler-Lagrange equation is a fourth-
order differential equation, first derived in Noakes et al. [46] and then in Crouch
and Silva Leite [16] in the context of dynamic interpolation. Crouch and Silva
Leite also considered the interpolation problem for multiple points on a man-
ifold. More recently, Trouvé and Vialard [58] developed a spline interpolation
method on Riemannian manifolds and applied it to time-indexed sequences of
2D or 3D shapes where they focused on the finite dimensional case of land-
marks. They introduced a control variable u on the Hamiltonian equations of
the geodesics. Hinkle et al. [35] introduced a family of higher order Rieman-
nian polynomials to perform polynomial regression on Riemannian manifolds.
They apply their approach to low dimensional embedded manifolds (e.g. the
d-dimensional sphere), to the Lie group SO(3) as well as shape spaces of 2D im-
age data represented by landmark positions. In [33] a variational discretization
of splines on shell space was presented. Thereby, discrete splines are defined as
minimizers of the time discrete spline energy coupled with a set of variational
constraints. Compared to the approach considered here, this method leads to a
globally coupled system of all shells along a discrete curve in shell space, which
is computationally challenging.
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Different from these methods based on the intrinsic formulation using the co-
variant derivative on curves, extrinsic variational formulations have been stud-
ied, which minimize curve energies in ambient space where the restriction of the
curve to the manifold is realized as a constraint. Wallner [59] showed existence
of minimizers in this setup for finite dimensional manifolds, and Pottmann and
Hofer [50] proved that these minimizers are C2. In [36] they already provided
a method for the computation of splines on parametric surfaces, level sets, tri-
angle meshes and point set surfaces. Algorithmically, they alternately compute
minimizers of the objective functional in the tangent plane and project back to
the manifold. Our approach can not be formulated extrinsically, because the
metric on shell space does not arise from an ambient Euclidean metric.

The concept of Bézier curves can easily be transferred to Riemannian mani-
folds and in particular to shape spaces. To this end the de Casteljau algorithm
with linear interpolation has to be replaced by geodesic interpolation [49, 28, 1],
compare also Effland et al. [23] for a corresponding tool on the shape space of
images and Brandt et al. [6] for this method on the space of triangular shell
surfaces using the variational time discretization [34]. Below we will discuss
the de Casteljau algorithm on the space of subdivision surfaces to prepare the
discussion of Hermite interpolation and cardinal splines.

In addition to variational formulations there are various approaches for in-
terpolatory subdivision schemes on manifolds. These methods exploit the fact
that subdivision schemes for curves in linear spaces are mostly based on re-
peated local averages. Dyn [21] proposed a Riemannian extension, where affine
averaging is replaced by geodesic averaging. Wallner and Dyn [62] showed that
the Riemannian extension of cubic subdivision yields C1 curves. Their analy-
sis is based on a comparison of subdivision schemes in Euclidean space—where
C1 smoothness results are obtained by studying the convergence of the symbol
associated with the linear subdivision rule—and the corresponding scheme on
a Riemannian manifold. Under a suitable proximity condition C1 smoothness
can be established. In [60] this technique is generalized to show higher smooth-
ness and specifically for Lie groups C2 smoothness of Riemannian subdivision
schemes. More general proximity conditions which imply higher smoothness of
the Riemannian counterpart of an linear subdivision scheme are analysed by
Grohs in [31]. Dyn et al. show in [22] that the approximation order of nonlinear
univariate schemes derived as perturbations of linear schemes is directly linked
to the smoothness of the nonlinear scheme. In [20] Duchamp et al. studied
higher order smoothness of manifold valued subdivision curves using a retrac-
tion map in the construction of the subdivision scheme. This retraction map is
required to be a third-order approximation of the exponential map. Recently,
Wallner [61] proved convergence of the linear four-point scheme and other uni-
variate interpolatory schemes in Riemannian manifolds. To this end he studies
Riemannian edge length contractivity of the schemes on a manifold combined
with a multiresolutional analysis. In our case, concerning the consistency, there
is not only the transfer of linear subdivision schemes to curved spaces. But
there is also a second source of proximity errors, which is the approximation
of the local squared Riemannian distance by a functional which is cheaper to
compute. At the moment the convergence of the schemes considered here for
fixed time step size is open. We refer to Section 6 for some comments in this
direction.

We consider here Loop’s subdivision also for the representation of our shell
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surfaces. They are subdivision limit surfaces for given control meshes. Sub-
division schemes for the modeling of geometries are widespread in geometry
processing and computer graphics. For a comprehensive introduction to subdi-
vision methods in general we refer the reader to [47] and [9]. Among the most
popular subdivision schemes are the Catmull-Clark [10] and Doo-Sabin [19]
schemes on quadrilateral meshes, and Loop’s scheme on triangular meshes [45].
The Loop subdivision basis functions have been extensively studied, in partic-
ular regarding their smoothness [51], curvature integrability [52], (local) linear
independence [48, 65], approximation power [3], and robust evaluation around
extraordinary vertices [56]. With respect to the use of subdivision methods in
animation see [17, 57]. Nowadays, subdivision finite elements are also exten-
sively used in engineering [14, 12, 15, 13, 30, 29].

Our contribution In this paper we use recent progress on the theory of
splines on Riemannian manifolds and take into account the Riemannian model
of the space of shells proposed by Heeren et al. [34]. We show that various
Euclidean concepts of interpolating curves can easily be transferred to the Rie-
mannian shell space. To this end we slightly generalize the discrete geodesic
calculus developed in [34] and [32] which allows for an elegant and robust im-
plementation of a versatile toolbox for key frame interpolation. In detail our
contributions are

- the generalization of discrete geodesics and the discrete exponential map
introduced in [34] and [32] to points in time which are not multiples of
a given time step size as an essential ingredient for the construction of
smooth interpolating curves,

- a discrete Riemannian Catmull-Rom interpolation based on discrete Bézier
curves and discrete parallel transport,

- different discrete Riemannian interpolatory subdivision schemes,

- and the conforming implementation of the geodesic calculus on the space of
shells represented by subdivision surfaces including the new interpolation
curves.

The organization of the paper is as follows. In Section 2 we recall some basic
facts of Riemannian calculus and discuss the variational time discretization and
the set up in the case of the space of shells represented by Loop subdivision
surfaces. Section 3 is devoted to the review of discrete Bézier curves in shell
space, whereas in Section 4 we derive discrete cardinal splines. Then in Section 5
different discrete interpolatory subdivision schemes are presented. Finally, in
Section 6 we draw conclusions.

2 Variational time discretization of geodesic cal-
culus in shell space

In this section we review the variational time discretization of geodesic calculus
developed in [53] by Rumpf and Wirth and applied to a space of discrete shells
by Heeren et al. in [34, 32]. This calculus includes in particular the notions
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of discrete geodesics, discrete logarithm, discrete exponential map, and discrete
parallel transport. For results on existence and uniqueness of the associated
geometric operators and the convergence to their continuous counterparts on fi-
nite dimensional Riemannian manifolds and certain infinite dimensional Hilbert
manifolds we refer to [53].

Geodesic calculus on Riemannian manifolds Let us denote by (S, g) a
smooth, complete Riemannian manifold with metric g. In our context S is a
space of discrete shells and more specifically the space of shells represented by
Loop subdivision surfaces. For a smooth path (s(t))t∈[0,1], the path length is
defined by

L[(s(t))t∈[0,1]] =

∫ 1

0

√
gs(t)(ṡ(t), ṡ(t)) dt, (1)

where ṡ(t) ∈ Ts(t)S denotes the velocity at time t. Given two shells sA, sB ∈
S, the minimizing path (s(t))t∈[0,1] of (1) is called shortest geodesic and the
minimal path length defines the Riemannian distance dist(sA, sB) between sA
and sB . Geodesic paths also minimize the path energy

E[(s(t))t∈[0,1]] =

∫ 1

0

gs(t)(ṡ(t), ṡ(t)) dt, (2)

if in addition the speed
√
gs(t)(ṡ(t), ṡ(t)) is constant. For small Riemannian

distances shortest geodesics are unique. Then the geodesic averaging for 0 ≤
t ≤ 1 is given by

Av(sA, sB , t) = s(t) (3)

where s(t) is assumed to be the shortest geodesic connecting sA and sB . The
exponential map is defined by

expsA(v) = s(1) ,

where t 7→ s(t) is the solution of the Euler-Lagrange equation ∇ṡ(t)ṡ(t) = 0
associated with the path energy for given s(0) = sA and ṡ(0) = v ∈ TsAS. Here
∇ṡ(t) denotes the covariant derivative along the geodesic. For sufficiently small
r the exponential map expsA is a bijection from Br(0) → expsA(Br(0)). For
sB ∈ expsA(Br(0)) the inverse of expsA defines the logarithm map

logsA(sB) = v,

where v is the initial velocity ṡ(0) of the unique shortest geodesic connecting
sA with sB . Finally, the parallel transport of a given vector w along a path
(s(t))t∈[0,1] (not necessarily geodesic) is defined as

P(s(t))t∈[0,1](w) = w(1) ,

where t→ w(t) solves ∇ṡ(t)w(t) = 0 with initial data w(0) = w. For a detailed
discussion we refer to [18].
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Subdivision shell space For the manifold S of discrete shells investigated
in this paper an element of this space is a Loop subdivision surface described
by a triangular control mesh s. Thus for fixed topology of the control mesh and
a point to point correspondence of control meshes in S a discrete shell can be
identified with a vector in R3M , where M is the number of vertices of the control
mesh. Physically, a subdivision surface with control mesh s can be considered
as the mid-surface of a thin, curved three-dimensional volumetric object whose
thickness δ is relatively small compared to the area of the mid-surface. The
associated metric reflects viscous dissipation in this thin surface layer when
undergoing a deformation. To derive the metric we apply Rayleigh’s paradigm
(cf. [34]), i.e. we start with a model for the elastic deformation of the thin layer
and replace then strain by strain rates for a second order approximation of the
energy.

To this end, we consider at first an elastic deformation φ of the homogeneous,
isotropic material layer and approximate the energy by an elastic energy asso-
ciated to the deformation of the midsurface split into a membrane and bending
contribution; i.e. we define

Qmem[φ] = Bmem

φ −Bmem

1 and Qbend[φ] = Bbend

φ −Bbend

1

with the symmetric operators Bmem and Bbend given by

Is(B
mem

φ v, w) = Iφ(s)( dφ(v), dφ(w)) ,

Is(B
bend

φ v, w) = IIφ(s)( dφ(v), dφ(w)) .

Here, Is, IIs denote the first and second fundamental form with tangent vectors
v and w. In fact, Bmem

φ is the geometric (tangential) Cauchy-Green strain tensor
for the deformation φ on the surface s and Qbend[φ] is the relative shape operator
quantifying properly the difference in curvature between the deformed and the
undeformed configuration. The total elastic deformation energy is then given
by

WD
s [φ] = δ

∫
s

Wmem(Qmem[φ]) dx+ δ3
∫
s

Wbend(Qbend[φ]) dx , (4)

where the non-negative energy densities Wmem and Wbend act on the symmetric
linear rank two operators Qmem and Qbend, respectively. For Wmem and Wbend

we require that (i) W (0) = 0, (ii) DW = 0 at the zero matrix, and (iii) D2W
is positive definite at the zero matrix. These requirements ensure that for a
shell in a stress free configuration the deformation identity 1 is a minimizer of
W and thus (i) WD

s [1] = 0 and (ii) dWD
s [1] = 0. Additionally, we assume (iii)

that the energy is strictly convex (modulo rigid body motions) in a neighbor-
hood of a minimizer. These conditions capture most thin elastic materials [11].
Under these assumptions the application of Rayleigh’s paradigm indeed leads
to a Riemannian metric as pointed out by Heeren et al. [32]. They showed the
following result :

For v a tangent vector field to a shell s in the space of smooth shells S, Hess(WD
s )(v, v) =

0 if and only if v induces an infinitesimal rigid motion. Consequently, gs(v, w) =
1
2 Hess(WD

s )(v, w) is indeed a Riemannian metric on the space of smooth shells
modulo infinitesimal rigid body motions.
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For the proof we refer to [32]. In the application, we consider the membrane
energy density as suggested in [34]:

Wmem(Q) =
µ

2
trQ+

λ

4
detQ− 2µ+ λ

4
log detQ− µ− λ

4
. (5)

Here, λ and µ are the Lamé constants of linearized elasticity and tr and det
denote the trace and the determinant, respectively, where detQ describes area
distortion, while trQ measures length distortion. The function Wmem[Q] is rigid
body motion invariant and the identity as deformation is the minimizer. Fur-
thermore, the Hessian of the resulting path energy coincides with the quadratic
form of linearized elasticity. The log detQ term penalizes material compression.
For the bending energy density we select the squared Frobenius norm of the
embedded relative Weingarten map

Wbend(Q) = tr(QTQ) . (6)

Time-discrete geodesic calculus To derive a variational discretization of
the geodesic calculus we consider an approximation of the squared Riemannian
distance dist2 by a smooth functional W : S×S → R, where we assume s, s̃ ∈ S:

dist2(s, s̃) = W[s, s̃] + dist3(s, s̃). (7)

For a detailed discussion of this approximation we refer to [34]. For gs =
1
2W,22[s, s] this assumption on W holds by Taylor expansion. In the case of
the subdivision shell space introduced above, W[s, s̃] := WD

s [s̃ − s] fulfills the
assumption with s̃− s representing the deformation of s to s̃ as a vector-valued
subdivision function on s. Using the Cauchy-Schwarz inequality one obtains
that E[(s(t))t∈[0,1]] ≥

∑K
k=1 dist(s(k−1K ), s( kK ))2, where equality holds only if

(s(t))t∈[0,1] is already a shortest geodesic. This motivates the definition of the
discrete path energy

E[(s0, . . . , sK)] = K

K∑
k=1

W[sk−1, sk] (8)

of a discrete path (s0, . . . , sK). For given input shells sA and sB in S we call the
discrete path (s0, . . . , sK) a discrete shortest geodesic, if (s0 = sA, . . . , sK = sB)
is a minimizer of the discrete path energy (8). The corresponding system of
Euler–Lagrange equations is given by

W,2[sk−1, sk] + W,1[sk, sk+1] = 0 (9)

for k = 1, . . . ,K − 1, where W,i denotes the variation with respect to the ith
argument. Then the discrete geodesic averaging for 0 ≤ k ≤ K is defined by

AvK(sA, sB , k/K) = sk (10)

if (s0, . . . , sk, . . . , sK) is the shortest discrete geodesic connecting s0 = sA, sK =
sB . Given a continuous geodesic (s(t))t∈[0,1] with s(0) = sA and s(1) = sB
and a discrete geodesic (s0, . . . , sK) with s0 = sA and sK = sB , we may view
s1 − s0 as the discrete counterpart to τ ṡ(0) for τ = 1

K . Motivated by the fact
that 1

K logsA(sB) = 1
K ṡ(0) we hence give the following definition of a discrete
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logarithm. Suppose we have a unique discrete geodesic (s0 = sA, . . . , sK = sB),
then we define the discrete logarithm by

LogKsA(sB) = K(s1 − s0) .

As in the continuous case, the discrete logarithm can be considered as the linear
representation of the nonlinear variation sB to sA.

Next, we ask for fixed s0 = sA and s1 = sA + ξ
K for a solution s2 of the

Euler-Lagrange equation (9) for K = 2: 0 = W,2[s0, s1] + W,1[s1, s2] . One can
show (cf. [53]) that for s1 − s0 sufficiently small a unique solution s2 exists and
thus (s0, s1, s2) is a discrete geodesic. Iterating this procedure, we compute for
given sk−1 and sk a solution sk+1 of the equation (9) and obtain a variational
scheme for the shooting of a discrete geodesics (s0, . . . , sk, . . .). Thereby, sk is a
discrete counter part of expsA

(
k
K ξ
)

with τ = 1
K being the time step size of the

scheme. Hence, we introduce the discrete exponential map

ExpKsA( kK , ξ) = sk .

Let us emphasize that we use here a slightly different notation as to [53]
with a more natural scaling of arguments and results of the discrete logarithm
and the discrete exponential map. Finally, let us recall the definition of a
discrete counterpart of the parallel transport. Schild’s ladder ([24, 40]) is a
well-known first-order approximation of parallel transport along curves on Rie-
mannian manifolds. It is based on the construction of a sequence of geodesic
parallelograms (see Figure 1). Given a path (s(t))t∈[0,1] and a short tangent
vector w = w0 ∈ Ts(0)S the approximation of the parallel transported vector at
time kτ via a geodesic parallelogram can be expressed by the iterative scheme

spk−1 = exps((k−1)τ)(wk−1), sck = expspk−1
( 1
2 logspk−1

(s(kτ)))

spk = exps((k−1)τ)(2 logs((k−1)τ)(s
c
k)), and wk = logs(kτ)(s

p
k)

for k = 1, . . . ,K and wK as an approximation of the parallel transport P(s(t))t∈[0,1](w)
(cf. Fig. 1). Now, we replace the continuous operators exp and log by their dis-
crete counterparts and obtain the following iteration for a given discrete curve
(s0, . . . , sK) (with sk − sk−1 sufficiently small for k = 1, . . . ,K) and a displace-
ment η = η0:

spk−1 = sk−1 + 1
K ηk−1

sck = spk−1 + 1
2Log

2
spk−1

(sk)

spk = Exp2
sk−1

(1, sck − sk−1)

ηk = K(spk − sk),

for k = 1, . . . ,K and define the discrete parallel transport of η along (s0, . . . , sK)
as (cf. Fig. 1 with marked objects for the case k = K)

PK(s0,...,sK)(η0) = ηK .

The scaling by 1
K in the first line and the rescaling by K in the last line is

necessary to ensure consistency with the continuous parallel transport for K →
∞ and for O(ηo) = 1 as discussed in [53]. In contrast to the continuous setting,
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s(0)

s(1)

w

w(1)

spK−1

spK
scK

s0

sK−1

sK

1
K η0

1
K ηK−1

1
K ηK

spK−1

spK
scK

Figure 1: A sketch of the discretization of parallel transport via Schild’s ladder
in the continuous context (left) and the discrete context (right).

where wk ∈ TskS are tangent vectors, in the discrete setting ηk = spk − sk are
displacements and PKsk+1,sk

(ηk) = ηk+1 maps a displacement ηk or the shell
sk to a displacement ηk+1 of the shell sk+1. The well-definedness of all these
operators and their first order convergence with respect to the time step size
τ = 1

K is proved in [53] under assumptions fulfilled in the space of subdivision
shell surfaces.

More general discrete interpolation and extrapolation In order to de-
fine subdivision curves we would like to compute discrete geodesic averaging not
only at discrete time steps k

K for k = 0, . . . ,K but also for any arbitrary time
t ∈ [0, 1] with t not being a multiple of 1

K . Therefore, we generalize the discrete
interpolation operator in (10) as follows. We first compute a discrete geodesic of
length K + 1 as explained above. Then in a second step we use a weighted, dis-
crete geodesic interpolation between the two shells sbtKc and sbtKc+1 for which

t ∈ ( btKcK , btKc+1
K ) and byc denotes the largest integer smaller than or equal

to y ∈ R and sk = AvK
(
sA, sB ,

k
K

)
. Thereby the weighted, discrete geodesic

interpolation is given as

AvK(sA, sB , t) = argmin
s∈S

(1− t(K))W[sbtKc, s] + t(K)W[s, sbtKc+1], (11)

where t(K) = tK−btKc (cf. Fig. 2); e.g. for t = 2k+1
2K and t(K) = 1

2 we retrieve
the equal weighting from the definition of a 3 shell discrete geodesic.

sA = s0

sB = sK

s1

t

s⌊tK⌋
s⌊tK⌋+1

sA = s0

s1 = sA + ξ
K

t

s⌊tK⌋−1

s⌊tK⌋

Figure 2: Sketch for the definition of the generalized interpolation operator (left)
and the generalized exponential map (right).

In a similar manner we define a generalized exponential map for t not being
a multiple of the time step size τ = 1

K for given K. To this end, we define

ExpK(t, ξ) such that sk := ExpK(k/K, ξ) for k = btKc is the weighted dis-
crete geodesic average of sk−1 = ExpK((k − 1)/K, ξ) and the unknown shell
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Figure 3: Control mesh and subdivision limit surface for the cactus (left) and
the hand shape (right).

ExpK(t, ξ) with weights t(K)
1+t(K) and 1

1+t(K) , i.e.

sk = argmin
s̃

(
t(K)

1 + t(K)
W[sk−1, s̃] +

1

1 + t(K)
W[s̃, s]

)
with unknown shell s = ExpK(t, ξ). This can be expressed in terms of the
Euler-Lagrange equation

0 =
t(K)

1 + t(K)
W,2[sk−1, sk] +

1

1 + t(K)
W,1[sk, s] .

The solution is unique for sufficiently small ξ (cf. Fig. 2). Obviously, for t(K) = 0
we obtain ExpK(t, ξ) = sk and for t(K) = 1 and thus t = k+1

K the exponential

map coincides with the previous definition of ExpK(k+1
K , ξ).

Implementation For the discretization of shells in S we implemented a sub-
division element method in C++ based on Loop’s subdivision functions. This
scheme ensures H2 regularity (C2 apart from irregular vertices) of the limit
function. Thus it allows for the energy densities used in the variational ap-
proximation of the path energy a conforming discretization in particular of the
relative shape operator (cf. [11]). The crucial step in the implementation of
subdivision methods is the choice of the numerical quadrature. Here, we use
the mid-edge quadrature considered in [38] which displays a good compromise
between efficiency and robustness. Additionally, this quadrature rule in conjunc-
tion with lookup tables allows for the simulation with input meshes containing
more than one extraordinary vertex per patch. We refer to [38] for implemen-
tational details.

For the computations presented in the subsequent sections we used a cactus
and a hand model (cf. Fig. 3 for an instance of the control meshes and the
subdivision surfaces). The underlying meshes are closed and consist of 263
vertices for the cactus model and 305 vertices for the hand model.

The numerical computation of discrete geodesic, discrete logarithm, discrete
exponential map and discrete parallel transport uses the elastic deformation en-
ergy defined in (4) with membrane and bending energy density given as in (5)
and (6). In all computations the material parameters are chosen as follows:
λ = µ = 1.0 and δ = 0.01. The nonlinear minimization of the discrete path
energy (8) for the computation of discrete geodesics and geodesic extrapolation
is performed by solving the corresponding set of Euler-Lagrange equations via
Newton’s method with stepsize control. The iteration is stopped if the squared
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`2-norm of the Newton step decreases below ε = 10−4. Note that the perfor-
mance of Newton’s method strongly depends on the initialization. While this
does not pose a problem for the geodesic extrapolation where the unknown shell
sk can be simply initialized with sk−1 the issue is more delicate for geodesic in-
terpolation. For the computation of discrete geodesics between to given shells
s0 and sK we therefore iteratively minimized the functionals

s 7→ (K − k)W[s0, s] + kW[s, sK ]

for k = 1, . . . ,K − 1 to get sk, starting the kth interation with the inialization
s = sk−1. This approach yields a good initialization (s0, . . . , sK) for the final
Newton iteration such that in most cases Newton’s method is in the contraction
region of quadratic convergence.

Using this numerical setup the computation times needed in the simulations
for this paper range from a couple of minutes for the computation of simple
quadratic Bézier curves to several hours for subdivision curves of levels higher
than four.

3 Bézier curves in shell space

Now, we consider Bézier curves in the space of subdivision shell surfaces and de-
rive a discrete counterpart of Riemannian Bézier curves using the discretization
from [34] and following [6] adapted to the space of subdivision shell surfaces.
Consider a set of control shells (s00, . . . , s

0
n) with s0j ∈ S for j = 0, . . . , n and the

mapping

B : S × . . .× S︸ ︷︷ ︸
n+1

×[0, 1]→ S

which is recursively defined via the de Casteljau algorithm

B(si, . . . , sj , t) = Av(B(si, . . . , sj−1, t),B(si+1, . . . , sj , t), t)

for i, j ∈ {0, . . . , n} with i < j and B(s, t) = s. In other words for (s00, . . . , s
0
n)

and fixed t ∈ [0, 1] we compute for j = 1, . . . , n and i = j, . . . , n the shells

sji = Av(sj−1i−1 , s
j−1
i , t)

and after n steps we obtain the shell B(s00, . . . , s
0
n, t) = snn. The resulting curve

(B(s00, . . . , s
0
n, t))t∈[0,1] is denoted a Bézier curve in shell space of degree n. Com-

pared to the Euclidean case the shells sji do not lie on a straight line but on a

geodesic (Av(sj−1i−1 , s
j−1
i , t))t∈[0,1] connecting sj−1i−1 with sj−1i .

Now, we transfer the concept of Riemannian Bézier curves to our time-
discrete setup. Again, we consider a set of control shells (s00, . . . , s

0
n) with s0j ∈ S

for j = 0, . . . , n and some K ∈ N. Then we define a mapping

BK : S × . . .× S︸ ︷︷ ︸
n+1

×{0, 1
K , . . . ,

K
K } → S

recursively via the following discrete de Casteljau algorithm

BK(si, . . . , sj ,
k
K ) = AvK(BK(si, . . . , sj−1,

k
K ),BK(si+1, . . . , sj ,

k
K ), kK )
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s00

s01 s02

s03

B(s00, . . . , s
0
3, t)

s00

s01 s02

s03

BK(s00, . . . , s
0
3, k/K)

Figure 4: Sketch of the continuous (left) and discrete (right) Riemannian de
Casteljau algorithm defining a continuous and a discrete cubic Bézier curve,
respectively (the algorithm proceeds as follows: ).

for i, j ∈ {0, . . . , n} with i < j, k ∈ {0, . . . ,K}, and BK(s, kK ) = s . For the
evaluation of a Bézier curve of degree n with input shells (s00, . . . , s

0
n), and for

K ∈ N the discrete de Casteljau algorithm for k ∈ {0, . . . ,K} reads as follows

for j = 1 to n do
for i = j to n do
sji = AvK(sj−1i−1 , s

j−1
i , kK )

end for
end for
BK(s00, . . . , s

0
n,

k
K ) = snn.

In analogy to the continuous Bézier curve we call the resulting discrete path

(BK(s0, . . . , sn,
k
K ))k∈{0,...,K}

a discrete Bézier curve in shell space of degree n (see Figures 4,5, and 6). Let us
remark that the evaluation of the Bézier curve for general times t ∈ [0, 1], which
are not multiples of 1

K is straightforward using the the generalized interpolation.

Figure 5: Two discrete Bézier curves for the cactus (K = 6, green) and the
hand model (K = 15, beige). The control shells are shown in orange on the left.
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Figure 6: Comparison between a piecewise geodesic paths (left) and a quadratic
Bézier curve (right).

4 Time-discrete cardinal splines in shell space

In what follows we will use the relation between cubic Bézier curves and cubic
Hermite curves [25] to define discrete cardinal splines in this space. To this end,
we first recall that a cubic Hermite curve t 7→ H(sA, vA, vB , sB , t) with endpoints
sA and sB and with initial and final velocity vA ∈ TsAS and vB ∈ TsBS,
respectively, coincides with the Bézier curve t 7→ B(s0, s1, s2, s3, t), where

s0 = sA , s1 = expsA( 1
3vA) , s2 = expsB (− 1

3vB) , s3 = sB .

From this we immediately derive the discrete counterpart and define the discrete
cubic Hermite curve

(HK(sA, ξA, ξB , sB ,
k
K ))k∈{0,...,K}

for given shells sA, sB ∈ S, displacements ξA, ξB as approximations of the
tangent vectors vA and vB , respectively, and K > 1 by

HK(sA, ξA, ξB , sB ,
k
K ) = BK(s0, s1, s2, s3,

k
K ) where

s0 = sA , s1 = ExpKsA(
1

3
, ξA) , s2 = ExpKsB (

1

3
,−ξB) , s3 = sB .

Let us remark that for k being a multiple of 3 the term ExpKsA( 1
3 , ξA) requires

K
3 steps of the iterative scheme for the discrete exponential map. Now, we are in

the position to discuss continuous cardinal splines on the Riemannian manifold
S of shells and to derive a proper discrete cardinal spline. Cardinal splines
interpolate the given sequence of control shells. In between each consecutive pair
of control points the cardinal spline coincides with a cubic Hermite curve with
the same pair of end shells. The velocities at the end shells of such a Hermite
curve are computed via parallel transport of the initial velocity of the geodesic
pointing from the previous to the next shell. An exception is only the velocity
at the first and the last shell. The latter mechanism ensures differentiability of
the resulting spline curve. In detail, for a sequence of shells (s0, . . . , sm) with
sj ∈ S for j = 0, . . . ,m, m ≥ 2 and κ ∈ [0, 3] consider the mapping

CSκ : S × . . .× S︸ ︷︷ ︸
m+1

×[0,m]→ S

which is defined piecewise for t ∈ [l, l + 1] where l = 0, . . . ,m− 1 by

CSκ(s0, . . . , sm, t) = B(d3l, d3l+1, d3l+2, d3l+3, t− l) .

13



sj−1 = d3(j−1)

sj = d3j

sj+1 = d3(j+1)

wj

wp
j

d3j+1

d3j−1

sj−1 = d3(j−1)

sj = d3j

sj+1 = d3(j+1)

1
K ηj

1
K ηp

j

d3j+1

d3j−1

Figure 7: Sketch of the construction of the control shells d3j−1 and d3j+1 for the
cardinal spline in the continuous (left) and discrete (right) setting (the algorithm
proceeds as follows: ).

To ensure the interpolation condition we have to set

d3j = sj , j = 0, . . . ,m .

On the left and on the right we prescribe boundary conditions via

d1 = Av(s0, s1,
κ/3),

d3m−1 = Av(sm−1, sm, 1− κ/3) = Av(sm, sm−1,
κ/3) .

In explicit, this ensures that d
dtCSκ(s0, . . . , sm, t) is parallel to logd0(d1) for t = 0

and to logd3m(d3m−1) for t = m . Finally, we prescribe for each j ∈ 1, . . . ,m− 1
the control points d3j−1 and d3j+1 . To this end, we first compute the initial
velocity wj of the geodesic from d3(j−1) and d3(j+1) and scale it with κ/3, where
κ is the tension factor, which controls the inflection behaviour of the cardinal
spline:

wj = κ
3 logsj−1

(sj+1) .

Then we transport this velocity along the geodesic from sj−1 to sj and use
the exponential map in the positive and negative direction of the transported
velocity field to define the remaining control points:

wpj = P(Av(sj−1,sj ,t))t∈[0,1](wj),

d3j−1 = expsj (−wpj ),

d3j+1 = expsj (wpj ) .

For the computation of the shells d3j−1 and d3j+1 we refer to the sketch in
Figure 7. The resulting curve

(CSκ(s0, . . . , sm, t))t∈[0,m]

defines the cubic cardinal spline in shell space with tension parameter κ ∈ [0, 3] .
This construction can be transferred to the discrete context to define the

corresponding discrete cardinal spline. Again we take into account a sequence
of control shells (s0, . . . , sm) with sj ∈ S for j = 0, . . . ,m, m ≥ 2 and K ≥ 2
and define the mapping

CSKκ : S × . . .× S︸ ︷︷ ︸
m+1

×{0, 1
K , . . . ,m ·

K
K } → S

14



which is given piecewise for k ∈ [l ·K, . . . , (l + 1) ·K] as l = 0, . . . ,m− 1 by

CSKκ (s0, . . . , sm,
k
K ) = BK(d3l, d3l+1, d3l+2, d3l+3,

k
K − l) ,

where the interpolation control points are copied as before, i.e.

d3j = sj , j = 0, . . . ,m .

The discrete counterparts of the boundary conditions are

d1 = ExpKs0

(
κ/3,Log

K
s0(s1)

)
,

d3m−1 = ExpKsm

(
κ/3,Log

K
sm(sm−1)

)
.

The control points d3j−1 and d3j+1 for j ∈ 1, . . . ,m − 1 are determined as
follows:

ηj = LogKsj−1
(sj+1) ,

ηpj = PK
(AvK(sj−1,sj ,

k
K ))k={0,...,K}

(ηj) ,

d3j−1 = ExpKsj
(
κ
3 ,−η

p
j

)
,

d3j+1 = ExpKsj
(
κ
3 , η

p
j

)
.

(see also Figure 7). We call the resulting curve (CSKκ (s0, . . . , sm,
k
K ))k∈{0,...,m·K}

the discrete cubic cardinal spline in shell space with tension κ ∈ [0, 3]. Let us
emphasize that this is equivalent to the construction with discrete cubic Hermite
splines where a segment consists of the shells sj and sj+1 and displacements ηpj−1
and −ηpj . Examples are given in Figure 8.

5 Interpolatory subdivision curves in shell space

In this section we transfer the concept of unitary subdivision to shell space in
order to compute smooth interpolation curves for a given set of key frame shells.
In Euclidean space a subdivision curve is defined as the limit of increasingly fine
control polygons subject to a small set of subdivision rules. Replacing straight
lines by geodesic paths, this construction can be transferred to the Riemannian
setting. For this purpose we make use of the extension of the geodesic averaging
operator and the exponential map in Section 2. Furthermore, for the ease of
presentation we generalize the averaging Av to an interpolation I, which is also
defined for t 6∈ [0, 1]. In explicit, I is given as follows:

I(sA, sB , t) = Av(sA, sB , t) for 0 ≤ t ≤ 1 ,

I(sA, sB , t) = expsA(t logsA(sB)) for t < 0 ,

I(sA, sB , t) = expsB (−(t− 1) logsB (sA)) for t > 1 .

The same notational generalization can be performed for the discrete averaging:

IK(sA, sB , t) = AvK(sA, sB , t) for 0 ≤ t ≤ 1 ,

IK(sA, sB , t) = ExpKsA(−t,−LogKsA(sB)) for t < 0 ,

IK(sA, sB , t) = ExpKsB ((t− 1),−LogKsB (sA)) for t > 1 .
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Figure 8: Two discrete cardinal spline curves for the cactus (green, K = 9)
and the hand model (beige, K = 7). The interpolated key frames are shown in
orange.

In the following we state the subdivision rules for the interpolatory binary four-
and six-point schemes as well as the interpolatory ternary four-point scheme.
Let us emphasize that these rules depends on a proper combination of (discrete)
geodesic interpolation and extrapolation via the (discrete) exponential map,
both encoded in the generalized interpolation operators I and IK .

To this end, let us consider a set of initial shells s00, . . . , s
0
n ∈ S with n ≥ 2.

The Riemannian interpolatory binary four-point scheme defines the correspond-
ing control shells s`k of level ` > 0 iteratively by

s`2k = s`−1k , s`2k+1 = I(d`−12k , d`−12k+1,
1
2 ),

for k = 0, . . . , 2`n with

d`−12k = I(s`−1k−1, s
`−1
k , 98 ), d`−12k+1 = I(s`−1k+2, s

`−1
k+1,

9
8 )

(cf. the sketch in Fig. 9). Similarly the Riemannian interpolatory binary six-
point scheme is given by

s`2k = s`−1k , s`2k+1 = I(d`−14k+2, d
`−1
4k+3,

1
2 ),

for k = 0, . . . , 2`n, where

d`−14k = I(s`−1k−2, s
`−1
k−1,

25
22 ), d`−14k+1 = I(s`−1k+3, s

`−1
k+2,

25
22 ),

d`−14k+2 = I(d`−14k , s`−1k , 7564 ), d`−14k+3 = I(d`−14k+1s
`−1
k+1,

75
64 ).
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Finally the interpolatory ternary four-point scheme consists of the rules

s`3k = s`−1k , s`3k+1 = I(d`−14k , d`−14k+1,
10
33 ), s`3k+2 = I(d`−14k+2, d

`−1
4k+3,

10
33 ),

with k = 0, . . . , 3`n, and

d`−14k = I(s`−1k−1, s
`−1
k , 7669 ), d`−14k+1 = I(s`−1k+1, s

`−1
k+2,−

2
15 ),

d`−14k+2 = I(s`−1k+2, s
`−1
k+1,

76
69 ), d`−14k+3 = I(s`−1k , s`−1k−1,−

2
15 ).

In order to transfer these subdivision rules into the time-discrete setup we
replace the time-continuous (generalized) interpolation operator by its time-
discrete counterpart. For K ≥ 2 and for the set of keyframe shells s00, . . . , s

0
n ∈ S

(our control shells) with n ≥ 2 we obtain the interpolatory, discrete Riemannian
binary four-point scheme with shells s`k on level ` > 0 iteratively defined by

s`2k = s`−1k , s`2k+1 = IK(d`−12k , d`−12k+1,
1
2 ),

for k = 0, . . . , 2`n with

d`−12k = IK(s`−1k−1, s
`−1
k , 98 ), d`−12k+1 = IK(s`−1k+2, s

`−1
k+1,

9
8 )

(cf. the sketch in Fig. 9). The discrete binary six-point scheme reads as follows

s`2k = s`−1k , s`2k+1 = IK(d`−14k+2, d
`−1
4k+3,

1
2 ),

for k = 0, . . . , 2`n, where

d`−14k = IK(s`−1k−2, s
`−1
k−1,

25
22 ), d`−14k+1 = IK(s`−1k+3, s

`−1
k+2,

25
22 ),

d`−14k+2 = IK(d`−14k , s`−1k , 7564 ), d`−14k+3 = IK(d`−14k+1s
`−1
k+1,

75
64 ).

For the discrete ternary four-point scheme we get

s`3k = s`−1k , s`3k+1 = IK(d`−14k , d`−14k+1,
10
33 ), s`3k+2 = IK(d`−14k+2, d

`−1
4k+3,

10
33 ),

with k = 0, . . . , 3`n, and

d`−14k = IK(s`−1k−1, s
`−1
k , 7669 ), d`−14k+1 = IK(s`−1k+1, s

`−1
k+2,−

2
15 ),

d`−14k+2 = IK(s`−1k+2, s
`−1
k+1,

76
69 ), d`−14k+3 = IK(s`−1k , s`−1k−1,−

2
15 ).

Examples for the different subdivision schemes in shell space are given in Fig-
ures 10 and 12 and a comparison is shown in Figure 11.

6 Discussion

We have generalized the notion of different interpolating curves, namely cardi-
nal splines, and three different types of interpolatory subdivision schemes for
curves to the Riemannian manifold of shells. This methodology turns into a
computationally efficient toolbox via the implementation of a variational time
discretization of geodesic interpolation, extrapolation via a discrete geometric
exponential map, discrete geometric logarithm, and discrete parallel transport.
Due to the physical foundation of the underlying Riemannian metric on the
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Figure 9: Sketch of the construction for the interpolatory binary four-point
scheme in the continuous case (left) and the discrete case (right) (the algorithm
proceeds as follows: ).

space of shells the application to subdivision shell surfaces led to physically
intuitive interpolation curves in shell space.

The use of subdivision surfaces to represent shells allows a conforming dis-
cretization of the path energy and does not require any discrete geometry ver-
sion of the relative shape operator. In particular, approximating a given smooth
surface with subdivision surfaces generated by an increasing number of control
points we can expect convergence of the relative shape operator. Concerning
the numerical implementation Newton’s method is used in particular to solve
the geodesic interpolation problem, which requires the minimization of a non-
linear energy over K − 1 coupled control meshes of the subdivision shells. Here
the hierarchical approach incorporated in the subdivision method is particu-
larly well-suited. It ensures that Newton’s method is in most cases (especially
on finer levels of the subdivision scheme) in the contraction region of quadratic
convergence.

We remark that the construction of the interpolating curves presented in
this paper is entirely based on the solution of problems that are local in time.
However, the corresponding functionals subject to minimization are non-convex
such that the Newton solver may terminate in local minima which could possibly
lead to discontinuities and non-uniqueness of the resulting interpolation curves.
In the application this problem can be prevented by a good initialization of the
Newton iteration (like the iterative initialization presented in Section 2) and a
suitable choice of the step size τ = 1/K. We never encountered the described
problem in any of our computations.

Compared to the Riemannian spline approach by Heeren et al. [33] we have
to solve solely local problems in time, whereas in [33] a fully coupled global
optimization problem with a large set of nonlinear constraints has to be solved.
Furthermore, we do not require the simplification via the LΘA approach for
more complex shell models, which requires a back projection onto the manifold
of shell surfaces. On the other hand our approach follows the paradigms of
constructive approximation and lacks an energy minimizing interpretation.

Furthermore, the convergence behaviour of the sequence of subdivision curves
to a smooth limit surfaces is open in particular for fixed time step size τ = 1

K .
The proximity condition approach by Wallner and Dyn [62] might be a good
starting points to study smoothness properties. In our case two types of per-
turbations have to be considered: the perturbation due to the curviness of
the manifold and the perturbation caused by our variational approximation of
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3 2 3 1 3 2 3 0

0 3 2 3 1 3 2 3 0

3 2 3 1 3 2 3 0
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Figure 10: Different discrete subdivision curves interpolate three different poses
of the cactus shell (orange): discrete binary four-point scheme (top), discrete
binary six-point scheme (middle), discrete ternary four-point scheme. The num-
bers indicate the level of refinement.

geodesics. Recently, Wallner [61] proved convergence of the linear four-point
scheme and other univariate interpolatory schemes in Riemannian manifolds.
To this end he studied Riemannian edge length contractivity of the schemes on
a manifold combined with a multiresolutional analysis. Indeed, to apply these
results certain consistency results of the path length of geodesic edges and the
corresponding discrete path length are already known (cf. [53]).
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Figure 12: As above in Fig. 10 different discrete subdivision curves now interpo-
late five different poses of the hand model (orange): discrete binary four-point
scheme (top), discrete binary six-point scheme (middle), discrete ternary four-
point scheme. Again the numbers indicate the level of refinement.
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