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Helical polynomial curves interpolating

G1 data with prescribed axes and pitch angles

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Abstract

A helical curve, or curve of constant slope, offers a natural flight path
for an aerial vehicle with a limited climb rate to achieve an increase in
altitude between prescribed initial and final states. Every polynomial
helical curve is a spatial Pythagorean–hodograph (PH) curve, and the
distinctive features of the PH curves have attracted growing interest
in their use for Unmanned Aerial Vehicle (UAV) path planning. This
study describes an exact algorithm for constructing helical PH paths,
corresponding to a constant climb rate at a given speed, between initial
and final positions and motion directions. The algorithm bypasses the
more sophisticated algebraic representations of spatial PH curves, and
instead employs a simple “lifting” scheme to generate helical PH paths
from planar PH curves constructed using the complex representation.
In this context, a novel scheme to construct planar quintic PH curves
that interpolate given end points and tangents, with exactly prescribed
arc lengths, plays a key role. It is also shown that these helical paths
admit simple closed–form rotation–minimizing adapted frames. The
algorithm is simple, efficient, and robust, and can accommodate helical
axes of arbitrary orientation through simple rotation transformations.
Its implementation is illustrated by several computed examples.

Keywords: path planning, unmanned aerial vehicles, climb rate, arc length,
Hermite interpolation, helical polynomial curves, Pythagorean–hodograph curves.
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1 Introduction

There has recently been considerable interest in using Pythagorean–hodograph
(PH) curves to specify paths for swarms of unmanned aerial vehicles (UAVs)
or other autonomous or remotely–operated vehicles [1, 3, 4, 6, 20, 21, 23, 24,
25, 26, 27, 28, 29, 30, 31, 33]. A polynomial PH curve r(ξ) = (x(ξ), y(ξ), z(ξ))
incorporates a special algebraic structure [9], ensuring that the components of
the hodograph (derivative) r′(ξ) = (x′(ξ), y′(ξ), z′(ξ)) satisfy a Pythagorean
condition — i.e., x′2(ξ)+y′2(ξ)+z′2(ξ) is equal to the perfect square of a single
polynomial. This feature facilitates exact computations of various properties
required to satisfy geometrical or physical path constraints — such as bounds
on path curvature or climb angle, avoidance of obstacles, and maintenance of
safe vehicle separations. An overview of the capabilities of PH curves within
the context of UAV path planning may be found in [13].

The goal of the present study is to elucidate a simple and exact PH curve
solution to a basic path planning problem — namely, to achieve an increase in
altitude between states with prescribed initial/final positions and directions
through a motion that corresponds to a fixed rate of climb at constant speed.
UAV climb rates are inherently limited by considerations such as propulsive
power, angle of attack, and stall avoidance, and rapid changes of altitude may
be required to accommodate obstacle avoidance, meteorological conditions,
remote sensing requirements, etc. The design of PH curve UAV paths under
climb rate constraints has recently been studied by Neto and Campos [23, 24].
Although these studies employ the quaternion representation [5, 12] of spatial
PH curves, a simpler approach to constructing climb–rate–limited paths is
possible, based on the recognition that they must be helical curves.

A (generalized) helix is a space curve1 r(ξ) whose tangent vector t(ξ) =
r′(ξ)/|r′(ξ)| maintains a constant inclination ψ (the pitch angle) with a fixed
unit vector a (the axis of the helix), i.e.,

a · t(ξ) ≡ cosψ . (1)

There are several alternative (equivalent) characterizations for helical curves
[32] — including (1) a constant curvature to torsion ratio: κ(ξ)/τ(ξ) ≡ tanψ;
(2) the tangent indicatix (the curve traced on the unit sphere by the tangent
vector t(ξ)) is a small circle arc; and (3) the second, third, and fourth curve
derivatives are linearly dependent: [ r′′(ξ) × r′′′(ξ) ] · r′′′′(ξ) ≡ 0.

1It will be understood henceforth that we confine our attention to true space curves,
since every planar curve is trivially helical.
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In the present context, a key fact is that every polynomial helical curve is
a PH curve [17]. This is evident upon writing (1) as a · r′(ξ) ≡ cosψ |r′(ξ)|.
Since the left–hand side is a polynomial, the parametric speed |r′(ξ)| — i.e.,
the derivative ds/dξ of the arc length s with respect to the curve parameter
ξ — must be a polynomial function of ξ. The characterization of polynomial
helical curves has already been thoroughly investigated, and algorithms for
their construction by the interpolation of discrete data have been formulated
[2, 14, 15, 17, 22]. These algorithms utilize the sophisticated quaternion and
Hop map forms [5] of spatial PH curves, and impose no a priori restriction on
the orientation of the helical axis a. In the UAV climb rate problem, however,
the imposition of a vertical axis allows helical paths to be constructed using
the simpler machinery of planar PH curves through a simple “lifting” process.
The ability to construct planar PH curves satisfying specified end conditions
with prescribed arc lengths [10] is a crucial element of this process.

The remainder of this paper is organized as follows. First, basic properties
of the planar PH curves are summarized in Section 2, and an algorithm for the
construction of planar PH quintics that precisely match specified end points,
end tangents, and total arc length, is outlined in Section 3. Based upon this
construction, Section 4 describes the “lifting” scheme that generates helical
paths with vertical axes and specified pitch angles, between given end points
and motion directions. Section 5 then derives the quaternion representation
for these helical paths, and employs it to show how the solution scheme may
be extended to accommodate helical axes of arbitrary orientation. It is also
shown in Section 6 that the helical paths admit simple closed–form reductions
for their rotation–minimizing frames. The methodology is summarized by an
algorithm outline in Section 7, and its implementation is illustrated by some
computed examples. Finally, Section 8 recapitulates the key results of this
study, and suggests possible avenues for their generalization.

2 Planar Pythagorean–hodograph curves

The distinctive property of a plane polynomial PH curve p(ξ) = (x(ξ), y(ξ))
is that the parametric speed σ(ξ) = |p′(ξ)| is simply a polynomial in ξ [19].
Consequently, PH curves possess rational unit tangents, normals, curvatures,
and offset curves; their arc lengths are exactly computable; and they are well
suited to real–time precision motion control applications [9].

A convenient approach to constructing and analyzing planar PH curves
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is the complex representation [7], wherein a PH curve of degree n = 2m+ 1
is generated from a degree–m complex “pre–image” polynomial

w(ξ) = a(ξ) + i b(ξ) =
m

∑

k=0

wk

(

m

k

)

(1 − ξ)m−kξk (2)

with Bernstein coefficients wk = ak + i bk, by integrating the relation

p′(ξ) = x′(ξ) + i y′(ξ) = w2(ξ) = a2(ξ) − b2(ξ) + i 2 a(ξ)b(ξ) . (3)

The parametric speed, unit tangent, and curvature may be expressed [7] as

σ(ξ) = |w(ξ)|2 , t(ξ) =
w2(ξ)

σ(ξ)
, κ(ξ) = 2

Im(w(ξ)w′(ξ))

σ2(ξ)
. (4)

Since σ(ξ) is a polynomial, its indefinite integral — the cumulative arc length
function s(ξ) — is likewise a polynomial, of degree n. The simplest planar PH
curves suitable for free–form design are the quintics, generated by a quadratic
w(ξ) with Bernstein coefficients w0,w1,w2. Integration of (3) yields [7] their
Bézier control points pk = xk + i yk (with p0 an integration constant) as

p1 = p0 +
1

5
w2

0 , p2 = p1 +
1

5
w0w1 ,

p3 = p2 +
1

5

2w2
1 + w0w2

3
,

p4 = p3 +
1

5
w1w2 , p5 = p4 +

1

5
w2

2 . (5)

The Bernstein coefficients of the parametric speed polynomial σ(ξ) are

σ0 = |w0|2 , σ1 = Re(w0w1) ,

σ2 =
2 |w1|2 + Re(w0w2)

3
,

σ3 = Re(w1w2) , σ4 = |w2|2 . (6)

Correspondingly, the arc length polynomial s(ξ) has Bernstein coefficients

s0 = 0 and sk =
1

5

k−1
∑

j=0

σj , k = 1, . . . , 5 (7)

and the total arc length is

S = s(1) = s5 =
σ0 + σ1 + σ2 + σ3 + σ4

5
. (8)
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3 G1 planar PH quintics with prescribed arc

lengths

It was demonstrated in [10] that planar quintic PH curves may be constructed
with prescribed start/end points qs,qe and tangents ts, te, and any desired
arc length S > |qe −qs|, through a simple algorithm. This algorithm plays a
key role in the construction of helical paths with specified axes, pitch angles,
and end states by a “lifting” process. The algorithm may be summarized as
follows (see [10] for the derivations and complete details).

Using the complex representation with qs = xs + i ys, qe = xe + i ye and
ts = exp(iφs), te = exp(iφe), and setting ∆q = qe − qs := |∆q| exp(i γ), the
prescribed data is first reduced to canonical form by: (i) subtracting qs from
qs and qe; (ii) dividing qe by ∆q; (iii) multiplying ts and te by exp(− i γ); and
(iv) dividing S by |∆q|. This amounts to a translation/rotation/scaling, that
maps qs and qe to the points 0 and 1 on the real axis. Once the canonical form
solution has been computed, it can be restored to the original coordinates by
multiplying w0,w1,w2 with

√

|∆q| exp(i 1

2
γ) before substituting in (5) with

the choice p0 = qs. For brevity, only the generic case φe 6= ±φs is considered
here (see [10] for treatment of the special cases φe = ±φs).

For canonical form data, the coefficients in (2) are written in the form

w0 = w exp(i1
2
φs) , w1 = u+ i v , w2 = w exp(i1

2
φe) . (9)

Assigning w0 and w2 to be of equal magnitude ensures that |p′(0)| = |p′(1)|,
so symmetric data yields symmetric interpolants. The real values u, v, w in
(9) will be determined as follows. Writing (λs, µs) := (cos 1

2
φs, sin

1

2
φs) and

(λe, µe) := (cos 1

2
φe, sin

1

2
φe), set

w =
√
z , (10)

where z is the smaller root of the quadratic equation2

a2z
2 + a1z + a0 = 0 (11)

with the coefficients

a2 = 2(λsµe − λeµs)
2 ,

a1 = 3 [ 2(λsλe + µsµe − 3)S + 3(λ2

s − µ2

s + λ2

e − µ2

e) − 2(λsλe − µsµe) ] ,

a0 = 36(S2 − 1) .

2It is shown in [10] that this equation always has real roots, since the discriminant is
always non–negative, and that the roots are both positive.
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Then choose α, β = ±1 such that αβ and (λsµe +λeµs −3λsµs −3λeµe)z are
of the same sign. For each of the two α, β pairs thus identified, set

u =
−3(λs + λe)w + α

√

P (z)

4
, v =

−3(µs + µe)w + β
√

Q(z)

4
, (12)

where
P (z) = 60(S + 1) − (15λ2

s + 15λ2
e − 10λsλe)z , (13)

Q(z) = 60(S − 1) − (15µ2

s + 15µ2

e − 10µsµe)z . (14)

It may be shown [10] that expressions (13) and (14) are both non–negative at
the smaller root of (11). When u, v, w are determined from (10) and (12), the
complex coefficients (9) are known, and are multiplied by

√

|∆q| exp(i 1

2
γ).

The control points p0, . . . ,p5 are then obtained from (5) with p0 = qs.
In general, the procedure provides two formal solutions (corresponding to

the two feasible sign pairs α, β) to the problem of matching the specified data,
of which one has an attractive shape, while the other exhibits an undesirable
looping behavior — the latter can be discarded on the basis of a higher value
for the elastic bending energy [8] or absolute rotation index [18].

4 Constant climb rate paths for UAVs

The theory for helical polynomial curves, based on the quaternion and Hopf
map representations, accommodates axis vectors with arbitrary orientations
[2, 14, 15, 17, 22]. In the UAV path planning problem, however, the climb
rate is constrained mainly by the ability of the propulsive power to overcome
gravity, so we may focus exclusively on helical paths with vertical axes — i.e.,
in terms of an orthonormal basis (i, j,k) aligned with the (x, y, z) coordinate
directions, we need only consider the case3 a = k. This allows us to bypass
the more cumbersome methodology for spatial PH curves, and achieve exact
constructions of climb–rate–limited UAV paths with specified end conditions
through simpler, established algorithms for planar PH curves.

In the UAV path planning context, it is convenient to employ the path
climb angle θ = 1

2
π−ψ instead of the helix pitch angle, and we assume that

θ ∈ (0, 1

2
π). The helicity condition (1) then becomes k ·t(ξ) ≡ sin θ. We shall

consider here only polynomial helical curves, and thus exclude the familiar

3The generalization to helical axes of arbitrary orientation is treated in Section 5.
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circular helix, which for a prescribed climb angle θ may be parameterized as
r(φ) = (ρ cosφ, ρ sinφ, ρ φ tan θ) — this is a transcendental curve, that is not
capable of accommodating arbitrary initial/final path states.

Any plane polynomial curve

p(ξ) = (x(ξ), y(ξ))

with parametric speed σ(ξ) = |p′(ξ)| and cumulative arc length function

s(ξ) =

∫ ξ

0

σ(t) dt ,

may be “lifted” [32] to define a helical space curve with climb angle θ through
the expression

r(ξ) = (x(ξ), y(ξ), s(ξ) tanθ) . (15)

When p(ξ) is a PH curve, s(ξ) is a polynomial, so r(ξ) is a polynomial curve.
Moreover, the magnitude of its derivative

r′(ξ) = (x′(ξ), y′(ξ), σ(ξ) tan θ) (16)

is the polynomial function

|r′(ξ)| = σ(ξ) sec θ ,

so r(ξ) is a spatial PH curve. The coefficients of the parametric speed and arc
length polynomials for the helical curve r(ξ) are simply those of the planar
PH curve p(ξ), scaled by the factor sec θ. Likewise, the total arc length of
r(ξ) is just S sec θ. Note also that the unit tangent of r(ξ) is

r′(ξ)

|r′(ξ)| =

(

x′(ξ)

σ(ξ)
cos θ,

y′(ξ)

σ(ξ)
cos θ, sin θ

)

,

which clearly satisfies the helicity condition k · r′(ξ) ≡ sin θ |r′(ξ)|.
From (16) we have r′′(ξ) = (x′′(ξ), y′′(ξ), σ′(ξ) tan θ), and noting that

σ′(ξ) =
x′(ξ)x′′(ξ) + y′(ξ)y′′(ξ)

σ(ξ)
,

the curvature of r(ξ) can be expressed as

|r′ × r′′|
|r′|3 =

|x′y′′ − x′′y′|
σ3

cos2 θ ,

6



which is simply the (magnitude of) curvature for the planar PH curve p(ξ),
multiplied by the factor cos2 θ. Also, from the fact [32] that for any helix the
ratio of curvature to torsion is tanψ (= cot θ), the torsion of r(ξ) is given by

(r′ × r′′) · r′′′
|r′ × r′′|2 =

|x′y′′ − x′′y′|
σ3

sin θ cos θ .

To construct a polynomial helical path r(ξ), ξ ∈ [ 0, 1 ] with climb angle
θ between the prescribed start and end points and motion directions

rs = (xs, ys, zs) , ds = (cos θ cosφs, cos θ sin φs, sin θ) ,
re = (xe, ye, ze) , de = (cos θ cosφe, cos θ sinφe, sin θ) ,

(17)

we first construct a planar PH curve p(ξ) = (x(ξ), y(ξ)), ξ ∈ [ 0, 1 ] with end
points (xs, ys), (xe, ye) and tangents (cosφs, sinφs), (cosφe, sinφe). Since the
z component of (16) must satisfy

∫ 1

0

σ(ξ) tan θ dξ = S tan θ = ∆z ,

where ∆z = ze − zs, we stipulate that p(ξ) must also have arc length

S = ∆z cot θ . (18)

If s(ξ) is the polynomial arc length function of the planar PH curve p(ξ), the
desired helical path is obtained by the “lifting” (15) of p(ξ) = (x(ξ), y(ξ)) to
r(ξ) = (x(ξ), y(ξ), z(ξ)). To achieve the prescribed altitude change ∆z with
the prescribed constant climb angle θ, the total arc length S of the planar
path p(ξ) must have the precise value specified by (18).

Now S cannot be smaller than |qe −qs| and by (18) this implies that, for
a feasible helical path between rs and re with climb angle θ, the inequality

∆z

|qe − qs|
≥ tan θ

must be satisfied — equivalently, the inclination of the displacement vector
re − rs with the (x, y) plane cannot be smaller than θ (and can be equal only
when the given data (17) are consistent with a linear path).

The constructed helical path may be expressed in Bézier form as

r(ξ) =
5

∑

k=0

rk

(

5

k

)

(1 − ξ)5−kξk (19)
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with the control points

rk = (xk, yk, sk tan θ) , k = 0, . . . , 5 , (20)

where pk = (xk, yk) are the control points of the planar PH curve p(ξ), and
sk are the Bernstein coefficients (7) of its arc length s(ξ).

5 Quaternion representation

It is desirable to cast the constructed helical PH quintic (15) in the standard
quaternion form [5, 12] of spatial PH curves, to facilitate compatibility with
existing methods, and transformations of the coordinates to accommodate an
arbitrary orientation of the helix axis. A spatial PH curve may be generated
from a quaternion polynomial A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ)k through
the expression4

r′(ξ) = A(ξ)kA∗(ξ) , (21)

A∗(ξ) = u(ξ)− v(ξ) i− p(ξ) j− q(ξ)k being the conjugate of A(ξ). To define
a spatial PH quintic, a quadratic quaternion polynomial is employed in (21),
specified in Bernstein form as

A(ξ) = A0(1 − ξ)2 + A12(1 − ξ)ξ + A2ξ
2 , (22)

and the Bézier control points in the representation (19) are given in terms of
its coefficients [9] by

r1 = r0 +
1

5
A0 kA∗

0 ,

r2 = r1 +
1

10
(A0 kA∗

1 + A1 kA∗

0) ,

r3 = r2 +
1

30
(A0 kA∗

2 + 4A1 kA∗

1 + A2 kA∗

0) ,

r4 = r3 +
1

10
(A1 kA∗

2 + A2 kA∗

1) ,

r5 = r4 +
1

5
A2 kA∗

2 , (23)

4We depart from prior practice in using the unit vector k, rather than i, in (21). This
amounts to using a different coordinate system, more appropriate to the present context.
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where r0 is a free integration constant. A general scheme for determining the
quaternion coefficients A0,A1,A2 from the known control points r0, . . . , r5 of
a spatial PH quintic is described in [16]. In the case of the helical PH quintic
(15), however, an alternative approach is simpler and more enlightening.

Proposition 1 A quaternion pre–image polynomial A(ξ) that generates the
helical polynomial curve (15) with climb angle θ, by lifting the plane PH curve
p(ξ) constructed from (2) and (3), may be defined in terms of the components
of w(ξ) = a(ξ) + i b(ξ) as

A(ξ) = fa(ξ) − b(ξ)

2f
i +

a(ξ)

2f
j + f b(ξ)k , (24)

where

f =
√

1

2
(tan θ + sec θ) . (25)

Proof : Expanding (21), the components of r′(ξ) are

x′(ξ) = 2 [ u(ξ)p(ξ) + v(ξ)q(ξ) ] ,

y′(ξ) = 2 [ p(ξ)q(ξ)− u(ξ)v(ξ) ] ,

z′(ξ) = u2(ξ) − v2(ξ) − p2(ξ) + q2(ξ) . (26)

Let p(ξ) = (x(ξ), y(ξ)) be generated by polynomials a(ξ), b(ξ) as in (2)–(3).
To ensure agreement of equations (2)–(3) and (16) with (26) we must have

2(up+ vq) = a2 − b2 ,

2(pq − uv) = 2ab ,

u2 − v2 − p2 + q2 = (a2 + b2) tan θ , (27)

where, for brevity, we omit the dependence of u, v, p, q and a, b on ξ.
Treating the first two conditions in (27) as linear equations for v and p,

they have the solutions

v =
(a2 − b2)q − 2abu

2(u2 + q2)
, p =

(a2 − b2)u+ 2abq

2(u2 + q2)
. (28)

Substituting these expressions into the third condition and simplifying then
yields the quadratic equation

4(u2 + q2)2 − 4 tan θ(a2 + b2)(u2 + q2) − (a2 + b2)2 = 0

9



in u2 + q2, with the solutions

u2 + q2 = 1

2
(tan θ ± sec θ)(a2 + b2) . (29)

Now writing t = tan 1

2
θ, we have

tan θ =
2t

1 − t2
and sec θ =

1 + t2

1 − t2
,

and therefore

tan θ − sec θ = − 1 − t

1 + t
,

which is clearly negative for 0 < t < 1, i.e., θ ∈ (0, 1

2
π). On the other hand,

tan θ + sec θ =
1 + t

1 − t

is clearly positive for θ ∈ (0, 1

2
π). Thus, only the positive sign in (29) yields

real solutions for u and q. Equation (29) evidently has infinitely–many real
solutions u and q in terms of a and b. To obtain a simple form for A(ξ), we
choose the particular solution for u and q, with the corresponding solution
for v and p from (28), specified by

u = fa , v = − b

2f
, p =

a

2f
, q = f b , (30)

where f is defined by (25). This solution yields the quaternion polynomial
(24) — it is easily verified that the solution (30) satisfies equations (27), and
yields u2 + v2 + p2 + q2 = (a2 + b2) sec θ = |r′|. The entire family of possible
solutions for A(ξ) is identified in Remark 1 below.

Thus, if a0, a1, a2 and b0, b1, b2 are the Bernstein coefficients of a(ξ), b(ξ)
the Bernstein coefficients of the quaternion polynomial (22) are

Ar = far −
br
2f

i +
ar

2f
j + f br k , r = 0, 1, 2 . (31)

Remark 1 It should be noted that the polynomial A(ξ) is not unique. For
any η, the quaternion polynomial

Ã(ξ) = A(ξ)Q(η) with Q(η) = cos η + sin η k

10



generates the same hodograph: since Q(η)kQ∗(η) = k for all η, we have

Ã(ξ)k Ã∗(ξ) ≡ A(ξ)kA∗(ξ) .

The non–uniqueness of the pre–image polynomial A(ξ) is a property common
to all spatial PH curves [12].

The quaternion representation may be used to construct interpolants with
any desired helical axis a. This is accomplished by mapping the given data
rs, re and ds,de by a rotation that makes a coincide with k. The interpolation
problem is solved for this “canonical” data, and the solution is then mapped
back to the original coordinate system by applying the inverse rotation.

The vector a is mapped on to the vector k by a unit quaternion U through
the expression

U a U∗ = k .

One can verify (see Chapter 5 of [9]) that U is of the form

U =
a + k

|a + k| (cosϕ+ sinϕ a) ,

where the first factor is the unit bisector of a and k, and in the second factor
ϕ is a free parameter (since there are infinitely–many possible rotations of a

onto k). Setting β = cos−1 a ·k, the cases ϕ = ±π correspond to great–circle
rotations — i.e., rotations about axes perpendicular to the plane spanned by
a and k, through angles β or 2π − β. Knowing U for a chosen ϕ value, the
given data re − rs and ds,de are replaced by the canonical–form data

U(re − rs)U∗ , Uds U∗ , Ude U∗

appropriate to a vertical axis. Once the canonical–form interpolant and pre–
image polynomial A(ξ) have been constructed, the solution is mapped back
to the original coordinate system by replacing A(ξ) with U∗A(ξ) in (21).

Lemma 1 Any helical polynomial curve r(ξ) = (x(ξ), y(ξ), z(ξ)) with a climb
angle θ amounts to the lifting (15) of the planar PH curve p(ξ) = (x(ξ), y(ξ))
with arc length function s(ξ).

Proof : Assume, without loss of generality, the use of a coordinate system in
which the z–direction is coincident with the helix axis. The helicity condition
for r(ξ) = (x(ξ), y(ξ), z(ξ)) is then

z′(ξ)
√

x′2(ξ) + y′2(ξ) + z′2(ξ)
≡ cos θ .
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Squaring both sides and re–arranging terms then gives

x′2(ξ) + y′2(ξ) ≡ z′2(ξ) tan2 θ .

Hence, x′2(ξ) + y′2(ξ) is the perfect square of the polynomial ±z′(ξ) tan θ —
i.e., p(ξ) = (x(ξ), y(ξ)) is a planar PH curve.

Remark 2 It is evident from Lemma 1 and expression (24) that every helical
polynomial curve is essentially dependent upon just two linearly–independent
scalar polynomials, rather than the four components of a general quaternion
polynomial A(ξ) = u(ξ)+v(ξ) i+p(ξ) j+q(ξ)k. This property is apparent on
choosing a coordinate system with one axis coincident with the helix axis. It
was shown in [17] that a linear dependence of the coefficients of the quadratic
quaternion polynomial (24), expressed in the form

A1 = c0A0 + c2A2

for real c0, c2 values, is a sufficient condition for the spatial PH quintic defined
by (21) to be helical. Moreover, writing the coefficients in scalar–vector form
as Ar = (ar, ar) with ar = arxi + aryj + arzk for r = 0, 1, 2 allows the helix
axis a and climb angle θ to be identified from

a =
a0a2 − a2a0 + a0 × a2

|a0a2 − a2a0 + a0 × a2|

and

sin θ =
a0a2x − a2a0x − a0ya2z + a0za2y

|a0a2 − a2a0 + a0 × a2|
.

These expressions facilitate the reduction of A(ξ) to a form that is dependent
on only two scalar polynomials.

The form (24) may be used to directly generate helical polynomial curves
with vertical axes and given climb angle θ, and then impose any desired axis
orientation on them by the quaternion rotation scheme described above. For
the interpolation of given G1 end conditions, however, the construction of a
planar PH quintic with the arc length (18) is an essential intermediate step.
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6 Rotation–minimizing adapted frames

An adapted rotation–minimizing frame (RMF) on a space curve consists of
the tangent vector and two normal plane vectors that have no instantaneous
rotation about the tangent. The existence of polynomial curves that possess
rational adapted RMFs has recently attracted much attention [11]. These are
necessarily PH curves (since only the PH curves possess rational tangents)
and in certain low–degree cases are identified by constraints on the coefficients
of the quaternion polynomial A(ξ). The helical curves discussed herein admit
simple closed–form (though non–rational) adapted RMFs. This may be seen
as follows. On any PH curve a rational adapted frame — the Euler–Rodrigues
frame — may be defined [5] through the expressions

(e1(ξ), e2(ξ), e3(ξ)) =
(A(ξ) iA∗(ξ),A(ξ) jA∗(ξ),A(ξ)kA∗(ξ))

|A(ξ)|2 .

Here e3(ξ) is the curve tangent, and e1(ξ), e2(ξ) span the curve normal plane.
The ERF is the preferred point of departure in studying adapted RMFs, since
(unlike the Frenet frame) is non–singular at inflection points. Noting that

f 2 +
1

4f 2
= sec θ and f 2 − 1

4f 2
= tan θ ,

the ERF on the helical polynomial curve specified by (21) and (24) becomes

e1 =
(a2 − b2) sin θ i + 2 ab sin θ j− (a2 + b2) cos θ k

a2 + b2
,

e2 =
− 2 ab i + (a2 − b2) j

a2 + b2
,

e3 =
(a2 − b2) cos θ i + 2 ab cos θ j + (a2 + b2) sin θ k

a2 + b2
,

with the parametric derivatives

e′

1 =
2 sin θ (ab′ − a′b) [− 2ab i + (a2 − b2) j ]

(a2 + b2)2
,

e′

2 = − 2 (ab′ − a′b) [ (a2 − b2) i + 2ab j ]

(a2 + b2)2
,

e′

3 =
2 cos θ (ab′ − a′b) [− 2ab i + (a2 − b2) j ]

(a2 + b2)2
.

13



The ERF angular velocity ω is defined in terms of the frame derivatives

der

ds
=

dξ

ds

der

dξ
=

e′

r

|r′| , r = 1, 2, 3

with respect to arc length s along r(ξ) through the relations

der

ds
= ω × er , r = 1, 2, 3 .

Noting that |r′(ξ)| = σ(ξ) sec θ, where σ(ξ) = a2(ξ) + b2(ξ) is the parametric
speed of the plane curve p(ξ), and writing ω = ω1e1 +ω2e2 +ω3e3, the ERF
has angular velocity components

(ω1, ω2, ω3) =
(e′

2 · e3, e
′

3 · e1, e
′

1 · e2)

σ sec θ
=

2(ab′ − a′b)

(a2 + b2)2
(− cos2 θ, 0, sin θ cos θ) .

Since the plane curve p(ξ) has curvature κ = 2(ab′−a′b)/(a2+b2)2, we obtain
ω = κ cos θ (− cos θ e1+sin θ e3). Thus, the ERF is rotation–minimizing with
respect to e2, but not with respect to the tangent e3 of r(ξ).

However an adapted RMF may be obtained by imposing a continuous
rotation of e1, e2 in the normal plane. Setting f3 = e3 and introducing new
normal–plane vectors f1, f2 defined by

[

f1
f2

]

=

[

cos Φ sin Φ
− sin Φ cos Φ

] [

e1

e2

]

, (32)

where Φ(ξ) is defined (modulo an integration constant) by

Φ(ξ) = − 2 sin θ tan−1
b(ξ)

a(ξ)
. (33)

This induces an angular velocity component in the e3 direction, namely

dΦ

ds
=

Φ′

(a2 + b2) sec θ
= − 2(ab′ − a′b)

(a2 + b2)2
sin θ cos θ ,

that exactly cancels the e3 component of the ERF angular velocity.
The theory of rational adapted RMFs on general spatial PH curves yields

results analogous to (32) and (33), but without the sin θ factor in (33). In the
absence of this factor, the rotation matrix in (32) is rational in ξ, and hence
the RMF (f1, f2, f3) is rational. For the helical curves considered herein, the
sin θ factor in (33) precludes (in general) a rational dependence of f1, f2 on ξ,
but they can nevertheless be efficiently and exactly computed from (32)–(33).
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7 Algorithm and computed examples

The methodology for constructing helical polynomial paths with given climb
angle and initial/final states is now summarized by an algorithm outline, and
some computed examples with vertical axes are presented to illustrate these
paths. The solutions may also be transformed to accommodate any desired
orientation of the helical axis, as described in Section 5.

Algorithm

input: start/end points rs = (xs, ys, zs), re = (xe, ye, ze); motion directions
ds = (cos θ cos φs, cos θ sinφs, sin θ), de = (cos θ cosφe, cos θ sinφe, sin θ) with
θ = climb angle.

1. set ∆z = ze − zs and S = ∆z cot θ;

2. set qs = xs + i ys, qe = xe + i ye and ts = exp(iφs), te = exp(iφe);

3. compute the planar PH quintic p(ξ) that satisfies p(0) = qs, p(1) = qe,
t(0) = ts, t(1) = te with total arc length S, as described in Section 3;

4. compute the control points (5) of p(ξ), and coefficients of its parametric
speed and arc length σ(ξ) and s(ξ) from equations (6) and (7);

5. define the “lifted” helical path r(ξ) in terms of p(ξ) = (x(ξ), y(ξ)) and
s(ξ) by equation (15), and obtain its control points from equation (20);

6. compute the coefficients of the quaternion polynomial (22) defined by
(25) and (31) from the coefficients a0, a1, a2 and b0, b1, b2 of the real and
imaginary parts of the complex pre–image polynomial (2) of p(ξ);

output: helical polynomial curve r(ξ) with constant climb angle θ satisfying
r(0) = rs, r(1) = re and r′(0) = |r′(0)|ds, r′(1) = |r′(1)|de together with its
control points r0, . . . , r5 and pre–image quaternion polynomial A(ξ).

Figure 1 illustrates some example helical paths between given end states
constructed using this algorithm. The case on the left corresponds to climb
angle θ = 1

4
π with an increase in altitude ∆z = 1.12 tan θ between end points

rs = (0.25, 0.25, 0.25) and re = (1.25, 0.25, 0.25 + S tan θ) having associated
motion directions defined by (17) with φs = 1

4
π and φe = 1

3
π. The planar PH

quintic must have arc length S = ∆z cot θ = 1.12, and its construction admits
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two formal solutions, with the absolute rotation indices Rabs = 1.454364 and
5.360182. The solution with the smaller Rabs value is chosen, corresponding
to the complex coefficients

w0 = 1.119619 + 0.463761 i ,

w1 = 0.918068 − 1.084742 i ,

w2 = 1.049507 + 0.605933 i .

From these values, the control points (20) of the “lifted” helical path may be
computed using (5), (6), and (7).

The case on the right has climb angle θ = 1

5
π with altitude increase ∆z =

1.24 tan θ between rs = (0.35, 0.35, 0.35) and re = (1.35, 0.35, 0.35 + S tan θ)
with motion directions specified by φs = −1

2
π and φe = 1

3
π. In this case, the

planar PH quintic must have arc length S = 1.24, and the solution with the
smaller Rabs value is identified by the complex coefficients

w0 = 0.697811 − 0.697811 i ,

w1 = 1.598173 + 0.146914 i ,

w2 = 0.854641 + 0.493427 i .

Knowing the coefficients w0,w1,w2 of the complex polynomial (2) allows its
real and imaginary parts a(ξ) and b(ξ) to be used to construct the quaternion
pre–image polynomial A(ξ) in (21) from expressions (24) and (25).

Figure 2 illustrates a family of helical paths with increasing climb angles
θ = 0.18π, 0.20π, 0.22π, 0.24π between the end points rs = (0.5, 0.5, 0.5) and
re = (1.5, 0.5, 1.7) with the altitude increase ∆z = 1.2 and motion directions
defined by φs = −1

2
π, φe = 1

3
π. It is seen that shallower climb angles result in

longer overall path lengths, to ensure satisfaction of the desired climb angle
θ — the arc lengths of the planar PH quintics corresponding to the chosen θ
values, as defined by (18), are S = 1.8909, 1.6517, 1.4506, 1.2779.

Also shown in Figure 2 are a family of helical paths with the same climb
angle θ = 0.20π between the points rs = (0.5, 0.5, 0.5) and re = (1.5, 0.5, 1.7)
that have the same final motion direction φe = 1

3
π, but different initial motion

directions: φs = −0.88π,−0.80π,−0.72π,−0.64π,−0.56π,−0.48π.

8 Closure

A method has been proposed for the construction of polynomial curves with
prescribed initial and final positions and directions, that describe constant
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Figure 1: Helical polynomial paths (blue curves) with specified climb angles θ
and initial/final positions and directions, generated by the “lifting” of planar
PH quintics (red curves) with exactly defined arc lengths and end conditions.

Figure 2: Left: a family of helical paths (blue curves) between specified end
points with increasing climb angles, constructed by the “lifting” of planar PH
quintics (red curves). Right: helical paths between specified end points with
the same climb angles and final directions, but different initial directions.
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climb rate paths at a fixed speed for unmanned aerial vehicles. The method
relies on the fact that polynomial helical curves are necessarily PH curves,
and that the given data may be interpolated by “lifting” a planar PH curve
constructed under specific end conditions so as to possess an exact prescribed
arc length. The algorithm is simple, efficient, and robust in implementation,
and eliminates the need to appeal to numerical approximations.

For compatibility with established spatial PH curve data structures, the
quaternion pre–image polynomials of the constructed helical curves are also
determined. These allow “canonical” helical interpolants, constructed with a
vertical axis, to be transformed so as to accommodate any desired orientation
of the axis. The quaternion form also facilitates the identification of closed–
form rotation–minimizing adapted frames along the helical paths.

There are several possible directions in which the present algorithm can be
extended. For example, instead of prescribing just end points and directions,
one may stipulate a sequence of n “waypoints” r1, . . . , rn that the path should
pass through, with associated directions d1, . . . ,dn. Applying the algorithm
to consecutive pairs rk,dk and rk+1,dk+1 one obtains a G1 “helical spline”
matching the given data. The method may also be adapted to admit different
climb angles and helix axis orientations on individual spline segments, or to
achieve greater continuity between spline segments (contingent on the ability
to interpolate higher–order geometrical Hermite end–point data using planar
PH curves with prescribed arc lengths).
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