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Abstract

In this paper, Hermite interpolation by parametric spline surfaces on triangu-
lations is considered. The splines interpolate points, the corresponding tangent
planes and normal curvature forms at domain vertices and approximate tangent
planes at midpoints of domain edges. Two variations of the scheme are studied:
C1 quintic and G1 octic. The latter is of higher polynomial degree but can approx-
imate surfaces of arbitrary topology. The construction of the approximant is local
and fast. Some numerical examples of surface approximation are presented.

1 Introduction

In Computer-Aided Geometric Design, one of the fundamental problems is to construct a para-
metric spline surface that interpolates prescribed spatial data. The data are usually geometric:
points, tangent planes, curvature forms, etc. When considering Lagrange geometric interpola-
tion problem, not much is known on existence or construction of interpolation surfaces [15].

A standard approach is to impose G1 smoothness conditions between adjacent triangular
patches (see [7, 23, 10, 8] and references therein). Most interpolating schemes of this type
are local and can form surfaces of arbitrary topology. One of the main concerns in spline
surface construction is how to satisfy nonlinear geometric continuity conditions. The complexity
of the problem increases at interior vertices where the smoothness conditions interlace (the
vertex enclosure/the twist compatibility problem). Algorithms usually consist of two steps:
construction of a wireframe of interpolation boundary curves and computation of interior control
points of the patches [7, 10, 24, 13]. The schemes are generally fairly complex, usually involving
additional subdivision processes (each macro patch consists of a few micro patches), degree
raising or blending techniques. In [18], it was pointed out that many algorithms produce surfaces
with unpleasing shapes, e.g., with poor curvature distribution or shape defects. Undesirable
shapes are often a result of inappropriate boundary curves of the patches.

One of the most well known and relatively simple G1 interpolation schemes on triangular
patches was introduced by Shirman and Séquin [21, 22] and follows a similar procedure as the
one introduced by Farin [7]. The method interpolates points and tangent planes at the vertices,
and consists of quartic patches on Clough–Tocher split. A method by Hahmann and Bonneau
solves the vertex enclosure problem by introducing the so-called 4-split [10]. Although the
construction is focused on obtaining good approximation surface, it is not clear how to properly
set shape parameters and the number of control points is relatively big considering that the
scheme interpolates only points at triangle vertices. In [23], the authors Tong and Kim consider
interpolation of points, tangent planes and normal curvatures. However, they presume that the
approximated surface is given in the implicit form and so additional approximation points are
extracted and used in a least squares data fitting.

An alternative to geometric continuity is to construct splines satisfying stricter Cr continuity
conditions [9, 8, 25, 2]. The advantage of this approach is that the smoothness conditions are
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linear and they imply a simple geometric construction of control points. The main drawbacks
are that the schemes cannot approximate a surface of arbitrary topology [11] and that for the
most interesting low degrees the dimension of the spline space is still unknown [17, 12].

Macro-elements are a special type of Cr smooth interpolation splines, defined on triangulated
domains [17, 16, 1, 5]. Their structure overcomes the problems with the spline space dimension.
Furthermore, the shape of the spline depends only on local data. The approximants are obtained
in a closed form and have the optimal approximation order.

In this paper, we present an interpolation scheme for parametric surfaces that is based on the
C1 polynomial macro-element, known as (quintic) Argyris element [4, 26, 19, 17]. Two variants
of the scheme are derived: C1 quintic and G1 octic scheme. The approximants interpolate
given geometric data: points, tangent planes and normal curvature forms. The interpolation
conditions do not fully determine the shape of the spline. Thus an approach for computing
appropriate free shape parameters is introduced.

As a first step of the scheme, a referential linear interpolating surface is constructed. To
improve the quality of the surface, one step of the improved Butterfly scheme that can handle
arbitrary topology is applied on the control points of the linear spline [27, 6].

In order to satisfy interpolation conditions, referential control points are projected onto the
corresponding tangent planes. To overcome the twist compatibility problem when enforcing
smoothness conditions between the patches, C2 smoothness conditions are imposed at every
patch vertex. Corrections of the control points are computed as the solution of a small least
squares minimization problem that enforces C2 smoothness.

The construction of the interpolants is local. The wireframe of boundary curves is con-
structed using referential control points that better represent the basic shape characteristics
of the resulting surface. Higher polynomial degrees are needed to satisfy the smoothness con-
ditions. The parametric scheme requires degree 8 to enforce G1 cross-boundary smoothness.
The polynomial degree can be reduced to 7 (or lower) if certain geometric conditions on the
interpolation data are satisfied.

The paper is organized as follows. In Section 2, basic notation is introduced. Cr continuity
conditions across a common edge of adjacent patches and at a vertex are recalled in Section 3. In
Section 4, G1 smoothness conditions across edges are examined in detail. Geometric conditions
for reducing the polynomial degree 8 are derived. Construction of control points imposed by
three types of interpolation conditions is analyzed in Section 5. The construction is split into:
interpolation of tangent planes at the vertices, interpolation of normal curvature forms at the
vertices and approximation of tangent planes at edge midpoints. In Section 6, some numerical
examples of surface approximation are presented. At the end, main conclusions are emphasized.

2 Notation

Let 4 be a triangulation of a given domain Ω ⊂ R2. Every edge e and triangle τ of 4 is
described as a list of vertices v: e = (v0, v1) and τ = (v0, v1, v2), respectively. Let the set of all
vertices be denoted by V. In our G1 approximation scheme we will construct only local domain
triangulations around interpolation points in order to apply C2 smoothness conditions at the
vertices.

Let τ ∈ 4 be a non-degenerate triangle. Every point v ∈ R2 can be written in barycentric
coordinates with respect to τ as v := v(τ) := (α, β, γ), α + β + γ = 1. The Bernstein basis
polynomials of total degree d are defined as

Bd
i (v) := Bd

ijk(α, β, γ) :=
d!

i!j!k!
αiβjγk, |i| = d.
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A parametric polynomial p of total degree d can be represented in the Bézier form

p =
∑
|i|=d

ciB
d
i ,

where ci = cijk ∈ R3 are its control points.
Disk D`(v), ` ≥ 0, is a set of control points of a spline that are at most ` indices away from

the origin v ∈ V (see Fig. 1). Ring is defined as R`(v) := D`(v)\D`−1(v) for ` ≥ 1. We will
always presume C0 continuity.

For a vector of scalars a = (a`)
r
`=1 and a vector b = (b`)

r
`=1, consisting of scalars or points,

we define a scalar product as

〈a, b〉 :=

r∑
`=1

a` b`.

Before constructing our spline interpolant, a referential spline surface that interpolates given
data points is constructed. In our scheme we presume that a spatial triangulation (i.e., a linear
spline interpolant) passing through the interpolation points is already given. After that, one
step of the modified Butterfly scheme is applied on control points of the linear spline [27].
That way we obtain a better starting approximation surface that combines data also from the
neighbouring patches. The symbol •./ will be used to indicate different objects (patches, control
points, sets) that correspond to the referential interpolant. Polynomial degree of the obtained
quadratic patches needs to be raised to 5 for the C1 and to 8 for the G1 scheme.

P
D1(v)

D2(v)

Figure 1: Set D0(v) = {P } consists of the control point in the center v. Sets D1(v) and
D2(v) are represented with black dots in red and red+blue area, respectively.

3 Cr smooth splines

A spline s consists of patches p[τ ], s|τ =: p[τ ] =
∑

c
[τ ]
i Bd

i , for τ ∈ 4. Let e1, e2, e3 be
(1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. The intermediate de Casteljau points for parameter
v = (α, β, γ) are defined as

c
(k)
i := c

(k)
i (v) :=

〈
v,
(
c

(k−1)
i+e1

, c
(k−1)
i+e2

, c
(k−1)
i+e3

)〉
, |i| = d− k,

and c
(0)
i := ci.

The following two well known theorems state the Cr continuity conditions across an adjoin-
ing edge and at a vertex [17, 8].
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Theorem 1. Let p[τ1] and p[τ2] be adjacent patches, defined on triangle τ1 = (v0, v1, v2) and
τ2 = (v0, v2, v3), respectively (see Fig. 2(a)). For 0 ≤ r ≤ d, the patches join with Cr continuity
across the edge e = (v0, v2) if

c
[τ2]
ijk =

(
c

[τ1]
i0j

)(k)
(v3(τ1)), k ≤ r, |i| = d.

v0 v1

v2v3

e
τ1

τ2

(a) Two adjacent triangles

v0 v1

τ1

v2

τ2

v3

τ3

vn

τn

(b) Domain cell with center v0

Figure 2: Two sets of adjacent triangles relevant for smoothness conditions.

Theorem 2. Let 4 be a triangulation with triangles {τ` = (v0, v`, v`+1)}n`=1 (Fig. 2(b)). If v0

is interior vertex, vn+1 ≡ v1. For 0 ≤ r ≤ d, the patches p[τ`] join with Cr continuity at the
vertex v0 if

c
[τ`+1]
ijk =

(
c

[τ`]
i0j

)(k)
(v`+2(τ`)), j + k ≤ r, |i| = d, 1 ≤ ` ≤ n− 1.

We call a set of triangles in Fig. 2(b) a domain cell.

4 G1 geometric smoothness

To construct G1 octic interpolant, first we need to analyze geometric smoothness conditions
across common boundary curves of the adjacent patches. Let τ1 and τ2 be adjacent triangles
as in Fig. 2(a) and let v(t) = (1 − t) v0 + t v2 for t ∈ [0, 1]. Let b(t) := Dv2−v0p

[τ1](v(t)) be
a directional derivative of p[τ1] along the common boundary curve and let v be an unknown
transversal vector function. The patches p[τ1] and p[τ2] join with G1 geometric continuity if
there exist connecting functions λ, µ, ν, ξ and v such that

Dv3−v0p
[τ2](v) = λ(t)b(t) + µ(t)v(t),

t ∈ [0, 1]. (1)
Dv1−v0p

[τ1](v) = ν(t)b(t) + ξ(t)v(t),

The transversal vector function v and the boundary vector function b span the tangent plane
of p[τ1] and p[τ2] at vertex v. In practice, the connecting functions and v are (parametric)
polynomials of prescribed degree. If all of the connecting functions λ, µ, ν, ξ are constant we
obtain C1 smoothness conditions.

Let the connecting functions be of degree r. The functions can be expressed in Bézier form
using univariate Bernstein polynomials Br

m:

λ =:

r∑
m=0

λmB
r
m, µ =:

r∑
m=0

µmB
r
m, ν =:

r∑
m=0

νmB
r
m, ξ =:

r∑
m=0

ξmB
r
m.

4



Similarly, let us express the parametric polynomials:

Dv3−v0p
[τ2] =:

d−1∑
`=0

d`B
d−1
` =

d−1+r∑
`=0

d′`B
d−1+r
` , b =:

d−1∑
`=0

b`B
d−1
` ,

Dv1−v0p
[τ1] =:

d−1∑
`=0

e`B
d−1
` =

d−1+r∑
`=0

e′`B
d−1+r
` , v =:

d−1∑
`=0

v`B
d−1
` .

The control points d′`, e
′
` are obtained from d`, e` after raising the polynomial degree r times.

An example of vectors d`, e`, b`,v`,d
′
`, e
′
` for d = 5 and r = 3 is depicted in Fig. 3.

b0 b1 b2 b3 b4

d0 d1 d2 d3 d4

e0 e1 e2 e3 e4

v0 v1
v2

v3
v4

d′0 d′1 d′2 d′3 d′4 d′5 d′6 d′7

e′0 e′1 e′2 e′3 e′4 e′5 e′6 e′7

Figure 3: Vectors d`, e`, b`,v`,d
′
`, e
′
` for two adjoining patches.

By comparing the coefficients on both sides of the system (1) we obtain the following d+ r
vector equations:

d′` =

r∑
m=0

(
d−1
`−m

)(
r
m

)(
d−1+r

`

) (λmb`−m + µmv`−m) , (2)

` = 0, 1, . . . , d− 1 + r.

e′` =
r∑

m=0

(
d−1
`−m

)(
r
m

)(
d−1+r

`

) (νmb`−m + ξmv`−m) , (3)

To reduce the number of different cases we would need to examine, we presume a common
geometrical situation that the vectors e` × b` and b` × d` point in the same direction:

1

‖e` × b`‖
e` × b` =

1

‖b` × d`‖
b` × d`, ` = 0, d− 1. (4)

To maintain orientation of the surface, the conditions µ > 0 and ξ < 0 must be fulfilled.

4.1 Conditions on the connecting functions

From now on let us consider only the case d = 5. Let us also presume that sets of control points
D2(v0) and D2(v2) satisfy C2 conditions (Thm. 2). Therefore, control points d′`, e

′
` in (2) and

(3) are fixed for ` = 0, 1, 3 + r, 4 + r. All of the control points b` are also fixed. Let us show
that in order to solve (2) and (3) it is sufficient that λ, µ, ν, ξ are cubic polynomials, i.e., r = 3.
Hence the polynomial degree of the quintic patches is raised to 8.

Theorem 3. Let r = 3 and points in D2(v0) and D2(v2) be fixed and satisfy C2(v0) and C2(v2)
smoothnesses. For λm ∈ R, µm > 0, m = 0, 1, 2, 3, and v2 ∈ R3 there exist unique ν, ξ and v

5



that satisfy conditions (2) and (3). Control coefficients of the functions ξ and ν are

ξ0 = f0 µ0, ν0 = f0 λ0 + g0,

ξ1 = f0 µ1, ν1 = f0 λ1 + g0,
(5)

ξ2 = f4 µ2, ν2 = f4 λ2 + g4,

ξ3 = f4 µ3, ν3 = f4 λ3 + g4,

with the following parameters

f0 :=
〈b0 × d0, b0 × e0〉
‖b0 × d0‖2

, g0 := −5

8

〈b0 × d0,d0 × e0〉
‖b0 × d0‖2

,

(6)

f4 :=
〈b4 × d4, b4 × e4〉
‖b4 × d4‖2

, g4 := −5

8

〈b4 × d4,d4 × e4〉
‖b4 × d4‖2

.

To ensure that the patches lie on the correct side of the half-space, extra conditions µ > 0,
ξ < 0 must hold true. The next proposition simplifies the verification of these conditions.

Proposition 4. µ` > 0 if and only if ξ` < 0, ` = 0, 1, 2, 3.

Proposition 4 simplifies the conditions on v since it is enough to check the sign of only one
out of the two connecting functions µ, ξ. For example, a simple heuristic way to set the vectors
v`:

v` := d` − e`, ` = 0, 1, 3, 4, (7)

satisfies conditions (2) and (3). For this case, the conditions on connecting functions simplify
considerably and the following relations are obtained

λ0 = λ1, λ2 = λ3, µ0 = µ1, µ2 = µ3, ν0 = ν1, ν2 = ν3, ξ0 = ξ1, ξ2 = ξ3.

The remaining vector v2 does not affect the smoothness conditions and remains as an additional
parameter. It can be used as a shape parameter or to approximate additional data at the interior
of the edge. Details of how to set v2 so that the patches approximate tangent planes at the
middle of the edges are explained in Section 5.3.

4.2 Reducing the degree of the connecting functions

Till now the considered connecting functions λ, µ, ν, ξ were cubic polynomials. A natural ques-
tion arises: Can we reduce the polynomial degree, since we had several free parameters in the
cubic case? The answer is in the affirmative and the functions can be quadratic under certain
geometric conditions. This implies that we can employ patches of degree 7 rather than 8 while
preserving the same boundary curves and the amount of approximation data.

If f0 6= f4, the following family of solutions exists:

µ1 =
1

3
µ0, µ2 =

1

3
µ3, λ1 =

1

3
λ0 −

2(g0 − g4)

3(f0 − f4)
, λ2 =

1

3
λ3 −

2(g0 − g4)

3(f0 − f4)
.

When f0 = f4 a solution exists only if g0 = g4:

µ0 − 3µ1 + 3µ2 − µ3 = 0, λ0 − 3λ1 + 3λ2 − λ3 = 0. (8)

If f0 = f4 and g0 6= g4 both functions λ, ν can not be simultaneously quadratic. When |g0 −
g4|/|f0 − f4| � 1 it is better to avoid using the solution since big oscillations of the connecting
functions can lead to undesired shape defects of the patches.

Geometrically, the conditions f0 = f4, g0 = g4 hold true if there exists an underlying domain
triangulation. In this case constant connecting functions satisfy conditions (8) and we get C1

smoothness conditions.
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5 Interpolation conditions and minimizing rings

In this section we focus on the construction of control points of the sought interpolant, separated
into three subproblems:
• interpolation of tangent planes at vertices (Section 5.1),
• interpolation of normal curvature forms at vertices (Section 5.2),
• approximation of tangent planes at edge midpoints (Section 5.3).

Control points influenced by the interpolation conditions are depicted in Fig. 4. Algorithms in
Sections 5.1 and 5.2 determine boundary control points of the patches and control points near
the triangle vertices (control points in red area in Fig. 4). In Section 5.3 it is explained how to
set the remaining control points that influence C1/G1 contacts between patches (control points
in blue area in Fig. 4).

(a) C1 quintic patch (b) G1 octic patch

Figure 4: Control points determined by the interpolation conditions for two different types
of patches are depicted with black dots. Control points determined from procedures in
Section 5.1 and Section 5.2 lie in red area, the ones determined in Section 5.3 lie in blue
area.

Since the geometric interpolation conditions would not set the control points ci uniquely,
we use the remaining degrees of freedom to obtain well distributed control points by employing
control points c./i of the referential spline approximant.

In all three cases control points c./i will be projected onto tangent planes. To achieve
C1 smoothness at the vertices, a correction of points will be computed (Section 5.1). The
correction will only be needed in the case of C1 quintic patches since in G1 octic case the
smoothness conditions are not directly connected to the underlying triangulation. To achieve C2

smoothness conditions at the vertices, a similar correction of points will be applied (Section 5.2).
In this case the correction will also be enforced for the G1 approximant (the projected points
in Section 5.1 define a local triangulation that needs to be put into consideration when dealing
with C2 conditions).

5.1 Tangent plane interpolation and minimizing ring of R1(v)

At every patch vertex v we would like to interpolate a prescribed point P and the associated
tangent plane Π, defined by the point P and a normal vector n. To satisfy the first condition
we set D0(v) = {P }. To interpolate the plane Π, the constraints

〈ci − P ,n〉 = 0, ci ∈ R1(v), (9)
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must be satisfied. The points in D1(v) are connected by smoothness conditions (see Thm. 2).
Hence if we assign positions of the two control points in R1(v) for one patch, then the remaining
ones in R1(v) are uniquely determined by the C1 continuity conditions. Therefore, the above
restrictions give a 4-parametric family of control points.

Since the interpolation conditions are not sufficient to uniquely determine the set D1(v), the
remaining degrees of freedom will be used so that the points D1(v) will be close to projected
points, obtained from the referential points D./1 (v).

Presume that points in the setsR1(v) andR./1 (v) are denoted by c` and c./` for ` = 1, 2, . . . , n,
respectively. Let the elements in both sets have the same ordering that corresponds to ordering
of vertices around the central vertex in the domain cell (see Fig. 2(b) and Fig. 5). Furthermore,

c./1

c./2

c./3

c./4

c./5

P

n

Π

Figure 5: Control points in R./
1 (v). Red arrows indicate orthogonal projections of the

points onto the plane Π.

let us presume geometric restrictions

(c./` − P ) ∦ n, ` = 1, 2, . . . , n. (10)

The points {c./` } are projected onto Π in the direction n – they will be denoted by
{
c

(p)
`

}
.

If we would set c` := c
(p)
` , ` = 1, 2, . . . , n, the spline s would interpolate the plane Π

but would not be C1 smooth in the neighbourhood of the point P . Therefore, let us find an
admissible set of control points c` with respect to the smoothness conditions that is relatively

close to the projected points c
(p)
` . We would like to solve the least squares minimization problem

min
{c1, c2}

ϕ((c`)
n
`=1), (11)

where the functional ϕ measures relative distances between the two sets of points,

ϕ((c`)
n
`=1) :=

n∑
`=1

∥∥∥c` − c
(p)
`

∥∥∥2

∥∥∥c(p)
` − P

∥∥∥2 . (12)

Note that by Thm. 2 the control points c` are connected by C1 smoothness conditions at the
vertex,

c` = 〈v`(τ`−2), (P , c`−2, c`−1)〉 , ` ≥ 3. (13)

Here v` is the vertex that corresponds to the point c` and τ` the triangle that corresponds to
the points c`, c`+1. The problem (11) can be written as a normal equation and it has a unique

8



P

c1

c2

cn

c
(p)
1

c
(p)
2

c
(p)
nΠ

Figure 6: Points c` of the minimizing ring are determined in such a way that they are as
close to points c

(p)
` as possible, i.e., they minimize the functional ϕ in (12).

solution. We call the optimal set of points R1(v) a minimizing ring. An example is shown in
Fig. 6.

The control points of the minimizing ring satisfy the tangent plane conditions (9).

Proposition 5. Let M := {c`}n`=1 be the minimizing ring of R1(v). Then the points of M lie
on the plane Π.

If no underlying domain triangulation is given when constructing the G1 smooth approxi-

mant the procedure to correct the positions of control points c
(p)
` by computing the minimizing

ring is omitted. The points c
(p)
` themselves define a local domain triangulation which will be

used in Section 5.2.

5.2 Normal curvature interpolation and minimizing ring ofR2(v)

In this subsection we presume that the set of points D1(v), v ∈ V, is already fixed (e.g., it is
determined by the procedure in Section 5.1) so that the spline s interpolates a point P and
a tangent plane, defined by a normal n, at v. The remaining points in D2(v) will be used to
interpolate a given normal curvature form at v. The form is described by a set

{u∗1,u∗2, κ1, κ2}, (14)

where u∗` and κ` are the principal directions and the corresponding normal curvatures of a
surface at v. A well known property from differential geometry states that the normal curvature
κn(u) of the spline s in direction u, ‖u‖ = 1, is

κn(u) = κ1〈u,u∗1〉2 + κ2〈u,u∗2〉2.

The presumption s ∈ C2(v) ensures the consistency of the curvature form of the neighbouring
patches. Before dealing with the construction of control points, we need the following lemma
that states the connection between the normal curvatures and the control points.

The points in R2(v) are connected by C2 smoothness conditions (see Thm. 2). Note that
D1(v) defines a local domain triangulation needed for C2 conditions if no underlying domain
triangulation is given. If we fix the three control points of one of the surrounding patches in
R2(v), then the rest in R2(v) are uniquely determined by C2 continuity constraints. The above
conditions define a 6-parametric family of control points (3 out of 9 degrees of freedom are
determined from the normal curvature form).

9



The remaining 6 parameters will be obtained from the minimizing ring. Let us presume
that the control points R1(v) =: {c`}n`=1 of s are ordered as in Section 5.1. Let points in

R2(v) =: {c`}n+n′

`=n+1 and R./2 (v) =: {c./` }
n+n′

`=n+1 be indexed with the same ordering as R1(v) (see
Fig. 7). Here, n′ = 2n if v is interior and n′ = 2n− 1, otherwise.

P c1= cη(n+1)

c2 = cη(n+3)

cn

cn+1

cn+2

cn+3

cn+n′

Figure 7: Points in R1(v) and R2(v) are indexed with the same ordering.

The points c./` are projected in the direction of n,

c
(p)
` := c./` − (〈c./` − P ,n〉 − k`)n, ` = n+ 1, n+ 2, . . . , n+ n′, (15)

where

k` :=



d

d− 1

∥∥cη(`) − P
∥∥2
κn(u`), if `− n is odd,

2d

d− 1

∥∥∥∥1

2
(cη(`−1) + cη(`+1))− P

∥∥∥∥2

κn(u`)

−1

2

〈
c

(p)
`−1 − cη(`−1) + c

(p)
`+1 − cη(`+1),n

〉
, if `− n is even,

(16)

and

cη(`) := c(`−n+1)/2, u` :=
1

‖cη(`) − P ‖
(cη(`) − P ).

In (15) we first need to compute the points c
(p)
` where `− n is odd.

Setting c` := c
(p)
` , ` = n + 1, n + 2, . . . , n + n′, would result in a spline s that interpolates

the normal curvature form at v but is not C2 smooth at v. Therefore, we need to find a set of

points that satisfies the smoothness constraints and is close to the points c
(p)
` . Hence, we use

the functional ϕ, introduced in (12), and solve the minimization problem

min
{cn+1, cn+2, cn+3}

ϕ
(

(c`)
n+n′

`=n+1

)
. (17)

The control points c`, ` > n + 3, are uniquely set from cn+1, cn+2, cn+3 by the corresponding
C2 smoothness conditions at v (see Thm. 2).

As in the tangent plane interpolation problem, we are left to verify that the control points
in the minimizing ring satisfy the normal curvature interpolation conditions. Let Π` denote

a plane defined by a point c
(p)
` and the normal vector n. Then the curvature constraints are

transformed to

c` ∈ Π`, ` = n+ 1, n+ 2, . . . , n+ n′. (18)

10



Lemma 6. Let points in the set D2(v) satisfy C2 smoothness conditions at v. If there exists
k ∈ 2(N ∪ {0}) such that c` ∈ Π` for ` = n+ k + 1, n+ k + 2, n+ k + 3 (i.e., a triple of points
c` that correspond to the same patch), then (18) holds true.

Proposition 7. Let M := {c`}n+n′

`=n+1 be the minimizing ring for (17). Then the points of M
satisfy conditions (18).

5.3 Tangent plane approximation at midpoint of an edge

In the last part of the section we will analyze the problem on how to determine the remaining
control point v2 of the transversal vector function v in order to approximate a given tangent
plane.

Let us presume that steps in Sections 5.1 and 5.2 are already applied and that control points
v`, ` = 0, 1, 3, 4, are appropriately chosen (see Fig. 3).

Let nΠ denote the normal vector of the plane Π that we would like to approximate at the
edge midpoint p[τ2](v0/2 + v2/2). Since the tangent vector b(1/2) already fixes one direction of
the tangent plane of patches at the boundary, we can only approximate Π. To obtain the best
approximating tangent plane of Π (denoted by Π?), the tangent plane normal n of the patch
should be set in such a way that ‖n−nΠ‖ is minimal. Thus, n is set as orthogonal projection of
nΠ onto plane defined by the point p[τ2](v2/2 + v0/2) and the normal in the direction of b(1/2).

Let us decompose v and its control points into two parts v =: v(n) + v(Π?), the first part is
a component in the direction of the normal n, the other components is orthogonal to n. The
interpolation of the tangent plane Π? thus reads 〈v(1/2),n〉 = 0, hence

v
(n)
2 = 〈v2,n〉 = −

〈 ∑
`=0,1,3,4

v`
B4
` (1/2)

B4
2(1/2)

,n

〉
= −

∑
`=0,1,3,4

v
(n)
`

B4
` (1/2)

B4
2(1/2)

. (19)

Components of v orthogonal to n do not influence the interpolation conditions. We set v
(Π?)
2

so that v(Π?) is a cubic polynomial:

v
(Π?)
2 =

1

6

(
−v(Π?)

0 + 4v
(Π?)
1 + 4v

(Π?)
3 − v

(Π?)
4

)
. (20)

Once the vector function v is fixed the remaining control points that influence C1/G1 con-
ditions (control points in the blue region in Fig. 4) are determined via computing vectors d′`, e

′
`

from (2) and (3).

6 Numerical examples

Let us conclude the paper by some numerical examples. Our C1 quintic and G1 octic schemes
are tested by approximating a torus and a more general free-form surface. The results are
compared against three G1 interpolation schemes. The first one is a scheme by Shirman and
Séquin (SS), a quartic 3-splitting scheme, which interpolates points and the corresponding
tangent planes at the vertices [21, 22]. The scheme by Hahmann and Bonneau (HB) is a
quintic 4-splitting method, which interpolates points at the vertices [10]. In our tests we use
shape parameters that were also used by the authors and seem to produce the best results:
α = 1, β = 0.1, γ0 = −3.7, γ1 = 4.6, γ2 = 0.1. The third method is by Tong and Kim (TK)
[23]. The patches of degree 7 interpolate points, tangent planes and normal curvatures at the
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vertices. The remaining degrees of freedom are used to minimize a particular energy functional
and the distance to the original surface by applying subsequent data fitting procedures. A basic
quantitative comparison between the methods is presented in Tab. 1.

C1 quintic G1 octic SS HB TK

Polynomial degree 5 8 4 5 7

Micro patches 1 1 3 4 1

Control points 21 45 45 84 36

Approximation data 27 27 15 9 81

Table 1: Basic comparison of G1 approximation splines. Number of micro patches, control
points and scalar approximation data are counted on a macro patch.

In the third numerical example, our scheme is tested against the standard functional Argyris
element by approximating a nonparametric surface. Short numerical test of the approximation
order is done at the end of the paper.

In all the examples, we fix the transversal vector v in our interpolation schemes to satisfy
conditions (7). The remaining six interior control points Ci := {cijk : i, j, k ≥ 2} on every
G1 octic spline patch (see unmarked control points in Fig. 4(b)) are determined by applying
a linear combination of all the other control points Cb := {ci : |i| = 8}\Ci on the same patch.
More precisely, control points Ci are defined in such a way that control points {ci : |i| = 8}
represent a quintic patch if the other control points Cb are also obtained from that same patch.
An alternative that is not explored in this paper would be to use the remaining six points to
minimize particular energy functionals (see [3], e.g.) or to interpolate additional points in the
interior - such interpolation problems are unisolvent [14, 17].

6.1 Torus approximation

In the first example we approximate a torus with a major radius R = 2 and a minor radius
r = 1. By identifying boundary vertices and edges of the domain triangulation, we construct a
triangulation suitable for approximating a torus with C1 smooth splines (Fig. 8).

1 2 3 4 5 1

1 2 3 4 5 1

6

7

8

6

7

8

Figure 8: Domain triangulation for the torus, where vertices with the same indices and
the corresponding edges are identified.

The torus is approximated by the introduced C1 quintic and G1 octic splines (see Fig. 9).
Referential surface – an intermediate step to construct the interpolation surface – is also de-
picted. To test the quality of the approximants, a comparison is made with SS, HB and TK
scheme. All the interpolants approximate torus better at the right-hand side segments since
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the interpolation data are denser in that area. Both of our approximants have smaller Haus-
dorff errors than the other three schemes. This can be partially justified by the fact that our
approximants interpolate more data than SS and HB scheme. Furthermore the surface curva-
ture is apparently better distributed along the spline patches. For smaller patches TK scheme
produces a surface with small Hausdorff error. Undesired intersections of boundary curves can
be observed on the top part of the surface. We have also noticed that the method is sensitive
to the input data and to the parameters used in the minimizing processes of the algorithm.
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(a) Referential surface
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(b) C1 quintic approximant, EH : 0.13
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(c) G1 octic approximant, EH : 0.13
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(d) SS approximant, EH : 0.45

-2

0

2

x

-2

0

2

y

-1.0
-0.5

0.0

0.5

1.0

z

(e) HB approximant, EH : 0.59
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(f) TK approximant, EH : 0.26

Figure 9: Approximation of the torus by different interpolation schemes. Hausdorff errors
(EH) are shown next to the plots.

6.2 Free-form surface approximation

In the next example, we approximate an open free-form surface defined by a vector function f ,

f : [−3, 3]2 → R3, f(u, v) :=

(
u+

v2

12
, v − cos(u),

1

3
u2 + sin(v)

)
.
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Again, we approximate the surface by different interpolation schemes. Plots are shown in
Fig. 10. As in the first test, our two schemes give smaller Hausdorff distance error than SS and
HB methods. The referential surface gives a very accurate estimate of the final shape of our
two interpolants. To construct an open surface HB approximant, the spline is constructed on a
bigger domain and only relevant patches of the surface are presented.
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(a) Surface defined by f
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(c) C1 quintic scheme, EH : 0.051
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(d) G1 octic scheme, EH : 0.050
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(e) SS scheme, EH : 0.14
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(f) HB scheme, EH : 0.36

Figure 10: Approximation of parametric function f by different interpolation schemes.
Hausdorff errors (EH) are shown next to the plots.

6.3 Approximation of a scalar function

In the following example our scheme is compared against functional Argyris interpolant. We
approximate a function f ,

f : [−2, 2]2 → R, f(u, v) := 1/2 sin(u v).

The resulting interpolants are visually almost indistinguishable (Fig. 11). Better accuracy of
the Argyris element is expected since it interpolates a much larger set of scalar data that are
related to the parameterization, whereas the C1 quintic element interpolates only geometric
data.

6.4 Numerical test of the approximation order

Since not all of the control points in our scheme are used for approximation, we cannot expect
the optimal convergence rate in the general case. The scheme reproduces linear functions, hence
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(a) Surface defined by f
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(b) C1 quintic approximant,
Emax : 0.060
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(c) Argyris approximant,
Emax : 0.015

Figure 11: Approximation of function f by the parametric C1 quintic scheme and the
functional Argyris interpolant. Maximal z-errors (Emax) are shown next to the plots.

the approximation order is at least 2. On each patch 27 scalar data are used for approximation,
a number which is close to 30 scalar degrees of freedom of a cubic parametric patch. Therefore,
we can speculate that our scheme will approximate well cubic patches and the order of approx-
imation should be 4 in the majority of cases. This observation is confirmed with two numerical
tests. In the first one we approximate a unit sphere and in the second function f = 1/2 sin(u v)
from the previous example. For the unit sphere case we compare the radial distance error and
in the latter case the Hausdorff distance error against the size of triangles in a triangulation.
Convergence plots are depicted in Fig. 12.
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(a) Convergence: sphere approximation
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Figure 12: Convergence plots: error versus the size of triangles (h) in triangulation.

7 Conclusions

In the paper we present a novel Hermite parametric interpolation scheme on triangulations. To
construct the interpolant, small local systems of equations need to be solved. Two variants of the
scheme are derived: C1 quintic and G1 octic. The first has fewer degrees of freedom but needs
an explicitly given underlying domain triangulation. The second is of higher polynomial degree
but can approximate surfaces of arbitrary topology. The scheme focuses on the geometrical
construction of good boundary curves - an important feature to obtain a good approximation
surface. C2 smoothness conditions are imposed at the triangle vertices to overcome the twist
compatibility problem.

15



Numerical examples show that our schemes produce approximants with small distance er-
rors and visually satisfying shapes, even when a small number of patches is used. On a denser
grid of interpolation data, the parametric patches visually resemble the functional patches of
Argyris elements.

Shape parameters of the interpolant are defined from a referential surface that is based on
one step of the Butterfly subdivision scheme. The referential surface gives a basic outline of
control points in the space. In the future, the shape parameters could be additionally optimized
by applying some energy minimization technique. In that case, control points obtained from
the referential surface can be treated as a good starting set of parameters for the optimization
procedure. Proper exploitation of the additional six interior control points in G1 octic patches
remains an open problem for future work. Combining both scheme variations would results
in an adaptive and robust scheme with small number of degrees of freedom. For example,
G1 continuity could be applied only around extraordinary vertices. Another interesting but
challenging problem would be to modify parts of the scheme to get the optimal (or near optimal)
convergence order while maintaining robustness and desired geometric properties of the scheme.

References

[1] P. Alfeld, L. L. Schumaker, Smooth macro-elements based on Powell-Sabin triangle splits,
Adv. Comp. Math. 16 (1) (2002) 29–46. doi:10.1023/A:1014299228104.

[2] V. Baramidze, Minimal energy spherical splines on Clough-Tocher triangulations for Her-
mite interpolation, Appl. Numer. Math. 62 (9) (2012) 1077–1088.
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by quadratic parametric patches, Comput. Aided Geom. Design 25 (6) (2008) 373–384.

[16] M.-J. Lai, L. L. Schumaker, Macro-elements and stable local bases for splines on Clough-
Tocher triangulations, Numer. Math. 88 (1) (2001) 105–119. doi:10.1007/PL00005435.
URL http://dx.doi.org/10.1007/PL00005435

[17] M.-J. Lai, L. L. Schumaker, Spline functions on triangulations, Vol. 110 of Encyclopedia
of Mathematics and its Applications, Cambridge University Press, Cambridge, 2007. doi:
10.1017/CBO9780511721588.
URL http://dx.doi.org/10.1017/CBO9780511721588

[18] S. Mann, M. Lounsbery, C. Loop, D. Meyers, J. Painter, T. DeRose, K. Sloan, A survey
of parametric scattered data fitting using triangular interpolants, in: G. E. Farin, R. E.
Barnhill, H. Hagen (Eds.), Curve and Surface Design, SIAM, 1992, pp. 145–172.

[19] J. Morgan, R. Scott, A nodal basis for C1 piecewise polynomials of degree n ≥ 5, Math.
Comp. 29 (131) (1975) 736–740.

[20] L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom. Design 6 (4) (1989) 323–358.
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