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C1 and C2 interpolation of orientation data

along spatial Pythagorean-hodograph curves

using rational adapted spline frames

Hwan Pyo Moon
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Rida T. Farouki
Department of Mechanical and Aerospace Engineering,
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Abstract

The problem of constructing a rational adapted frame (f1(ξ), f2(ξ), f3(ξ))
that interpolates a discrete set of orientations at specified nodes along a
given spatial Pythagorean–hodograph (PH) curve r(ξ) is addressed. PH
curves are the only polynomial space curves that admit rational adapted
frames, and the Euler–Rodrigues frame (ERF) is a fundamental instance
of such frames. The ERF can be transformed into other rational adapted
frame by applying a rationally–parametrized rotation to the normal–plane
vectors. When orientation and angular velocity data at curve end points
are given, a Hermite frame interpolant can be constructed using a complex
quadratic polynomial that parametrizes the normal–plane rotation, by
an extension of the method recently introduced to construct a rational
minimal twist frame (MTF). To construct a rational adapted spline frame,
a representation that resolves potential ambiguities in the orientation data
is introduced. Based on this representation, a C1 rational adapted spline
frame is constructed through local Hermite interpolation on each segment,
using angular velocities estimated from a cubic spline that interpolates
the frame phase angle relative to the ERF. To construct a C2 rational
adapted spline frame, which ensures continuity of the angular acceleration,
a complex–valued cubic spline is used to directly interpolate the complex
exponentials of the phase angles at the nodal points.

Keywords: rational adapted spline frames, twist, angular velocity, angular
acceleration, Pythagorean–hodograph curves, rotation–minimizing frame,
Euler–Rodrigues frame.

e–mail addresses: hpmoon@dongguk.edu, farouki@ucdavis.edu

1



1 Introduction

The spatial motion of a rigid body is defined by specifying its position and
orientation at each instant. The position may be specified as a parametric curve
r(ξ) describing the path of a distinguished point (such as the center of mass),
and the orientation may be specified by an orthonormal frame (f1(ξ), f2(ξ), f3(ξ))
defined along r(ξ). In many applications, an adapted frame that satisfies f1(ξ) =
r′(ξ)/|r′(ξ)|— i.e., the first frame vector coincides with the tangent to the path
r(ξ) — is desired, so that f2(ξ) and f3(ξ) span the curve normal plane. Clearly,
there are infinitely many adapted frames, corresponding to different choices for
the variation of the orientation of f2(ξ) and f3(ξ) along r(ξ).

The rotation minimizing frame (RMF) or Bishop frame [1] is an important
type of adapted frame (t,u,v) on a space curve, consisting of the curve tangent
t and unit normal–plane vectors u and v that exhibit no instantaneous rotation
about t — i.e., the tangent component of the frame angular velocity vanishes.
Since polynomial/rational curves do not ordinarily admit rational RMFs, many
schemes to approximate them have been proposed [8, 15, 16, 18, 19, 20, 23, 24,
25, 26]. On the other hand, the identification of space curves that admit exact
rational RMFs has recently become a topic of active investigation [4, 6, 11, 12].
Such curves are necessarily a subset of the Pythagorean–hodograph (PH) curves
[3], since only PH curves possess rational unit tangents. The Frenet frames of
PH curves have also been studied for cubic helical spline curves [13].

The focus of the present study is the construction of rational adapted spline
frames along a pre–defined spatial PH curve, that interpolate prescribed frame
orientations at a sequence of specified curve points with C1 or C2 continuity —
where C1 implies continuity of angular velocity, and C2 implies continuity of
angular velocity and angular acceleration. Smoothness of orientational motion is
as important as that of translational motion in applications, since discontinuity
of angular velocity and acceleration is physically impossible in the steering of
devices such robot end effectors, unmanned aerial vehicles, or spacecraft.

Algorithms to construct rigid body motions specified by rational adapted
RMFs with given initial/final positions and orientations have recently been de-
veloped [7, 9]. However, since the computation of an RMF is an initial value
problem, the path r(ξ) is an outcome of these algorithms, rather than being
specified a priori. Interpolation algorithms to construct rigid body motions for
general orientations, without imposing the adaptedness condition, have been
proposed [14, 17, 21]. These algorithms also compute the rotations and the
trajectories simultaneously. In the present study, we consider adapted motions
along a prescribed spatial PH curve r(ξ) that matches a sequence of specified
orientations at nodal points along it, with continuity of angular velocity and ac-
celeration at those points. In this context, the rotation–minimizing condition is
relaxed, since an RMF cannot (in general) match given orientations at distinct
points along pre–defined curve.

The Euler–Rodrigues frame (ERF) is a rational adapted frame defined on any
spatial Pythagorean–hodograph curve [2]. The ERF serves as a starting point
for the construction of other rational adapted frames, by applying a rationally–
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parametrized rotation to the two ERF normal plane vectors. Such rotations are
defined by a pair of real polynomials, or equivalently a single complex–valued
polynomial, whose coefficients can be used to make the new frame satisfy given
constraints on its orientation, angular velocity, and angular acceleration.

This method has been used [10] to construct a rational minimal twist frame
(MTF) along a given curve, i.e., an adapted frame that satisfies prescribed
initial/final orientations without any unnecessary twist between them. As a
special type of MTF, one may consider frames with a constant angular velocity.
However, such frames do not admit a rational parameterization, even for PH
curves. A rational MTF can be constructed by controlling the angular velocity
using a rational rotation of the ERF.

This capability is exploited in the present study to construct rational spline
frames on pre–defined PH curves with given orientations at a sequence of nodal
points, and C1 or C2 continuity of the frame orientation at those points. The
method is based on defining a complex–valued piecewise–polynomial function
that specifies the frame rotation relative the ERF. For a C1 spline frame, a
local Hermite interpolation scheme between successive nodes is developed by
estimating nodal angular velocities from the given orientation data. To achieve
C2 continuity, more degrees of freedom are needed, and we employ a complex–
valued cubic spline function to define the frame rotation relative to the ERF.

The remainder of this paper is organized as follows. Section 2 reviews some
basic properties of PH curves, and various rational adapted frames defined on
them — including the Euler–Rodrigues frame, rotation–minimizing frame, and
minimal–twist frame. A Hermite interpolation scheme for a rational adapted
frame with prescribed initial/final orientations and angular velocities is then
developed in Section 3. This scheme is then generalized in Section 4 to develop
algorithms for rational adapted spline frames that match a sequence of specified
orientations at given curve points with C1 or C2 continuity, and a number of
computed examples are presented to illustrate the results of these algorithms.
Finally, Section 5 summarizes the key results of the present study.

2 Rational adapted frames on PH curves

The variation of a right–handed orthonormal frame (f1(ξ), f2(ξ), f3(ξ)) along
a space curve r(ξ) is characterized by its angular velocity ω through the relations

df1
ds

= ḟ1 = ω × f1,
df2
ds

= ḟ2 = ω × f2,
df3
ds

= ḟ3 = ω × f3,

where dots denote derivatives1 with respect to arc length s. The angular velocity
ω can be expressed in terms of the frame (f1, f2, f3) itself as

ω = ω1f1 + ω2f2 + ω3f3, (1)

1Throughout this paper, dots indicate derivatives with respect to arc length s, and primes
indicate derivatives with respect to a general curve parameter ξ.
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with components defined by

ω1 = ḟ2 · f3 = −ḟ3 · f2, ω2 = ḟ3 · f1 = −ḟ1 · f3, ω3 = ḟ1 · f2 = −ḟ2 · f1.

A spatial PH curve r(ξ) may be generated [3] from a quaternion polynomial

A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ) k (2)

by integrating the hodograph

r′(ξ) = A(ξ) iA∗(ξ) = [u2(ξ) + v2(ξ)− p2(ξ)− q2(ξ)] i

+ 2[u(ξ)q(ξ) + v(ξ)p(ξ)] j + 2[v(ξ)q(ξ)− u(ξ)p(ξ)] k,

where A∗(ξ) = u(ξ)−v(ξ) i−p(ξ) j−q(ξ) k is the conjugate of A(ξ). This curve
has the polynomial parametric speed

σ(ξ) = |r′(ξ)| = |A(ξ)|2 = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ). (3)

Any spatial PH curve admits an adapted frame (e1, e2, e3) known [2] as the
Euler–Rodrigues frame (ERF), defined by the expressions

e1(ξ) :=
A(ξ) iA∗(ξ)
|A(ξ)|2

, e2(ξ) :=
A(ξ) jA∗(ξ)
|A(ξ)|2

, e3(ξ) :=
A(ξ) kA∗(ξ)
|A(ξ)|2

.

Since the denominator in these expressions is the polynomial parametric speed
(3), the ERF is a rational frame in which e1 is the curve tangent while e2, e3

span the normal plane. The ERF angular velocity may be expressed as

ω = ω1e1 + ω2e2 + ω3e3, (4)

with components defined [5] by

ω1 = ė2 · e3 = −ė3 · e2 = 2
uv′ − u′v − pq′ + p′q

σ2
,

ω2 = ė3 · e1 = −ė1 · e3 = 2
up′ − u′p+ vq′ − v′q

σ2
,

ω3 = ė1 · e2 = −ė2 · e1 = 2
uq′ − u′q − vp′ + v′p

σ2
.

The ERF (e1, e2, e3) can be used to generate other rational adapted frames
(f1, f2, f3) by taking f1 = e1 and specifying f2, f3 through a rational normal–plane
rotation of e2, e3 of the form[

f2(ξ)
f3(ξ)

]
=

1

a2(ξ) + b2(ξ)

[
a2(ξ)− b2(ξ) −2a(ξ)b(ξ)

2a(ξ)b(ξ) a2(ξ)− b2(ξ)

] [
e2(ξ)
e3(ξ)

]
, (5)

for relatively prime polynomials a(ξ), b(ξ). This amounts to obtaining f2, f3 from
e2, e3 by a normal–plane rotation through the phase angle defined by

θ(ξ) := 2 tan−1
b(ξ)

a(ξ)
, (6)
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such that

cos θ(ξ) =
a2(ξ)− b2(ξ)

a2(ξ) + b2(ξ)
, sin θ(ξ) =

2a(ξ)b(ξ)

a2(ξ) + b2(ξ)
.

The variation of the rational frame (f1, f2, f3) consists of the variation of the
ERF (e1, e2, e3) and the variation of the rotation angle θ(ξ).

If Ω is the angular velocity vector of the frame (f1, f2, f3) expressed in terms
of the ERF (e1, e2, e3) as

Ω = Ω1e1 + Ω2e2 + Ω3e3,

its components are

Ω1 = ω1 + θ̇, Ω2 = ω2, Ω3 = ω3 (7)

where

θ̇ =
θ′

σ
= 2

ab′ − a′b
σ(a2 + b2)

. (8)

The rotation–minimizing frame (RMF) is an important adapted frame (t,u,v)
consisting of the curve tangent t and normal–plane vectors u,v that exhibit
no rotation about t — i.e., the angular velocity component ω1 in (1) vanishes
identically, so that ω for RMF has the form

ω = ω2u + ω3v.

The identification of spatial PH curves that admit rational RMFs is equivalent
to identifying conditions for the existence of polynomials a(ξ), b(ξ) such that
ω1(ξ)+θ′(ξ)/σ(ξ) ≡ 0. This condition has been thoroughly analyzed in previous
studies [4, 6, 11, 12] and it transpires that the lowest–order non–trivial solutions
form a subset of the spatial PH quintics. In the present context, we emphasize
that the construction of RMFs is an initial value problem — for a given space
curve r(ξ), ξ ∈ [ 0, 1 ] it is impossible to prescribe both initial and final instances
t(0),u(0),v(0)) and t(1),u(1),v(1)) of an RMF. Motivated by this observation,
the notion of a minimal twist frame (MTF) was recently introduced in [10].

An MTF is an adapted orthonormal frame f1(ξ), f2(ξ), f3(ξ)) defined along a
given space curve r(ξ), ξ ∈ [ 0, 1 ] matching prescribed initial and final instances
(f1(0), f2(0), f3(0)) and (f1(1), f2(1), f3(1)) with the minimum amount of rotation
of the normal plane vectors f2(ξ), f3(ξ) about the tangent f1(ξ) consistent with
these boundary conditions. If Ω = Ω1f1 + Ω2f2 + Ω3f3 is the angular velocity of
an adapted frame (f1, f2, f3) with prescribed initial/final instances, the minimal
twist property is characterized by two conditions: (i) Ω1 does not change sign
on ξ ∈ (0, 1), and (ii) it achieves the least possible absolute value for the twist
integral, defined by

T :=

∫ S

0

Ω1 ds =

∫ 1

0

Ω1(ξ)σ(ξ) dξ,
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where S is the total arc length of r(ξ). When the initial/final orientations of the
frame are specified, the twist value should be the difference in the orientation of
the frame normal–plane vectors, relative to RMF normal–plane vectors, between
the final and initial instances. Thus, all possible values for the twist are equal to
the minimal twist plus an integer multiple of 2π. Hence, condition (ii) specifies
the frame twist value, while condition (i) avoids cancellation of clockwise and
anti–clockwise rotation in the normal plane.

An ideal instance is the constant angular velocity MTF, characterized by
the condition

Ω1(ξ) ≡ Ω1 :=
Tmin

S
,

where Tmin is the least possible twist for prescribed end frames on a given curve.
Although the constant angular velocity MTF admits a closed–form expression,
it incurs transcendental functions. As an alternative, a rational MTF satisfying
the constraints Ω1(0) = Ω1(1) = Ω1 was proposed in [10] — this frame can be
constructed from the ERF by applying the rational rotation (5) with quadratic
polynomials a(ξ) and b(ξ), and furnishes one free parameter that can be used
to minimize the mean square deviation of Ω1(ξ) from Ω1.

3 Hermite interpolation for rational frames

The problem of Hermite interpolation for rational adapted frames defined on
a spatial PH curve consists of specifying initial/final orientations of the normal–
plane vectors, and derivatives of their orientation. In an earlier study [10], we
developed an algorithm to construct a rational MTF by solving a Hermite inter-
polation problem with given initial/final frame orientations and angular velocity
data, assigned to be the mean angular velocity. We apply here a similar method
to construct Hermite interpolants for general prescribed angular velocities. For
convenience, we recall a few important notations and equations from [10].

Let r(ξ) be a spatial PH curve with ERF (e1(ξ), e2(ξ), e3(ξ)). The goal is to
construct a rational adapted frame (f1(ξ), f2(ξ), f3(ξ)) of the form (5) on r(ξ))
that satisfies C1 boundary constraints, i.e., prescribed initial/final orientations
and angular velocities. Combining the real polynomials a(ξ), b(ξ) into a complex
polynomial w(ξ) = a(ξ) + i b(ξ), the angular function (6) satisfies

exp(i θ(ξ)) =
w2(ξ)

|w(ξ)|2
=

w(ξ)

w(ξ)
,

and its derivative can be expressed as

θ′(ξ) = 2
Im(w(ξ)w′(ξ))

|w(ξ)|2
= 2 Im(w′(ξ)/w(ξ)).

Let the initial and final frame instances be specified as

(f1(0), f2(0), f3(0)) and (f1(1), f2(1), f3(1)), (9)
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where f1(0) and f1(1) coincide with the initial and final tangents of r(ξ), and the
orientations of f2(0), f3(0) and f2(1), f3(1) relative to the ERF vectors e2(0), e3(0)
and e2(1), e3(1) are defined by given initial/final values θ(0), θ(1) ∈ (−π, π] of
the angle function (6) through equation (5). Similarly, the end–point tangential
components of the frame angular velocity Ω1(ξ) are assigned given values

Ω1(0) and Ω1(1). (10)

As noted in [10] a quadratic polynomial, expressed in Bernstein form as

w(ξ) = w0 (1− ξ)2 + w1 2(1− ξ)ξ + w2 ξ
2,

provides the minimum necessary flexibility to achieve a frame (f1(ξ), f2(ξ), f3(ξ))
satisfying the C1 boundary conditions. Furthermore, since the angular function
(6) remains unchanged on multiplying w(ξ) by any non–zero complex constant,
we may henceforth assume that |w(0)| = |w0| = 1 without loss of generality.

The initial/final frame orientation constraints are satisfied by choosing

w0 = exp
(
i 12θ0

)
and w2 = γ exp

(
i 12θ1

)
where γ is a free (non–zero) real parameter. To match the prescribed end–point
tangential angular velocities (10), we introduce the quantities

ρ0 = σ(0) [ Ω1(0)− ω1(0) ] and ρ1 = σ(1) [ Ω1(1)− ω1(1) ],

and one can then verify that the choice

w1 =
exp

(
i 12θ1

)
ρ0 + exp

(
i 12θ0

)
γ ρ1

4 sin 1
2∆θ

,

where ∆θ = θ1 − θ0, yields the desired initial/final values (10) of Ω1(ξ).
The interpolants to the specified data (9) and (10) comprise a one–parameter

family, dependent on the free variable γ. This variable can, in principle, be used
to further optimize the frame variation2 but it does not affect satisfaction of the
boundary conditions. In the present study, to avoid further complicating the
problem, we henceforth choose γ = 1 so that |w2| = |w0|.

Example 1. Consider the spatial PH quintic r(ξ) generated by the quadratic
quaternion polynomial

A(ξ) = A0 (1− ξ)2 +A1 2(1− ξ)ξ +A2 ξ
2

with coefficients

A0 = −0.951488 + 0.951488 i + 0.394119 j− 0.394119 k,

A1 = −0.208465 + 1.443549 i− 0.298089 j + 1.047198 k,

A2 = 1.229442 + 0.626432 i + 1.376799 j− 0.091481 k.

2The parameter γ was used in [10] to minimize the mean square deviation of the angular
velocity component Ω1 about the average value Ω1.
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(a)
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Figure 1: (a) ERF along the PH quintic in Example 1. The normal plane vectors
e2(ξ) and e3(ξ) sweep out the green and red surfaces. (b) The angular velocity
component ω1(ξ) for the ERF is shown as the solid line, and the dashed line is
its corresponding cumulative twist TERF(ξ).

The ERF of this PH curve is shown in Figure 1(a), and the angular velocity ω1

and the cumulative twist are plotted in Figure 1(b). The values of the angular
velocity at the end points are ω1(0) = −1.3052 and ω1(1) = −0.1374; the total
ERF twist is TERF ≈ −2.4115.

We use this example to illustrate the dependence of the interpolant on the
frame orientations at the end points. To clarify this dependence, we set all the
boundary values except θ1 to be zero, i.e.,

θ0 = 0, Ω1(0) = 0, Ω1(1) = 0.

Thus, the frames have the same orientation as the ERF at the start point, and
exhibit no instantaneous rotation about the curve tangent at both end points.
We compare solutions with the final angles θ1 = 1

2π and θ1 = π, as illustrated
in Figures 2(a) and 2(b). The angular velocity component ω1 and cumulative
twist of these solution are shown in Figure 2(c)–(d). Comparing Figures 2(c)
and 2(d), one can see that the values of the total twist differ by 1

2π.

Example 2. We present a few more rational frame examples satisfying various
Hermite data to illustrate the effect of the C1 boundary conditions. The three
rational frames in Figure 3 have the same end orientations

θ0 = 0 and θ1 = 2.4115 ≈ −TERF,

but different initial/final values of Ω1, namely

(a) Ω1(0) = −Ω1(1) = 1, (b) Ω1(0) = Ω1(1) = 0, (c) − Ω1(0) = Ω1(1) = 1.

The end orientations are fixed so that the initial frame agrees with the ERF,
and the total twist is zero. Figures 3(a)–(c) show the resulting frame variations,
while Figures 3(d)–(f) show the behavior of the angular velocity components Ω1

as solid lines and the cumulative twist T as dashed lines.
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(a)
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Figure 2: Rational adapted frames satisfying the Hermite boundary conditions
θ0 = 0, Ω1(0) = Ω1(1) = 0 with end orientations (a) θ1 = 1

2π and (b) θ1 = π.
Plots (c) and (d) illustrate the angular velocity component Ω1 (solid line) and
the cumulative twist T (dashed line) for the frames in (a) and (b), respectively.
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Figure 3: Comparison of rational frames with the same boundary orientations
θ0 = 0 and θ1 = −TERF but different boundary angular velocities — (a) Ω1(0) =
−Ω1(1) = 1; (b) Ω1(0) = Ω1(1) = 0; (c) −Ω1(0) = Ω1(1) = 1. Figures (d)–(f)
show graphs of the corresponding tangential angular velocity components Ω1

(solid lines) and cumulative twists T (dashed lines).

4 Rational adapted spline frames

We now extend the end–point Hermite interpolation procedure, as described
above, to the problem of constructing a piecewise–rational adapted frame along
a spatial PH curve r(ξ) that interpolates given orientation data at a sequence of
prescribed nodal parameter values with C1 and C2 continuity — i.e., continuity
of the angular velocity (Section 4.3) and continuity of both the angular velocity
and the angular acceleration (Section 4.4). We begin by introducing a method to
represent the orientation data that eliminates ambiguities in its interpretation.

4.1 Representation of orientation data

Let ξ1, ..., ξN ∈ (0, 1) with ξ0 = 0 and ξN+1 = 1 be nodal parameter values
at which adapted frame orientations are to be specified. This data consists of
orthonormal frame instances of the form

(f1(ξk), f2(ξk), f3(ξk)), k = 0, ..., N + 1

where it is understood that f1(ξk) coincides with the curve tangent at r(ξk).
The prescribed nodal frame orientations can be represented by phase angles θk
relative to the ERF, such that[

f2(ξk)
f3(ξk)

]
=

[
cos θk − sin θk
sin θk cos θk

] [
e2(ξk)
e3(ξk)

]
.
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However, the angles θk must be considered indeterminate up to integer multiples
of 2π, and this ambiguity can introduce undesired excess rotation of the normal–
plane frame vectors.

We resolve this ambiguity as follows. At the initial point ξ0 = 0, we use a
prescribed phase angle θ0 ∈ (−π,+π ] and for each subsequent curve segment k
we specify an incremental frame twist

∆Tk := T (ξk)− T (ξk−1) =

∫ ξk

ξk−1

Ω1(ξ)σ(ξ) dξ, k = 1, ..., N + 1.

In view of the relation (7) between the tangential angular velocities of ERF and
the frame (f1(ξ), f2(ξ), f3(ξ)), subsequent phase angles are nominally defined by

θk = θk−1 + ∆Tk −∆TERF,k (11)

where

∆TERF,k :=

∫ ξk

ξk−1

ω1(ξ)σ(ξ) dξ

is the ERF twist along segment k. The cumulative ERF twist is defined by

TERF(ξ) :=

∫ ξ

0

ω1(t)σ(t) dt, (12)

and satisfies

TERF(ξk) =

k∑
i=1

∆TERF,i. (13)

Note that, for the spatial PH quintics, the integral (12) admits a closed–form
reduction as described in [10].

Note that the formula (11) may produce θk values outside the range (−π, π]
and does not address the possibility that |∆θk| > 2π. The desired frame is
obtained by rotating the ERF using piecewise quadratic (or at most cubic)
polynomials w(ξ) = a(ξ) + i b(ξ) and a single quadratic polynomial cannot
incur a phase angle increment > 2π, since the winding angle of a parabola with
respect to the origin cannot exceed 2π. Thus, if any segment [ ξk−1, ξk ] has
|∆θk| > 2π, it should be subdivided by inserting an intermediate node.

To address these issues, we introduce the angular function

A(ξ) := θ0 + T (ξ) = θ0 +

∫ ξ

0

Ω1(t)σ(t) dt, (14)

which equals the cumulative twist of the frame (f1(ξ), f2(ξ), f3(ξ)) plus the initial
phase angle θ0. This function describes the phase angle relative to the RMF,
starting from the initial orientation (e1(0), e2(0), e3(0)). If the orientation data
for the frame (f1(ξ), f2(ξ), f2(ξ)) is specified by θ0 and twist increments ∆Tk ∈
(−π,+π ] for k = 1, ..., N + 1 the corresponding values of A(ξk) should be

Ak := A(ξk) = θ0 +

k∑
i=1

∆Ti. (15)
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k ξk ∆Tk ∆TERF,k θk Ak
0 0.0 1.00000 1.0
1 0.1 0.5 −0.29533 1.79533 1.5
2 0.3 0.4 −0.63841 2.83374 1.9
3 0.6 −0.1 −0.87580 3.60954 1.8
4 0.8 −0.3 −0.40940 3.71894 1.5
5 1.0 0.0 −0.19257 3.91151 1.5

Table 1: Nodal orientation data generated from the specified initial orientation
θ0 and the sequence of incremental twist values ∆Tk in Example 3.

Thus interpolation of the given orientation data for the frame (f1(ξ), f2(ξ), f2(ξ))
can be interpreted as interpolation of the data (ξk, Ak), k = 0, ..., N + 1 by the
function A(ξ), and the phase angles are obtained from (13) and (15) as

θk = Ak − TERF(ξk) . (16)

Example 3. Consider preparation of the orientation data for a new frame along
the PH curve r(ξ) used in Example 1. The set of nodal parameters ξk is chosen
as {0.0, 0.1, 0.3, 0.6, 0.8, 1.0} and the initial phase angle is fixed as θ0 = 1.0,
with incremental twist data specified by

∆T1 = 0.5, ∆T2 = 0.4, ∆T3 = −0.1, ∆T4 = −0.3, ∆T5 = 0.0.

Converting these data into Ak and θk values as described above yields the results
summarized in Table 1. Note that some of the θk values exceed π. These data
are also illustrated graphically in Figure 4(a). The dashed line is the graph of
the cumulative ERF twist (12), and the dots indicate the points (ξk, Ak). The
vertical lines indicate the phase angle values θk, as defined by (16).

The nodal frame orientations defined by the given data are illustrated in
Figure 4(b) — the normal–plane vectors f2(ξk) and f3(ξk) are shown as green
and red arrows, and small “fans” between them indicate the normal planes.

4.2 C0 adapted spline frame

Based on the angular data representation described above, we begin by con-
sidering the simplest interpolant, namely, the C0 rational spline frame. We
construct a complex–valued piecewise–linear function w(ξ) = a(ξ) + i b(ξ) with
segment wk(ξ) = ak(ξ) + i bk(ξ) on ξ ∈ [ ξk−1, ξk ] expressed in Bernstein form
as

wk(ξ) =
wk,0(ξk − ξ) + wk,1(ξ − ξk−1)

∆ξk
,

with ∆ξk = ξk − ξk−1. By choosing the values

wk,0 = exp
(
i 12θk−1

)
and wk,1 = γk exp

(
i 12θk

)
with γk a free parameter, one can construct the C0 spline frame by applying
the rotation in Equation (5) to the ERF. This approach is very simple and
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Figure 4: (a) The cumulative ERF twist TERF(ξ) is plotted as the dashed line,
and for each node ξk the Ak value is marked as a dot. The difference between
Ak and TERF(ξk) is equal to θk. (b) The orientation data are illustrated as pairs
of vectors f2(ξk) and f3(ξk) indicated by green and red arrows.

straightforward. However, most practical applications require adapted frames
with higher continuity than C0. In the following Sections, we consider spline
frames with C1 and C2 continuity.

4.3 C1 adapted spline frame

We here present a procedure to construct a C1 rational adapted spline frame.
For this purpose, we construct a complex–valued piecewise–quadratic function
w(ξ) = a(ξ) + i b(ξ) with segment wk(ξ) = ak(ξ) + i bk(ξ) expressed as

wk(ξ) =
wk,0(ξk − ξ)2 + wk,12(ξk − ξ)(ξ − ξk−1) + wk,2(ξ − ξk−1)2

(∆ξk)2
.

By arguments analogous to those in Section 3, the values

wk,0 = exp
(
i 12θk−1

)
and wk,2 = γk exp

(
i 12θk

)
(17)

with γk a free parameter, ensure matching of the orientation data θk−1 and θk.
As in Section 3, we henceforth choose γk = 1 for all k — this does not affect the
nodal orientations or angular velocities, and ensures that w(ξ) is continuous. If
the tangential component of the angular velocity at the node ξk is Ω1(ξk), the
coefficient wk,1 must be defined by

wk,1 =
exp

(
i 12θk

)
ρk−1 + exp

(
i 12θk−1

)
ρk

4 sin 1
2∆θk

∆ξk (18)

where ∆θk = θk − θk−1, and

ρk = σ(ξk) [ Ω1(ξk)− ω1(ξk) ]. (19)

Now the nodal angular velocities Ω1(ξk) are not specified a priori, but must
be estimated from the given discrete orientation data. Recall that the function
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(14) defines the phase angle of the frame (f1(ξ), f2(ξ), f3(ξ)) relative to the RMF,
and interpolates the values Ak at the nodes ξk. Since A′(ξ) = Ω1(ξ)σ(ξ), we can
estimate Ω1(ξk) as A′(ξk)/σ(ξk). Hence, since σ(ξk) is known, the problem is
equivalent to estimating A′(ξk) from the discrete data (ξk, Ak). For sufficiently
dense nodes, methods for numerical differentiation of unequally–spaced data
[22] can furnish good estimates. However, we envisage that the method will
also often be used with relatively sparse data, in which case a cubic spline that
interpolates the points (ξk, Ak) offers good estimates for the A′(ξk) values.

The nodal derivatives d0, . . . , dN+1 of the C2 cubic spline that interpolates
the data points (ξk, Ak) for k = 0, . . . , N + 1 are solutions [3] of the tridiagonal
system of linear equations defined by

∆ξk+1 dk−1 + 2(∆ξk + ∆ξk+1) dk + ∆ξk dk+1

= 3

[
∆ξk

Ak+1 −Ak
∆ξk+1

+ ∆ξk+1
Ak −Ak−1

∆ξk

]
(20)

for k = 1, . . . , N augmented by two end conditions. Two commonly used forms
are quadratic end spans, in which case equations (20) are augmented by

d0 + d1 = 2
A1 −A0

∆ξ1
and dN + dN+1 = 2

AN+1 −AN
∆ξN+1

, (21)

and the “not–a–knot” end conditions, in which case we use

(∆ξ1 + ∆ξ2)∆ξ2 d0 + (∆ξ1 + ∆ξ2)2d1

= (3∆ξ1 + 2∆ξ2)∆ξ2
A1 −A0

∆ξ1
+ (∆ξ1)2

A2 −A1

∆ξ2
, (22)

(∆ξN + ∆ξN+1)2dN + ∆ξN (∆ξN + ∆ξN+1) dN+1

= (∆ξN+1)2
AN −AN−1

∆ξN
+ ∆ξN (2∆ξN + 3∆ξN+1)

AN+1 −AN
∆ξN+1

.

Note that both end conditions are consistent the tridiagonal nature of the linear
system. Tridiagonal linear systems admit very simple and efficient solutions [3].
Once the solution has been obtained, we assign A′(ξk) = dk for k = 0, . . . , N+1.
Finally the angular velocity estimate Ω1(ξk) is obtained from

Ω1(ξk) =
A′(ξk)

σ(ξk)
, (23)

which can be substituted into (19) to compute the middle coefficient (18).

Example 4. We apply the C1 spline frame procedure to the data prepared in
Example 3. After solving the linear system defined by (20) and the chosen end
conditions, which is the quadratic end spans in this example, the nodal angular
velocity values Ω1(ξk) are obtained from (23), and the ρk values are computed
from (19). These values are listed in Table 2. The next step is to construct the
piecewise–quadratic function w(ξ) = a(ξ) + i b(ξ) with coefficients given by (17)
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k Ω1(ξk) ρk
0 2.91468 8.95171
1 2.11576 6.91855
2 0.468119 3.90830
3 −0.911927 1.14273
4 −0.522730 0.453830
5 0.272692 1.56153

Table 2: Angular velocity estimates obtained from the cubic spline interpolant.

and (18), whose real and imaginary parts are used to construct a piecewise–
rational frame by rotating the ERF through Equation (5). Figure 5(a) shows
the resulting frame together with the given orientation data, while Figure 5(b)
illustrates the variation of the phase angle A(ξ) relative to the RMF (which
interpolates the Ak data). Figure 5(c) shows the tangential angular velocity
component Ω1(ξ), which interpolates the data Ω1(ξk). Since the frame has
only C1 continuity, the angular acceleration Ω̇1(ξ), shown in Figure 5(d), is
discontinuous at the nodal points. Figure 5(e) shows plots of a(ξ), b(ξ), and
|w(ξ)| as dashed blue, dotted red, and solid black lines, respectively.

4.4 C2 adapted spline frame

The rational spline frame construction of the previous section yields only C1

continuity — i.e., although the frame angular velocity is continuous, the angular
acceleration is discontinuous at the nodal points (as seen in Figure 5(d)). Such
acceleration discontinuities are impossible in the motion of physical bodies, since
they require an infinite torque. Continuity of angular acceleration is equivalent
to C2 continuity of the frame, i.e., differentiability of the angular velocity Ω.

The angular velocity Ω of the frame (f1, f2, f3) has normal components that
are identical to those of the angular velocity ω of the ERF, and the tangential
component Ω1 differs only by the addition of the θ̇ term in (7). Since this term
is defined by the expression (8), C2 continuity of the functions a(ξ), b(ξ) implies
C2 continuity of Ω1. Hence, to achieve a C2 frame, we seek to construct the
functions a(ξ) and b(ξ) as C2 cubic splines.

Note that C2 continuity of w(ξ) = a(ξ) + i b(ξ) is a sufficient, though not
necessary, condition for C2 continuity of the frame. Since the phase angle θ(ξ)
is defined in terms of a(ξ) and b(ξ) by (6), θ(ξ) may have higher continuity than
a(ξ) and b(ξ) if these functions have nodal discontinuities that “cancel out” in
the rational function b(ξ)/a(ξ). In fact, this property was already used in the
preceding section for construction of the C1 rational spline frame. One may
note in Figure 5(e) that the piecewise–quadratic functions a(ξ) and b(ξ) are not
C1 at the nodes, although the frame constructed from them is C1. One may, in
principle, try to use this phenomenon to achieve higher frame continuity with
a piecewise–quadratic function w(ξ), but this incurs complicated non–linear
relations among the coefficients of adjacent quadratic segments. We adopt here
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Figure 5: (a) The C1 rational frame that interpolates the orientation data. (b)
The phase angle function A(ξ) with respect to the RMF. (c) The component
Ω1(ξ) of the frame angular velocity. (d) The tangential angular acceleration
as the arc–length derivative of Ω1. (e) The piecewise–quadratic functions a(ξ),
b(ξ) and the magnitude of the function w(ξ) = a(ξ) + i b(ξ) used to rotate the
ERF are shown as dashed blue, dotted red, and solid black lines, respectively.
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a simpler approach, based on the use of C2 cubic splines.
Since the frame (f1, f2, f3) is specified to have phase angles θk relative to the

ERF at the nodes ξk, a C2 rational adapted spline frame interpolating this data
can be constructed from (5) by using C2 piecewise–polynomial functions a(ξ)
and b(ξ) that satisfy

θk = 2 tan−1
b(ξk)

a(ξk)
, k = 0, . . . , N + 1.

These condition are fulfilled by real C2 splines a(ξ) and b(ξ) that interpolate the
points {ξk, cos 1

2θk} and {ξk, sin 1
2θk}— or, equivalently, by a C2 complex spline

w(ξ) = a(ξ) + i b(ξ) that interpolates {ξk, exp(i 12θk)}. Setting wk = exp(i 12θk)
and dk = w′(ξk), this cubic spline may be constructed by solving the tridiagonal
system defined by (20) augmented by either of the end conditions (21) or (22),
with d0, . . . ,dN+1 and w0, . . . ,wN+1 replacing d0, . . . , dN+1 and A0, . . . , AN+1.
Segment k of the resulting C2 cubic spline is defined by

wk(u) := wk−1α0(u) + wkα1(u) + ∆ξk [ dk−1β0(u) + dkβ1(u) ],

where u ∈ [ 0, 1 ] is the local variable on segment k defined by

u :=
ξ − ξk−1

∆ξk
,

and in terms of u the cubic Hermite basis functions are defined by

α0(u) := 1 − 3u2 + 2u3 , α1(u) := 3u2 − 2u3 ,
β0(u) := u − 2u2 + u3 , β1(u) := −u2 + u3 .

For PH quintics, the ERF vectors have a rational quartic dependence on
the curve parameter. In the case of the C1 spline, the rational rotation defined
by (5) is quartic, so the normal–plane frame vectors f2(ξ), f3(ξ) have a rational
dependence of degree 8 on ξ. For the C2 spline, the degree increases to 10.

Example 5. For the same PH curve as in Example 1 and the orientation data
prepared in Example 3, we construct a C2 adapted rational spline frame using
the cubic spline w(ξ) = a(ξ)+i b(ξ) computed as described above. The resulting
C2 frame is shown in Figure 6(a), which on casual inspection appears similar
to the C1 frame in Figure 5(a). The difference is more apparent in the plot of
the tangential angular velocity Ω1(ξ) in Figure 6(c). The angular velocity data
for the C1 frame — i.e., the Ω1(ξk) values in Example 5 — are indicated as
dots in Figure 6(c), and small differences between the two frames can be seen.
Moreover, the C2 continuity of the new frame is evident in Figure 6(d) from the
continuous graph of its tangential angular acceleration component. Figure 6(e)
also shows that a(ξ) and b(ξ) have better behavior for the C2 frame than for the
C1 frame, especially on the interval [ 0.6, 0.8 ], and the magnitude of the cubic
spline function w(ξ) = a(ξ) + i b(ξ) remains very close to 1.
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Figure 6: (a) The rational C2 spline frame that interpolates the orientation data.
(b) The phase angle function A(ξ) with respect to the RMF. (c) The tangential
component Ω1(ξ) of the angular velocity. (d) The angular acceleration as the
arc–length derivative of Ω1. (e) The piecewise-polynomial functions a(ξ), b(ξ)
and the magnitude of the function w(ξ) = a(ξ) + i b(ξ) used to rotate the ERF
are shown as dashed blue, dotted red, and solid black lines, respectively.
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The method proposed in this article is applicable to various purposes. For
example, one can use it to construct a rational approximation to the RMF, by
setting all the frame twist increments Tk to zero in the orientation data. This
is illustrated by the following Example.

Example 6. Consider the spatial quintic PH curve defined by

A0 = −1.24029 + 1.24029 i + 0.503913 j + 0.907043 k,

A1 = −0.274494 + 0.692096 i + 1.54218 j− 1.12545 k,

A2 = 1.60629 + 0.818443 i− 0.613094 j + 0.934942 k.

Figure 7 (a) illustrates this curve together with its ERF. We choose evenly–
spaced nodal parameters with step size 0.1. Then we fix the initial orientation
as θ0 = 1

2π, and set all the twist increments ∆Tk to zero. These orientation
data agree with an RMF with an initial orientation of 1

2π relative to the ERF.
The values of Ak, which is the phase angle from the RMF with the same initial
position as the ERF, are then all equal to the same value 1

2π, shown as dots
in Figure 7 (b). The phase angle θk is the difference between Ak and the
cumulative twist of the ERF, which is shown as dashed line in Figure 7 (b).
The C2 rational spline frame computed from these orientation data is shown in
Figure 7 (c). Finally, Figure 7 (d) compares the angular velocities of the original
ERF and the spline frame. Whereas the ERF angular velocity shows a strong
variation, indicated by the dashed line, the angular velocity of the constructed
spline frame (the solid line) is almost zero.

5 Closure

The problem of constructing a rational adapted spline frame interpolating
given orientations at specified parameter values along a pre–defined spatial PH
curve has been addressed. Such frames are generated by applying the rational
rotation (5), constructed from a pair or real polynomials or a single complex
polynomial, to the normal–plane vectors of the Euler–Rodrigues frame (ERF).
When frame orientations and tangential angular velocities are specified at the
curve end points, a Hermite interpolation problem can be solved using a complex
quadratic polynomial through an extension of the approach developed in [10] to
construct minimal twist frames. This methodology can be further generalized
to construct C1 rational adapted spline frames interpolating a given sequence of
orientation data, using tangential angular velocity estimates based on the spline
function that interpolates the frame phase angles relative to the ERF. To obtain
a C2 rational adapted spline frame, a method based on a complex cubic spline
function w(ξ) that interpolates the complex exponentials of the phase angles is
employed. This ensures continuity of angular acceleration at the nodal points,
an important consideration in specifying physical rigid body motions.
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Figure 7: (a) The Euler-Rodrigues Frame of the spatial quintic PH curve. (b)
The cumulative twist TERF (ξ) of the ERF is plotted as the dashed line, and for
each node ξk the phase angle values Ak is marked as a dot. (c) The rational
C2 spline frame that interpolates the given orientation data. (d) The angular
velocity functions of the ERF and the spline frame are shown as dashed line
and solid line, respectively.
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[18] B. Jüttler and C. Mäurer. Cubic Pythagorean hodograph spline curves and
applications to sweep surface modelling. Computer-Aided Design, 31:73–83,
1999.

[19] M. Krajnc and V. Vitrih. Motion design with Euler-Rodrigues frames
of quintic Pythagorean-hodograph curves. Mathematics and Computer in
Simulation, 82:1696–1711, 2012.

[20] C. Mäurer and B. Jüttler. Rational approximation of rotation minimizing
frames using Pythagorean hodograph cubics. Journal for Geometry and
Graphics, 3:141–159, 1999.
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