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Abstract

Multi-patch spline parametrizations are used in geometric design and isogeometric analysis to repre-

sent complex domains. We deal with a particular class of C0 planar multi-patch spline parametriza-

tions called analysis-suitable G1 (AS-G1) multi-patch parametrizations (cf. [10]). This class of

parametrizations has to satisfy specific geometric continuity constraints, and is of importance since

it allows to construct, on the multi-patch domain, C1 isogeometric spaces with optimal approxima-

tion properties. It was demonstrated in [22] that AS-G1 multi-patch parametrizations are suitable

for modeling complex planar multi-patch domains.

In this work, we construct a basis, and an associated dual basis, for a specific C1 isogeometric

spline space A over a given AS-G1 multi-patch parametrization. We call the space A the Argyris

isogeometric space, since it is C1 across interfaces and C2 at all vertices and generalizes the idea

of Argyris finite elements (see [1]) to tensor-product splines. The considered space A is a subspace

of the entire C1 isogeometric space V1, which maintains the reproduction properties of traces and

normal derivatives along the interfaces. Moreover, it reproduces all derivatives up to second order at

the vertices. In contrast to V1, the dimension of A does not depend on the domain parametrization,

andA admits a basis and dual basis which possess a simple explicit representation and local support.

We conclude the paper with some numerical experiments, which exhibit the optimal approxima-

tion order of the Argyris isogeometric space A and demonstrate the applicability of our approach

for isogeometric analysis.

Keywords: Isogeometric Analysis, Argyris isogeometric space, analysis-suitable G1

parametrization, planar multi-patch domain

1. Introduction

Multi-patch spline parametrizations are a powerful tool in computer-aided geometric design

for modeling complex domains (cf. [13, 17]). In the framework of isogeometric analysis (IGA)

(cf. [4, 11, 18]) the underlying spline spaces of these parametrizations are used to define (smooth)

discretization spaces for numerically solving partial differential equations (PDEs) over the multi-

patch domains. When solving a fourth order PDE, such as the biharmonic equation, e.g. [3, 10,

20, 23, 35], the Kirchhoff-Love plate/shell problem, e.g. [2, 5, 25, 26, 27], or the Cahn-Hilliard
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equation, e.g. [14, 15, 30], by means of its weak formulation using a standard Galerkin projection,

approximating functions of global C1-smoothness are needed.

In this work we construct an isogeometric space with global C1 regularity over an unstructured

multi-patch parametrization. Our construction takes inspiration from the Argyris finite element

[1], which has been the progenitor of all the C1 triangular finite elements. The original Argyris

construction uses polynomials of total degree 5 and the following degrees-of-freedom: The function

values, first and second derivatives at the element vertices, and the normal derivatives at the element

edge midpoints. These degrees-of-freedom determine the trace at the edges (a polynomial of degree

5 on each edge) and the normal derivatives at the edges (a polynomial of degree 4), and by that,

determine the polynomial on the whole triangle (see Figure 1(a)). C1 regularity follows from the

gluing of the normal derivative at the edges.

After Argyris, other C1 constructions on triangular meshes have been proposed, in the context

of finite elements (see for example the book [9]). The Argyris triangular element has been used only

recently for surface parametrizations, in [19]. However, splines on triangular meshes are commonly

used in geometric design, often with C2 smoothness at the mesh vertices, see the book [29] for

references.

In the finite element literature, the results on C1 quadrilateral elements are restricted to meshes

of structured rectangles, where the first and most well-known construction is the Bogner-Fox-Schmit

element, introduced in [8]. Isogeometric analysis has been reinvigorating this interest: The recent

papers [10, 20, 21, 23] and the book [6] shed light on the conditions of global C1 regularity for

isogeometric spaces on unstructured quadrilateral meshes, showing at the same time that these

spaces are difficult to characterize. This motivates our present work: We design a basis and the

related degrees-of-freedom for a subspace of the complete C1 isogeometric space, mimicking the

Argyris construction. The space we propose is therefore named Argyris isogeometric space and

denoted by A.

Consider a quadrilateral element Ω̄(i) = F(i)([0, 1]2), i.e., given by a bilinear mapping of the

reference square element. The lowest-degree polynomial version of A contains functions ϕh such

that ϕh ◦F(i) is a (bi)quintic polynomial, and (∇ϕh ·d)◦F(i) is a quartic polynomial on the edges of

the reference element. There are two main differences with respect to the original Argyris triangle.

The first is obvious: ϕh|Ω̄(i) is not polynomial since F(i) is not linear, in general. The second is

technical: d is not the normal unitary vector to the edges of Ω̄(i), it is instead a suitable non-constant

direction, shared with the adjacent quadrilateral and dependent on it. The degrees-of-freedom are

indeed:

• 24 (vertex) degrees-of-freedom giving the value, first and second derivatives at each vertex,

fully determining the trace of ϕh at the boundary of the element,

• 4 (edge) degrees-of-freedom, one per edge, that with the previous information fully determine

(∇ϕh · d) ◦ F(i) as a quartic polynomial on each edge,

• 4 (interior) degrees-of-freedom that, with the trace and directional derivative given at the

boundary, fully determine ϕh.
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The total number of degrees-of-freedom is 32 and they are depicted in Figure 1(c). However the

condition that (∇ϕh · d) ◦ F(i) is a quartic polynomial on each edge is responsible for 4 additional

scalar constraints due to degree elevation to quintic polynomials. The degrees-of-freedom together

with the constraints give 36 conditions, which matches the dimension of the (bi)quintic polynomial

space. We remark that the boundary degrees-of-freedom above correspond to the ones of the original

Argyris triangular element, with d replacing n (as for the Argyris triangular element, these edge

degrees-of-freedom depend on the mesh and do not admit a universal definition on the reference

element). Interior degrees-of-freedom appear also in the higher-degree Argyris triangular element,

see Figure 1(b). Our construction is generalizable to any degree p ≥ 5, see Figure 1(d).

The construction above further extends in two ways. The first is that, instead of a quadrilateral

element, we can allow a Bézier patch, that is F(i) can be a p-degree polynomial. However there are

compatibility conditions between adjacent patch parametrizations that guarantee that the Argyris

isogeometric space does not get overconstrained: We need the F(i) to form an analysis-suitable G1

multi-patch parametrization (see [10]). The second extension is from a polynomial space (on each

patch) to a tensor-product spline space. Not only is this important in isogeometric analysis, it also

allows a degree reduction. Indeed we can construct an Argyris isogeometric patch from (bi)cubic

C1 continuous splines, see Figure 1(e).

In this paper we show that the Argyris isogeometric space is well defined by constructing a

suitable basis and dual basis possessing desirable properties, such as local support and an explicit

representation, which can be evaluated and manipulated easily.

A key ingredient of our approach is the determination of the compatibility conditions that

the parametrizations F(i) of the patches need to fulfill in order to guarantee that the Argyris

isogeometric space possesses optimal approximation order. This is based on the mentioned work

[10], where the class of AS-G1 multi-patch parametrizations has been introduced. The paper [22] has

then shown numerically that this class of parametrizations enables the geometric design of complex

planar multi-patch domains. The construction can be extended to surfaces, and the C1 isogeometric

spaces constructed on AS-G1 multi-patch parametrizations exhibit optimal convergence under h-

refinement.

Piecewise bilinear multi-patch parametrizations are a subclass of the class of AS-G1 multi-patch

parametrizations and were considered to generate a C1 basis in [6, 20, 23]. The focus therein is

however to characterize the full C1 isogeometric space, which we denote V1 in this paper. The

papers [20, 23] study V1 for uniform spline functions of degree 3. The work [6] focuses on Bézier

polynomials of degree 4 and 5 and generates basis functions by means of minimal determining

sets (cf. [28]) for the involved Bézier coefficients. These approaches can be extended to mapped

piecewise bilinear multi-patch parametrizations, which are also AS-G1 and allow to model certain

domains with curved boundaries and interfaces, see [20, 23]. Still, more general AS-G1 multi-patch

parametrizations, such as domains with smooth boundaries, cannot be handled. In [21] an explicit

basis construction was given allowing non-uniform isogeometric spline functions of arbitrary degree

p ≥ 3 and regularity (with regularity r up to p − 2), but on a two-patch geometry, with AS-G1

parametrization.
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(a) Triangular element for degree 5.

n

(b) Triangular element for degree 6.

d

(c) Quadrilateral element for bidegree 5.

d

(d) Quadrilateral element for bidegree 6.

d

(e) Isogeometric element for bidegree 3.

Figure 1: Argyris-type finite elements, with associated vertex, edge and interior degrees-of-freedom. Note that for

the quadrilateral and isogeometric elements the derivative in normal direction n has to be replaced by the derivative

in a transversal direction d (see Definition 20).
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Unlike the Argyris isogeometric space A, the dimension of the full C1 space, that is V1, depends

on the domain parametrization, see [21]. In fact A possesses a simpler structure than V1, but

maintains its reproduction properties for traces and normal derivatives along the interfaces. In the

present work we only provide numerical evidence of the optimal approximation properties of A,

postponing the mathematical analysis to a further work.

In our setting, and in the papers [6, 7, 10, 20, 21, 23, 31], the C1 isogeometric functions

are defined over a domain given by a multi-patch parametrization which is not C1 at the patch

interfaces. However there is another possibility, that is, when the multi-patch parametrization is C1

everywhere except in the vicinity of an extraordinary vertex, where the parametrization is singular.

C1 isogeometric spaces in this case are constructed and studied in [24, 32, 33, 34, 39, 40, 41]. A

special case is when the parametrization is polar at the extraordinary vertex, see [36, 37, 38].

The remainder of the paper is organized as follows. Section 2 presents some basic definitions

and notations which are used throughout the paper. This includes the presentation of the spline

spaces and of the multi-patch domain parametrizations as well as the local and global indexing for

the patches, edges and vertices that we use. In Section 3 we recall the concept of AS-G1 multi-patch

parametrizations and the framework of C1 isogeometric spline spaces over this class of multi-patch

parametrizations. Section 4 describes the construction of a basis and of its associated dual basis for

the Argyris isogeometric space A. In Section 5 we perform L2-approximation over different AS-G1

parametrizations to demonstrate the potential of the Argyris isogeometric space A for applications

in IGA. After the concluding remarks in Section 6, we deliver technical proofs in Appendix A, and

describe in Appendix B and Appendix C some extensions of our construction.

2. Preliminaries

We describe the general notation as well as the multi-patch framework, which will be considered

and used throughout the paper. First, in Sections 2.1 and 2.2 we introduce the general notation,

the uni- and bivariate B-spline spaces and bases as well as the multi-patch domain we consider.

Then, we recall in Section 2.3 the standard global-to-local index mapping of mesh objects within

our framework. Finally, we introduce in Section 2.4 a specific local reparametrization, which will

simplify the definitions of the smooth basis functions in Section 4.

2.1. Basic notation and spline spaces

We consider an open domain Ω ⊂ R2, connected and regular, and Γ = ∂Ω being its boundary. If

ω ⊂ Ω is a manifold of dimension 0 (a point) or 1 (a line), we denote by Ck(ω) the set of piecewise

smooth functions defined on Ω for which the k-order derivatives are continuous at each point of ω.

We denote by Sp,rh the spline space of degree p and continuity Cr on the parameter domain [0, 1],

constructed from an open knot vector with n non-empty knot-spans (i.e., elements), then having

mesh size h = 1/n. We restrict here to uniform knot spans for simplicity, see [21] and Appendix B

for the generalization. The multiplicity of the interior knots is p− r.
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Definition 1 (Univariate B-spline basis). Given a integers p ≥ 1, r ≤ p, and n ≥ 1, we denote by

{bj}j∈{0,1,...,N−1}, with N = (p− r)(n−1) +p+ 1, the standard B-spline basis for the Cr univariate

p-degree polynomial space Sp,rh on [0, 1] with uniform mesh of mesh size h = 1/n.

The tensor-product spline space on the parameter (reference) domain [0, 1]2 is Sp,rh = Sp,rh ⊗S
p,r
h ,

where p = (p, p) and r = (r, r) indicate double indices which we assume, for the sake of simplicity,

to be the same in the the two directions.

Remark 1. For any r, Sp,r1 is the space of polynomials of degree p.

Definition 2 (Tensor-product B-spline basis). We denote the standard tensor-product B-spline

basis of the space Sp,rh by {bj}j∈I, with bj(ξ1, ξ2) = bj1(ξ1)bj2(ξ2), where j = (j1, j2) and I =

{0, . . . , N − 1} × {0, . . . , N − 1}.

Assumption 3 (Minimum regularity within the patches). We assume r ≥ 1, that is, Sp,rh ⊂
C1([0, 1]2).

2.2. Multi-patch domain parametrization

We consider a multi-patch domain parametrization, composed of four-sided subdomains, called

patches, interfaces between those patches as well as vertices, where several interfaces meet. The

index sets containing all patches, all edges and all vertices will be denoted by IΩ, IΣ and IX ,

respectively. Moreover, we will have IΣ = I◦Σ ∪̇ IΓ
Σ, where I◦Σ collects all indices representing

the patch interfaces and the indices in IΓ
Σ represent all boundary edges. Similarly, we will have

IX = I◦X ∪̇ IΓ
X , where the indices in I◦X represent all interior vertices and the ones in IΓ

X represent

all boundary vertices. To avoid confusion, we will denote all index sets of patches, interfaces and

vertices with a calligraphic I, and all index sets of basis functions with a double struck I.

Assumption 4 (Multi-patch domain Ω). The domain Ω is the image of a regular multi-patch

spline parametrization, i.e.,

Ω =
⋃
i∈IΩ

Ω(i), (1)

where
{

Ω(i)
}
i∈IΩ

is a regular and disjoint partition, without hanging nodes, and each Ω(i) is an

open spline patch,

F(i) : [0, 1]2 → Ω(i) ⊂ R2, (2)

where F(i) ∈ Sp,rh × Sp,rh are non-singular and orientation-preserving, i.e., for all i ∈ IΩ and for all

(ξ1, ξ2) ∈ [0, 1]2, it holds

det
[
∂1F

(i)(ξ1, ξ2) ∂2F
(i)(ξ1, ξ2)

]
> 0. (3)

The domain Ω is partitioned into the union of patches, interfaces and interior vertices

Ω =

 ⋃
i∈IΩ

Ω(i)

 ∪
 ⋃
i∈I◦Σ

Σ(i)

 ∪
 ⋃
i∈I◦X

x(i)

 .
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The boundary Γ of the domain is given by the collection of boundary edges and boundary vertices

Γ =

 ⋃
i∈IΓ

Σ

Σ(i)

 ∪
 ⋃
i∈IΓ
X

x(i)

 .

2.3. Global to local index conversion for edges and vertices

Each edge and vertex of the multi-patch partition corresponds to a global index i ∈ IΣ or i ∈ IX ,

respectively. In order to relate the edges and vertices to the patch parametrizations, each global

index will be associated with a set of local indices, depending on the patches that share the edge

or vertex.

Ω(ı)

x(ı,0) x(ı,1)

x(ı,2)x(ı,3)

Σ(ı,0)

Σ(ı,1)

Σ(ı,2)

Σ(ı,3)

Figure 2: Local indexing of edges and vertices for the patch Ω(ı). The parametrizations (4) induce a counterclockwise

orientation of the edges. Here, the green and blue arrows represent the local coordinate system for the parameters

ξ1 and ξ2, respectively.

The local index, which we define in the following, is in fact a multi-index (ı, κ), comprised of a

patch index ı ∈ IΩ and a local numbering κ ∈ {0, . . . , 3}.

Remark 2. We always denote with ı or ık dependent (secondary) indices, which depend on a

(primary) index i, e.g. Ω(ı1), Ω(ı2) being the patches sharing an interface Σ(i).

The four edges of each patch Ω(ı) are indexed as follows:

Σ(ı,0) = {F(ı)(0, 1− ξ) : ξ ∈]0, 1[}, Σ(ı,1) = {F(ı)(ξ, 0) : ξ ∈]0, 1[},

Σ(ı,2) = {F(ı)(1, ξ) : ξ ∈]0, 1[}, Σ(ı,3) = {F(ı)(1− ξ, 1) : ξ ∈]0, 1[};
(4)

for its four vertices we set:

x(ı,0) = {F(ı)(0, 0)}, x(ı,1) = {F(ı)(1, 0)},

x(ı,2) = {F(ı)(1, 1)}, x(ı,3) = {F(ı)(0, 1)};

see Figure 2. Here and in what follows, the local coordinate system is depicted with green and blue

arrows, corresponding to the ξ1- and ξ2-parameter directions, respectively.

The global to local index conversion for the edges is defined as follows.
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Assumption 5 (Global to local index conversion for edges). For each global index i ∈ I◦Σ there

exists a set TΣ(i) = {(ı1, κ1), (ı2, κ2)}, with ı1, ı2 ∈ IΩ, ı1 6= ı2, and κ1, κ2 ∈ {0, 1, 2, 3}, and

Σ(i) = Σ(ı1,κ1) = Σ(ı2,κ2) ⊂ Ω. (5)

For each global index i ∈ IΓ
Σ we have TΣ(i) = {(ı1, κ1)}, with ı1 ∈ IΩ and κ1 ∈ {0, 1, 2, 3}, and

Σ(i) = Σ(ı1,κ1) ⊂ Γ. (6)

Similarly, we can define the global to local index conversion for vertices.

Assumption 6 (Global to local index conversion for vertices). For each i ∈ IX there exists a

set Tx(i) = {(ı2, κ2), . . . , (ı2ν , κ2ν)}, with ı2, . . . , ı2ν ∈ IΩ, being ν different patch indices, and

κ2, . . . , κ2ν ∈ {0, 1, 2, 3}, where

x(i) = x(ı2,κ2) = . . . = x(ı2ν ,κ2ν). (7)

Here, ν is the patch valence of the vertex x(i).

Note that we only consider even sub-indices for all patches. This is because later we introduce

odd sub-indices for the adjacent interfaces (see Figure 3 and Definition 8). The patch valence

coincides with the edge valence for interior vertices (this is the classical notion of valence). For

boundary vertices the edge valence is larger by one than the patch valence.

Note that the inverse mapping from local to global indices is unique in the following sense: Each

local edge index is associated to a unique global index of an interface or a boundary edge, i.e., for

each ı1 ∈ IΩ and for each κ1 ∈ {0, 1, 2, 3} there exists exactly one i ∈ IΣ, such that (ı1, κ1) ∈ TΣ(i) .

Moreover, for each ı2 ∈ IΩ and for each κ2 ∈ {0, 1, 2, 3} there exists exactly one i ∈ IX , such that

(ı2, κ2) ∈ Tx(i) .

2.4. Parametrization in standard form for edges and vertices

In order to simplify the construction of smooth basis functions across interfaces and vertices, we

assume that the patch parametrizations are given in standard form, as depicted in Figure 3. This

is obviously not always the case, but can be achieved by reparametrization, as we will demonstrate

in Lemma 1.

For an interface in standard form, we assume that the two neighboring patches meet in a certain

way, as given in the following definition.

Definition 7. Given an interface Σ(i), for i ∈ I◦Σ, and let ı1, ı2 be the corresponding patch indices

as in Assumption 5. We have given a parametrization in standard form for the interface Σ(i), if

F(ı1)(0, ξ) = F(ı2)(ξ, 0), for all ξ ∈ [0, 1]. (8)

This corresponds to a configuration as depicted in Figure 3 (left). Similarly, for a boundary edge

Σ(i), with i ∈ IΓ
Σ, we say that a parametrization in standard form is given if Σ(i) = {F(ı1)(0, ξ) :

ξ ∈ ]0, 1[}.
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Ω(ı2) Ω(ı1)

Σ(i)

. . .
x(i)

Ω(ı2)

Σ(ı3)

Ω(ı4)

. . .

Figure 3: Parametrization in standard form for a given interface Σ(i) (left) and vertex x(i) (right). The local

coordinates are depicted in a similar fashion as in Figure 2.

For a vertex in standard form, we assume that the vertex is enclosed by edges and patches

Σ(ı1), Ω(ı2), Σ(ı3), Ω(ı4), . . . , Σ(ı2ν−1), Ω(ı2ν), Σ(ı2ν+1)

in counterclockwise order and that the patches are parametrized in such a way that the vertex is

at the origin, as depicted in Figure 3 (right). This is detailed in the following definition.

Definition 8. Given a vertex x(i), for i ∈ IX , and let ı2, . . . , ı2ν be the corresponding patch indices

as in Assumption 6. We have given a parametrization in standard form for the vertex x(i), if

F(ı2`)(0, ξ) = F(ı2`+2)(ξ, 0), for all ξ ∈ [0, 1], (9)

where ` = 1, . . . , ν for interior vertices while ` = 1, . . . , ν − 1 for boundary vertices. We have

Σ(ı2`+1) = Ω(ı2`) ∩ Ω(ı2`+2), with ` = 0, . . . , ν for interior vertices, and with ` = 1, . . . , ν − 1 for

boundary vertices. For interior vertices we have ı1 = ı2ν+1, and for boundary vertices we set

instead Σ(ı1) = Γ ∩ Ω(ı2) as well as Σ(ı2ν+1) = Ω(ı2ν) ∩ Γ.

In the case of Definition 8, all interfaces are in standard form. The even/odd indexing for

patches/edges will come handy in Section 4.

When considering a single edge Σ(i) or a single vertex x(i), it is not restrictive to assume that

the given parametrizations are in standard form, as stated in the following lemma.

Lemma 1 (Reparametrizations that yield a standard form). Let r : [0, 1]2 → [0, 1]2 with r(ξ1, ξ2) =

(1 − ξ2, ξ1). Given an interface Σ(i), for i ∈ I◦Σ, and TΣ(i) = {(ı1, κ1), (ı2, κ2)}, then F(ı1) ◦ rκ1

and F(ı2) ◦ rκ2−1 are suitable reparametrizations of the adjacent patches Ω(ı1) and Ω(ı2) that yield a

parametrization in standard form for the interface Σ(i). Similarly, F(ı1)◦rκ1 yields a parametrization

in standard form for a boundary edge Σ(i) with i ∈ IΓ
Σ.

Given a vertex x(i), i ∈ IX , and TΣ(i) = {(ı2, κ2), . . . , (ı2ν , κ2ν)}. Assuming that the patches are

arranged in counterclockwise order, then F(ı2`)◦rκ2`, for ` = 1, . . . , ν, are suitable reparametrizations

of the adjacent patches Ω(ı2`) that yield a parametrization in standard form for the vertex x(i).

9



Here, r corresponds to the π/2 counterclockwise rotation map in the parameter domain. We

denote by F(ı) ◦rκ the reparametrization of the patch Ω(ı) (with parametrization F(ı)) by a rotation

with an angle of κπ/2, see Figure 4.

F(ı)([0, 1]2)
(
F(ı) ◦ r

)
([0, 1]2)

Figure 4: Visualization of a reparametrization for a given patch Ω(ı). The local coordinates are depicted in a similar

fashion as in Figure 2.

A proof of Lemma 1 is straightforward and will be omitted here. Actually, for each interface

there exist two parametrizations in standard form, depending on the order of the indices ı1 and ı2,

(changing the order of the patches simply changes the orientation of the interface with respect to

the two patches). Similarly, for an interior vertex the choice of the indices is not unique; moreover,

in case of an interior vertex, all sub-indices are considered to be modulo (2ν), e.g., ı0 = ı2ν .

3. C1 isogeometric spaces

In this section we define C0 and then C1 multi-patch isogeometric spaces, discuss the relation

to geometric continuity G1 of the graph parametrization, and the notion of AS-G1 continuity of

the multi-patch parametrization.

3.1. Isogeometric spaces

Definition 9 (Isogeometric spaces). We define the C0 isogeometric space as

V0 =
{
ϕh ∈ C0(Ω) | for all i ∈ IΩ, f

(i)
h = ϕh ◦ F(i) ∈ Sp,rh

}
, (10)

and the C1 isogeometric space as

V1 = V0 ∩ C1(Ω). (11)

3.2. C1 regularity of isogeometric functions and G1 graph regularity

The graph Φ ⊂ Ω × R of an isogeometric function ϕh : Ω → R is naturally split into patches

Φ(i) having the parametrizations  F(i)

f
(i)
h

 : [0, 1]2 → Φ(i), (12)

where f
(i)
h = ϕh ◦ F(i).

The C1 continuity at an interface Σ(i) is, by definition, the G1 (geometric) continuity of its

graph parametrization, as stated in the next proposition.
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Proposition 1. Under Assumption 3, an isogeometric function ϕh ∈ V0 belongs to V1 if and only

if the parametrization (12) of its graph is G1 continuous at the interfaces Σ
(i)

, for all i ∈ I◦Σ.

For a discussion and generalizations of the equivalence above see [10, 16, 23]. The definition of

G1 continuity, in our context, is detailed below.

Definition 10 (G1 continuity at Σ(i)). Consider an interface Σ(i), with i ∈ I◦Σ. Assume TΣ(i) =

{(ı1, 0), (ı2, 1)}, that is, the adjacent patches have parametrizations F(ı1) and F(ı2) in standard form

for Σ(i) (see Section 2.4). The graph parametrization (12) is said to be G1 at Σ
(i)

if there exist

functions α(i,ı1) : [0, 1]→ R, α(i,ı2) : [0, 1]→ R and β(i) : [0, 1]→ R such that for all ξ ∈ [0, 1],

α(i,ı1)(ξ)α(i,ı2)(ξ) > 0 (13)

and

α(i,ı1)(ξ)

 ∂2F
(ı2)(ξ, 0)

∂2f
(ı2)
h (ξ, 0)

+ α(i,ı2)(ξ)

 ∂1F
(ı1)(0, ξ)

∂1f
(ı1)
h (0, ξ)

+ β(i)(ξ)

 ∂2F
(ı1)(0, ξ)

∂2f
(ı1)
h (0, ξ)

 = 0. (14)

In the framework of Definition 10, it is useful to introduce functions β(i,ı1) and β(i,ı2) such that

β(i)(ξ) = α(i,ı1)(ξ)β(i,ı2)(ξ) + α(i,ı2)(ξ)β(i,ı1)(ξ). (15)

We call the functions α(i,ı1), α(i,ı2), β(i,ı1) and β(i,ı2) the gluing data for the interface Σ(i).

In the context of IGA, the multi-patch domain parametrizations F(i) are considered given (at

least, at each linearization step) and determine the gluing data above, while f
(i)
h are the unknowns

which need to fulfill the gluing condition (third equation of (14)) in order to represent C1 isogeo-

metric functions. This is stated in the next result which combines Proposition 1 and Definition 10.

Proposition 2. For each i ∈ I◦Σ, assuming TΣ(i) = {(ı1, 0), (ı2, 1)} (i.e., F(ı1) and F(ı2) in standard

form for Σ(i)), let α(i,ı1), α(i,ı2) and β(i) such that for all ξ ∈ [0, 1] it holds α(i,ı1)(ξ)α(i,ı2)(ξ) > 0

and

α(i,ı1)(ξ)∂2F
(ı2)(ξ, 0) + α(i,ı2)(ξ)∂1F

(ı1)(0, ξ) + β(i)(ξ)∂2F
(ı1)(0, ξ) = 0. (16)

Let ϕh ∈ V0. Then ϕh ∈ V1 if and only if for all i ∈ I◦Σ and ξ ∈ [0, 1], it holds

α(i,ı1)(ξ)∂2f
(ı2)
h (ξ, 0) + α(i,ı2)(ξ)∂1f

(ı1)
h (0, ξ) + β(i)(ξ)∂2f

(ı1)
h (0, ξ) = 0, (17)

where f
(i)
h = ϕh ◦ F(i).

Proof. Due to the regularity condition (3), for each ξ ∈ [0, 1], (16) are two linearly independent

equations for [α(i,ı1)(ξ), α(i,ı2)(ξ), β(i)(ξ)], whose solutions are, for completeness,

α(i,ı1)(ξ) = γ(ξ) det
[
∂1F

(ı1)(0, ξ) ∂2F
(ı1)(0, ξ)

]
,

α(i,ı2)(ξ) = γ(ξ) det
[
∂1F

(ı2)(ξ, 0) ∂2F
(ı2)(ξ, 0)

]
,

β(i)(ξ) = γ(ξ) det
[
∂2F

(ı2)(ξ, 0) ∂2F
(ı1)(0, ξ)

]
,

(18)
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where γ(ξ) is arbitrary and we have used ∂2F
(ı1)(0, ξ) = ∂1F

(ı2)(ξ, 0).

Assume now ϕh is C1, that is, (14) holds, by Proposition 1. The gluing data allowed in (14)

are already determined by (16), as given in (18). The third equation of (14) is the same as (17).

Conversely, if (17) holds, together with (16) it yields (14), that is, ϕh is C1.

What this proposition shows, is that the gluing data are completely determined (up to a common

factor γ(ξ)) by the patch parametrizations F(ı1), F(ı2). The C1 condition on the isogeometric

function ϕh is then a linear constraint on the functions f
(ı1)
h , f

(ı2)
h in the parameter domain. The

proof above also shows that one can select the gluing data such that α(i,ı1), α(i,ı2) ∈ S2p−1,r−1
h and

β(i) ∈ S2p,r
h . A special case is when the gluing data are polynomial functions. This happens in

particular (but not only) for Bézier patches, which is often the case in literature. In this situation,

since α(i,ı1), α(i,ı2) and β(i) are determined up to a common multiplicative function, it is not

restrictive to assume the following.

Assumption 11 (Simplification of gluing data). If α(i,ı1) and α(i,ı2) are polynomial functions, we

assume that they are relatively prime (i.e., deg(gcd(α(i,ı1), α(i,ı2))) = 0).

Note also that the choice of β(i,ı1) and β(i,ı2) is not unique.1 One can show that there exist

piecewise polynomial functions β(i,ı1) and β(i,ı2) that satisfy equation (15).

3.3. Analysis-suitable G1 condition

In order to ensure optimal reproduction properties for the trace and normal derivative along

the interfaces of the isogeometric space V1, we introduce an additional condition on the geometry

parametrization, as in [10, 21], stated as a condition on the gluing data α(i,ı1), α(i,ı2), β(i,ı1) and

β(i,ı2).

Definition 12 (Analysis-suitable G1 parametrization). The parametrizations F(ı1) and F(ı2) are

analysis-suitable G1 at the interface Σ(i) (in short, AS-G1(Σ(i)) or AS-G1) if there exist gluing data

α(i,ı1), α(i,ı2), β(i,ı1) and β(i,ı2) that are linear polynomials and such that (14)–(15) hold.

The class of AS-G1 parametrizations contains, but is not restricted to, bilinear parametrizations,

see [10, 22]. Note that this is a non-trivial requirement. However, it was shown in [22] that many

multi-patch geometries can be reparametrized to satisfy the AS-G1 constraints, motivating the

following assumption.

Assumption 13. We assume that for all interfaces Σ(i), i ∈ I◦Σ, the parametrizations F(ı1) and

F(ı2) are analysis-suitable G1.

1Even if not necessary in this paper, from the practical point of view it is advisable to select stable gluing data

e.g. by minimizing ‖α(i,ı1) − 1‖2L2(0,1) + ‖α(i,ı2) − 1‖2L2(0,1) as well as ‖β(i,ı1)‖2L2(0,1) + ‖β(i,ı2)‖2L2(0,1). In case of

parametric continuity, i.e., β(i) ≡ 0 and α(i,ı1) = α(i,ı2), this implies β(i,ı1) ≡ β(i,ı2) ≡ 0 and α(i,ı1) = α(i,ı2) ≡ 1.
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4. The Argyris isogeometric space A ⊂ V1

Unlike V0, the isogeometric space V1 has a complex structure. Every interface generates certain

C1 constraints, which are usually not independent of each other. At every interior vertex, several

interfaces meet, which may lead to possibly conflicting constraints. The geometry needs to satisfy

additional conditions there. In the context of computer-aided geometric design these are sometimes

called vertex enclosure constraints, see e.g. [17]. In addition to this issue concerning vertices, the

dimension of V1 depends also on the domain parametrization even for the simplest configuration

of two bilinear patches, as shown in [21, 23]. For this reason, instead of dealing with V1 itself, we

introduce a suitable subspace A ⊂ V1 which is simpler to construct and has a dimension which is

independent of the geometry parametrization. The space A is named Argyris isogeometric space

since it represents an extension of the classical Argyris finite element space, as explained in the

Introduction.

4.1. Description and properties of A
The functions spanning the space A are standard isogeometric functions within the patches,

possess a special structure at the patch interfaces and edges (which is motivated by [10]) and are

C2 at all vertices.

Precisely, we define A as the (direct) sum of interior, edge and vertex components:

A =

⊕
i∈IΩ

A◦
Ω(i)

⊕
⊕
i∈IΣ

A◦
Σ(i)

⊕
⊕
i∈IX

Ax(i)

 . (19)

The patch-interior basis functions spanningA◦
Ω(i) have their support entirely contained in one patch.

They are taken as those functions supported on the patch Ω(i) which have vanishing function values

and gradients at the entire boundary of the patch.

The edge-interior basis functions spanning A◦
Σ(i) have their support contained in an (h-depen-

dent) neighborhood of the edge Σ(i). They span function values and normal derivatives along

the interface and have vanishing derivatives up to second order at the endpoints of the interface

(vertices of the multi-patch domain). They are thus supported in at most two patches.

The vertex basis functions spanning Ax(i) are supported within an (h-dependent) neighborhood

of the vertex x(i). There are exactly six such functions per vertex and they span the function value

and all derivatives up to second order at the vertex. Hence, they are C2 at the vertex by definition,

see Proposition 4.

The precise definitions of the different types of basis functions will be given in the three sections

below, more precisely in Definitions 16, 18 and 21, for the patch-interior, edge-interior and vertex

basis, respectively.

Note that for splines of maximal smoothness r = p−1 within the patches there is no convergence

of the approximation error under h-refinement even on a simple bilinear two-patch domain, see [10].

Hence, we have the following request.

Assumption 14 (Maximal regularity within the patches). We assume r ≤ p− 2.

13



The assumption above is needed to allow h-refinement (see [10]). Moreover, the split (19) itself

is well defined if the spline spaces are sufficiently refined, as stated in the next assumption.

Assumption 15 (Minimal mesh resolution within the patches). We assume Sp,rh has n ≥ 4−r
p−r−1

elements per direction, that is h ≤ p−r−1
4−r .

Remark 3. A Bézier patch (i.e., h = 1) fulfills Assumption 15 and, trivially, Assumption 14, for

degree p ≥ 5. This is the case considered in [6, 31]. However, we study the subspace A ⊂ V1.

Remark 4. The dimensions of the subspaces in (19) do not depend on the geometry and satisfy

dim(A◦
Ω(i)) = ((p− r)(n− 1) + p− 3)2 ,

for each i ∈ IΩ,

dim(A◦
Σ(i)) = 2(p− r − 1)(n− 1) + p− 9,

for each i ∈ IΣ, as well as

dim(Ax(i)) = 6,

for each i ∈ IX , cf. Definition 16, 18, 19 and Lemma 3. Hence, the dimension of A is completely

determined by the degree p, the regularity r, the number of elements in each direction n, as well as

the number of patches, edges and vertices, via

dim(A) = |IΩ| · ((p− r)(n− 1) + p− 3)2 + |IΣ| · (2(p− r − 1)(n− 1) + p− 9) + |IX | · 6.

4.2. The patch-interior function space A◦
Ω(i)

For each patch Ω(i) with i ∈ IΩ, we define a function space A◦
Ω(i) as the span of all basis

functions supported in Ω(i), which have vanishing function value and vanishing gradients at the

patch boundary ∂Ω(i). For the following definition, recall that bj, for j ∈ I, is the standard tensor-

product B-spline basis for the spline space Sp,rh .

Definition 16 (Patch-interior basis). Let i ∈ IΩ, then we define

AΩ(i) = span
{

B
(i)
j : Ω

(i) → R such that B
(i)
j ◦ F(i) = bj, for j ∈ I

}
(20)

and

A◦
Ω(i) = span

{
B

(i)
j : Ω

(i) → R such that B
(i)
j ◦ F(i) = bj, for j ∈ I◦

Ω(i)

}
(21)

with I◦
Ω(i) = {2, . . . , N − 3}2 ⊂ I.

With a little abuse of notation, we consider the functions of A◦
Ω(i) as defined on the whole Ω by

extending to zero outside Ω
(i)

. We easily have then A◦
Ω(i) ⊆ V1 and in particular

A◦
Ω(i) =

{
ϕh ∈ V1 such that ϕh(x) = 0 and ∇ϕh(x) = 0, for all x ∈ Ω \ Ω(i)

}
.

We also define straightforwardly a projection operator onto the subspace A◦
Ω(i) .
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Definition 17 (Patch-interior dual basis and projector). Let {λj = λj1 ⊗ λj2}j∈I be a dual basis

for the basis {bj}j∈I. For each i ∈ IΩ, we define the projector ΠA◦
Ω(i)

: L2 (Ω)→ V1 such that

ΠA◦
Ω(i)

(ϕ) =
∑

j∈I◦
Ω(i)

Λj(ϕ)B
(i)
j ,

where Λj(ϕ) = λj(ϕ ◦ F(i)).

4.3. The edge function space A◦
Σ(i)

In this section, we consider first the most interesting case of interior edges, that is when Σ(i),

for i ∈ I◦Σ, is an interface between the patches Ω(ı1) and Ω(ı2). The extension to boundary edges is

straightforward and will be discussed briefly after Definition 18. The parametrizations F(ı1), F(ı2)

are assumed to be in standard form for Σ(i), see Section 2.4. The first step is the definition of a

space over Ω
(ı1) ∪ Ω

(ı2)
, which contains isogeometric functions fulfilling the C1 constraints at the

interface Σ(i). We define AΣ(i) as the direct sum of two subspaces AΣ(i),0 and AΣ(i),1, following the

construction in [10]. The spaces span the function values and the cross derivative values along the

interface, respectively2. The number of elements in the spaces Sp,r+1
h and Sp−1,r

h considered below

is the same and is denoted by n.

Definition 18 (Basis at the interfaces). Let Σ(i), for i ∈ I◦Σ, be an interface in standard form.

Consider the univariate spline spaces S+ = Sp,r+1
h and S− = Sp−1,r

h , with bases {b+j }j∈I+ , and

{b−j }j∈I− , respectively, where I± = {0, . . . , N± − 1} with N− = (p − r − 1)(n − 1) + p and N+ =

N−+1 = (p−r−1)(n−1)+p+1. Recall that {bj}j∈{0,1,...,N−1} is the standard univariate B-spline

basis for Sp,rh , where N = (p− r)(n− 1) + p+ 1.

We define

AΣ(i),0 = span
{

B
(i)
(j1,0) : Ω

(ı1) ∪ Ω
(ı2) → R, for j1 ∈ I+

}
, (22)

with
B

(i)
(j1,0) ◦ F(ı1)(ξ1, ξ2) = f̄

(i,ı1)
(j1,0) = b+j1(ξ2)c0(ξ1)− β(i,ı1)(ξ2)(b+j1)′(ξ2)c1(ξ1),

B
(i)
(j1,0) ◦ F(ı2)(ξ1, ξ2) = f̄

(i,ı2)
(j1,0) = b+j1(ξ1)c0(ξ2)− β(i,ı2)(ξ1)(b+j1)′(ξ1)c1(ξ2),

(23)

where c0 = b0 + b1 and c1 = h
p b1, and

AΣ(i),1 = span
{

B
(i)
(j1,1) : Ω

(ı1) ∪ Ω
(ı2) → R, for j1 ∈ I−

}
, (24)

with
B

(i)
(j1,1) ◦ F(ı1)(ξ1, ξ2) = f̄

(i,ı1)
(j1,1) = α(i,ı1)(ξ2)b−j1(ξ2)b1(ξ1),

B
(i)
(j1,1) ◦ F(ı2)(ξ1, ξ2) = f̄

(i,ı2)
(j1,1) = −α(i,ı2)(ξ1)b−j1(ξ1)b1(ξ2).

(25)

We define

AΣ(i) = AΣ(i),0 ⊕AΣ(i),1 = span
{

B
(i)
j : Ω

(ı1) ∪ Ω
(ı2) → R, for j ∈ IΣ(i)

}
, (26)

2The complete C1 space is slightly larger for certain configurations, see Appendix C and [21] for a construction

of the complete basis.
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with IΣ(i) = (I+ × {0}) ∪ (I− × {1}).
Finally we define the space A◦

Σ(i) as

A◦
Σ(i) = span

{
B

(i)
j : Ω

(ı1) ∪ Ω
(ı2) → R, for j ∈ I◦

Σ(i)

}
, (27)

with I◦
Σ(i) = {j ∈ IΣ(i) : j1 + j2 ≥ 3 and j1 ≤ N− − 3}.

Remark 5. Assumption 14 guarantees that S+ and S− are proper spline spaces, that is, piecewise

polynomials when h < 1 (see also Theorem 1 of [10]). Assumption 15 guarantees that the space

A◦
Σ(i) is nonempty (N− ≥ 5).

For completeness, we give now the definition of the basis at the boundary edge, which is just a

simplification of the previous one.

Definition 19 (Basis at the boundary edges). Let Σ(i), for i ∈ IΓ
Σ, be a boundary edge in standard

form. With the same notation as in Definition 18, we define

AΣ(i),0 = span
{

B
(i)
(j1,0) : Ω

(ı1) → R, for j1 ∈ I+
}
, (28)

with

B
(i)
(j1,0) ◦ F(ı1)(ξ1, ξ2) = f̄

(i,ı1)
(j1,0) = b+j1(ξ2)c0(ξ1), (29)

and

AΣ(i),1 = span
{

B
(i)
(j1,1) : Ω

(ı1) → R, for j1 ∈ I−
}
, (30)

with

B
(i)
(j1,1) ◦ F(ı1)(ξ1, ξ2) = f̄

(i,ı1)
(j1,1) = b−j1(ξ2)b1(ξ1). (31)

We set

AΣ(i) = AΣ(i),0 ⊕AΣ(i),1 = span
{

B
(i)
j : Ω

(ı1) → R, for j ∈ IΣ(i)

}
, (32)

with IΣ(i) = (I+ × {0}) ∪ (I− × {1}), and

A◦
Σ(i) = span

{
B

(i)
j : Ω

(ı1) → R, for j ∈ I◦
Σ(i)

}
, (33)

with I◦
Σ(i) = {j ∈ IΣ(i) : j1 + j2 ≥ 3 and j1 ≤ N− − 3}.

As for the patch-interior space, we can extend the functions of AΣ(i) and A◦
Σ(i) to zero. Re-

markably, we have the following two inclusions.

Lemma 2. We have

AΣ(i) ⊂ C1(Σ(i)).

Proof. By construction, the pair of functions (23) fulfills condition (17), that is for all ξ ∈ [0, 1],

α(i,ı1)(ξ)∂2f̄
(i,ı2)
(j1,0)(ξ, 0) + α(i,ı2)(ξ)∂1f̄

(i,ı1)
(j1,0)(0, ξ) + β(i)(ξ)∂2f̄

(i,ı1)
(j1,0)(0, ξ) = 0,

The same holds for the pair of functions (25): For all ξ ∈ [0, 1],

α(i,ı1)(ξ)∂2f̄
(i,ı2)
(j1,1)(ξ, 0) + α(i,ı2)(ξ)∂1f̄

(i,ı1)
(j1,1)(0, ξ) + β(i)(ξ)∂2f̄

(i,ı1)
(j1,1)(0, ξ) = 0.

The statement follows thanks to Proposition 2, see [10] for more details.
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Proposition 3. We have

A◦
Σ(i) ⊂ V1.

Proof. One can easily characterize A◦
Σ(i) as the subset of functions of AΣ(i) having null value,

gradient and Hessian at the edge endpoints. Then, by construction, the functions in A◦
Σ(i) have

vanishing trace and derivative at Σ(i′), for all i′ ∈ IΣ, i′ 6= i. The statement follows.

We further define a dual basis and projection operator onto A◦
Σ(i) .

Definition 20 (Edge-interior dual basis and projector). Let {λ+
j }j∈I+ be a dual basis for {b+j }j∈I+

and {λ−j }j∈I− a dual basis for {b−j }j∈I− . We define

Λ
(i)
(j1,0)(ϕ) = λ+

j1

(
ϕ ◦ F(ı1)(0, •)

)
,

Λ
(i)
(j1,1)(ϕ) = λ−j1

(
h

p
(∇ϕ) ◦ F(ı1)(0, •) · d(i)(•)

)
,

where d(i) is the transversal vector

d(i)(ξ) =
1

α(i,ı1)(ξ)

(
∂1F

(ı1)(0, ξ) + β(i,ı1)(ξ) ∂2F
(ı1)(0, ξ)

)
.

We define the projector ΠA◦
Σ(i)

: C1
(
Σ(i)

)
→ A◦

Σ(i) such that

ΠA◦
Σ(i)

(ϕ) =
∑

j∈I◦
Σ(i)

Λ
(i)
j (ϕ)B

(i)
j . (34)

Remark 6. The projector ΠA◦
Σ(i)

inherits its properties (such as the locality of the support) from

the basis functions B
(i)
j and from the univariate dual bases {λ+

j }j∈I+ and {λ−j }j∈I−.

Remark 7. One can define ΠA◦
Σ(i)

beyond C1
(
Σ(i)

)
, e.g. H3/2+ε(Ω), for ε > 0, suffices.

4.4. The vertex function space Ax(i)

Let i ∈ IX , and x(i) be a vertex with Σ(ı1), Ω(ı2), Σ(ı3), . . . , Ω(ı2ν), Σ(ı2ν+1) the sequence of edges

and patches around x(i) in counterclockwise order. Throughout this section, we always assume that

the parametrizations F(ı2), . . . , F(ı2ν) are in standard form for the vertex x(i), as stated in Section

2.4.

We define the vertex function space Ax(i) via a suitable projection operator.

Lemma 3. There exists a function space Ax(i) ⊂ V1 of dimension 6 and a suitable projector

ΠA
x(i)

: C2(x(i))→ Ax(i) ⊂ V1, such that for all ϕ ∈ C2(x(i)) it holds

∂m1
x1
∂m2
x2

(ΠA
x(i)

ϕ)(x(i)) = ∂m1
x1
∂m2
x2

ϕ(x(i)) (35)

for m1,m2 ≥ 0 and m1 +m2 ≤ 2.
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We will give a constructive proof of this lemma later. To do so, we need to establish some

preliminary constructions. Having given such an interpolatory projector, we can now define a basis

for the vertex space Ax(i) .

Definition 21 (Basis at the vertices). Let Ax(i) and ΠA
x(i)

be as in Lemma 3. Let

σ =

(
h

p ν

ν∑
`=1

‖∇F(ı2`)(0, 0)‖

)−1

;

then

Ax(i) = span

{
?

B
(i)

j : j ∈ Ix(i)

}
⊂ V1, (36)

where
?

B
(i)

j

?

B
(i)

j = ΠA
x(i)

(
σj1+j2 (x1 − x(i)

1 )j1

j1!

(x2 − x(i)
2 )j2

j2!

)
, (37)

and Ix(i) = {j = (j1, j2) : 0 ≤ j1, j2 and j1 + j2 ≤ 2}.

Remark 8. The factor σj1+j2 in (37) is introduced to guarantee a uniform scaling, in L∞, of the

basis functions. Indeed the vertex basis functions fulfill

∂m1
x1
∂m2
x2

(
?

B
(i)

j

)
(x(i)) = σj1+j2δm1

j1
δm2
j2

for 0 ≤ m1 ≤ 2, 0 ≤ m2 ≤ 2 and m1 +m2 ≤ 2, where δmj is the Kronecker delta.

The construction is organized in two steps: In the first part we identify in each patch a set of

functions B
(`)
j and B

(`)
j with specific interpolation properties at the vertex x(i); then we combine

the functions above to define global C1 isogeometric functions that allow interpolation up to second

order derivatives at the vertex x(i).

Definition 22. Let k be an even index. We define the space A(ık)

x(i) of dimension 4 as

A(ık)

x(i) = span
{

B
(ık )
j : j ∈ {0, 1}2

}
,

where B
(ık )
j are given as in (20).

Lemma 4. For even k, there exists a unique projector

Π
A(ık)

x(i)

: C2
(
x(i)
)
→ A(ık)

x(i) ,

such that

∂m1
1 ∂m2

2

(
(Π
A(ık)

x(i)

ϕ) ◦ F(ık)

)
(0, 0) = ∂m1

1 ∂m2
2

(
ϕ ◦ F(ık)

)
(0, 0) (38)

for 0 ≤ m1 ≤ 1, 0 ≤ m2 ≤ 1.

Proof. The existence of such an operator follows from the classical interpolation properties of the

standard tensor-product B-spline basis.
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Definition 23. Let k be an odd index. We define the space A(ık)

x(i) of dimension 5 as

A(ık)

x(i) = span
{

B
(ık )
j : 0 ≤ j1, 0 ≤ j2 ≤ 1, j1 + j2 ≤ 2

}
,

where the functions B
(ık )
j are given as in (23) and (25) if Σ(ık) is an interface, or in (29) and (31) if

Σ(ık) is a boundary edge.

Lemma 5. Let k be an odd index. There exists a unique projector

Π
A(ık)

x(i)

: C2
(
x(i)
)
→ A(ık)

x(i) ,

such that if ık−1 ∈ IΩ, for 0 ≤ m1 ≤ 1, 0 ≤ m2 ≤ 2 and m1 +m2 ≤ 2 it holds

∂m1
1 ∂m2

2

(
(Π
A(ık)

x(i)

ϕ) ◦ F(ık−1)

)
(0, 0) = ∂m1

1 ∂m2
2

(
ϕ ◦ F(ık−1)

)
(0, 0); (39)

if ik+1 ∈ IΩ, for 0 ≤ m1 ≤ 2, 0 ≤ m2 ≤ 1 and m1 +m2 ≤ 2 it holds

∂m1
1 ∂m2

2

(
(Π
A(ık)

x(i)

ϕ) ◦ F(ık+1)

)
(0, 0) = ∂m1

1 ∂m2
2

(
ϕ ◦ F(ık+1)

)
(0, 0). (40)

A proof of this lemma can be found in Appendix A.

Definition 24 (Vertex projector). We define

ΠA
x(i)

=
2ν∑
k=1

(−1)k+1Π
A(ık)

x(i)

= ΠA(ı1)

x(i)

−ΠA(ı2)

x(i)

± . . .+ Π
A(ı2ν−1)

x(i)

−ΠA(ı2ν )

x(i)

. (41)

With an abuse of notation, we assume ΠA
x(i)

returns functions defined on the whole domain Ω,

extending to zero outside the support.

Remark 9. Since the projectors Π
A(ık)

x(i)

onto A(ık)

x(i) are defined by Hermite interpolation at the vertex

x(i), the projector ΠA
x(i)

inherits its properties (such as the support size) from the basis functions

B
(ık )
j , for k even, and B

(ık )
j , for k odd.

The projector ΠA
x(i)

in Definition 24 will satisfy the properties required in Lemma 3. To

complete the proof, we need one more preliminary result.

Lemma 6. Let k be any even integer index and ϕ ∈ C2(x(i)). Then

∂m1
1 ∂m2

2

(
(ΠA

x(i)
ϕ) ◦ F(ık)

)
(0, 0) = ∂m1

1 ∂m2
2

(
ϕ ◦ F(ık)

)
(0, 0) (42)

for m1,m2 ≥ 0 and m1 +m2 ≤ 2. Moreover, if ϕ ≡ 0 then ΠA
x(i)

ϕ ≡ 0.

This lemma states that the projector interpolates up to second order derivatives, when mapped

into the parameter domain. A proof of this lemma can be found in Appendix A.
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Proof of Lemma 3. Given ϕ ∈ C2(x(i)), since ΠA
x(i)

ϕ is supported in the region Ω
(ı2) ∪ . . .∪Ω

(ı2ν)
,

we need to consider the interfaces therein, that are Σ
(ı1)
, . . . ,Σ

(ı2ν−1)
for an interior vertex or

Σ
(ı3)
, . . . ,Σ

(ı2ν−3)
for a boundary vertex. Then for an even index k, consider a generic Σ

(ık+1)
, with

adjacent patches Ω(ık) and Ω(ık+2). We have

ΠA
x(i)

ϕ = Π
A

(ık+1)

x(i)

ϕ−Π
A(ık)

x(i)

ϕ+ Π
A

(ık−1)

x(i)

ϕ, on the patch Ω
(ık)

,

ΠA
x(i)

ϕ = Π
A

(ık+3)

x(i)

ϕ−Π
A

(ık+2)

x(i)

ϕ+ Π
A

(ık+1)

x(i)

ϕ, on the patch Ω
(ık+2)

.
(43)

The term −Π
A(ık)

x(i)

ϕ + Π
A

(ık−1)

x(i)

ϕ has vanishing trace and gradient at Σ
(ık+1)

. Indeed, adopting

again the abbreviated notation as in the proof of Lemma 6, we have

(Π
A

(ık−1)

x(i)

ϕ) ◦ F(ık) − (Π
A(ık)

x(i)

ϕ) ◦ F(ık) = f
(ık−1,ık)
h − f (ık,ık)

h (44)

and, by plugging (Appendix A) and (Appendix A) into the right hand side of (44), it can be seen

directly that the function and its gradient vanish at (0, ξ), for all ξ ∈ [0, 1]. Similarly, Π
A

(ık+3)

x(i)

ϕ−

Π
A

(ık+2)

x(i)

ϕ has vanishing trace and gradient at Σ
(ık+1)

. The only remaining term in (43) is Π
A

(ık+1)

x(i)

ϕ,

which is C1(Σ
(ık+1)

) by Lemma 2.

The interpolation property (35) follows from (42). Then, the dimension of the image of ΠA
x(i)

follows from Lemma 6.

A dual vertex basis is straightforwardly derived by interpolation of derivatives up to second

order.

Definition 25. The set {
?

Λ
(i)
j }j∈Ix(i)

, with

?

Λ
(i)
j (ϕ) =

(∂j1x1∂
j2
x2 ϕ)(x(i))

σj1+j2
,

is a dual basis for {
?

B
(i)

j }j∈Ix(i)
.

We have by definition ΠA
x(i)

(ϕ) =
∑

j∈I
x(i)

?

Λ
(i)
j (ϕ)

?

B
(i)

j .

4.5. Basis, dual basis and projector for the Argyris isogeometric space A

To summarize the results of this section, the functions

• {B(i)
j }j∈I◦

Ω(i)
, for i ∈ IΩ (as in Definition 16),

• {B(i)
j }j∈I◦

Σ(i)
, for i ∈ IΣ (as in Definitions 18 and 19), and

• {
?

B
(i)

j }j∈Ix(i)
, for i ∈ IX (as in Definition 21),
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form a basis for the space A. The global projector

ΠA : C2(Ω)→ A

is defined via

ΠA(ϕ) =
∑
i∈IΩ

ΠA◦
Ω(i)

(ϕ) +
∑
i∈IΣ

ΠA◦
Σ(i)

(ϕ) +
∑
i∈IX

ΠA
x(i)

(ϕ),

where

ΠA◦
Ω(i)

(ϕ) =
∑

j∈I◦
Ω(i)

Λj(ϕ)B
(i)
j

as in Definition 17,

ΠA◦
Σ(i)

(ϕ) =
∑

j∈I◦
Σ(i)

Λ
(i)
j (ϕ)B

(i)
j

as in Definition 20, and

ΠA
x(i)

(ϕ) =
∑

j∈I
x(i)

?

Λ
(i)
j (ϕ)

?

B
(i)

j

as in Lemma 3 and Definition 25.

The following result follows directly from the definition of the space A.

Proposition 4. We have for ϕh ∈ A, that ϕh ∈ C1(Ω) and ϕh ∈ C2(x(i)) for all i ∈ IX .

5. Numerical examples

We perform L2-approximation over two AS-G1 multi-patch parametrizations to numerically

show that the Argyris isogeometric space A maintains the polynomial reproduction properties of

the entire space V1 for the traces and normal derivatives along the interfaces, and that the space A,

being a subspace of V1, produces relative L2 errors of the same magnitude as the entire space V1.

For this purpose, we consider the two AS-G1 multi-patch parametrizations visualized in Fig. 5

(left). Both AS-G1 geometries consist of single spline patches F(i) ∈ Sp,rh × Sp,rh with p = (3, 3),

r = (1, 1) and h = 1
2 , and are generated by using the method presented in [22]. The construction

of the AS-G1 five patch parametrization was already demonstrated in [22, Example 1]. The AS-G1

three-patch parametrization can be obtained in an analogous manner.

For both AS-G1 geometries we generate a sequence of nested spaces Ah and V1
h for p = (3, 3)

and r = (1, 1) by selecting the mesh size h as 1
4 , 1

8 , 1
16 and 1

32 . While the bases of the Argyris

spaces Ah are simply constructed as described in Section 4, the bases of the entire spaces V1
h are

obtained in the same way as in [22, Section 4.2] by means of the concept of minimal determining

sets (cf. [28]). Note that in contrast to the basis functions of Ah, the resulting basis functions of

V1
h are in general not locally supported and possess a support over at least one entire interface.

We use now the basis functions for the spaces Ah and V1
h to perform L2-approximation over the

two AS-G1 multi-patch parametrizations. Consider one of the spaces Ah or V1
h, and let φj be the

corresponding basis functions. The goal is to approximate the function

z : Ω→ R, z(x) = z(x1, x2) = 2 cos(x1) sin(x2), (45)
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Example: AS-G1 three-patch geometry
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Example: AS-G1 five-patch geometry

Figure 5: L2-projection over two AS-G1 multi-patch parametrizations (left) by using the two different spaces Ah and

V1
h (right) to approximate the function (45) (middle), cf. Table 1.

see Fig. 5 (middle), by the function

uh(x) =
∑
j

cjφj(x), cj ∈ R,

via minimizing the term

‖uh − z‖2L2 =

∫
Ω

(uh(x)− z(x))2dx→ min
cj

.

The isogeometric formulation of this linear problem was discussed in detail in [22, Section 4.2], and

will be omitted here for the sake of brevity.

Table 1 and Fig. 5 (right) report the resulting relative L2-errors and the estimated convergence

rates for the two spaces Ah and V1
h for the different mesh sizes h. The numerical results indicate

for both spaces convergence rates of optimal order O(h4) in the L2-norm and show that resulting

relative L2-errors are of the same magnitude for the two spaces.

6. Conclusion

We presented for the class of AS-G1 multi-patch parametrizations the construction of a basis

and of an associated dual basis for the so-called Argyris isogeometric space A, which generalizes the
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Subspace A Entire space V1

AS-G1 three-patch geometry (a)

h dimA
||uh−z||

L2
||z||

L2
e.c.r. ||·||

L2 dimV1 ||uh−z||
L2

||z||
L2

e.c.r. ||·||
L2

1/4 177 7.46e-03 - 222 3.21e-03 -

1/8 729 3.03e-04 4.62 822 2.4e-04 3.74

1/16 2985 1.8e-05 4.07 3174 1.73e-05 3.79

1/32 12105 1.15e-06 3.97 12486 1.14e-06 3.92

AS-G1 five-patch geometry (b)

h dimA
||uh−z||

L2
||z||

L2
e.c.r. ||·||

L2 dimV1 ||uh−z||
L2

||z||
L2

e.c.r. ||·||
L2

1/4 291 2.86e-02 - 372 2.35e-02 -

1/8 1211 6.5e-04 5.46 1376 6.14e-04 5.25

1/16 4971 3.28e-05 4.31 5304 3.14e-05 4.29

1/32 20171 2.02e-06 4.02 20840 1.99e-06 3.98

Table 1: Resulting relative L2-errors with estimated convergence rates of the diagonally scaled mass matrices by

performing L2-approximation over two AS-G1 multi-patch geometries using the two C1 spaces A and V1, cf. Fig. 5.

classical Argyris finite elements to multi-patch isogeometric spaces. It is a subspace of the entire C1

isogeometric space V1 maintaining the polynomial reproduction properties of V1 for the traces and

normal derivatives along the interfaces. This property of the subspace A was shown numerically

by performing L2-approximation over different AS-G1 multi-patch parametrizations. The use of

the Argyris space A instead of the space V1 is advantageous since the subspace A has a simpler

structure and allows a uniform and simple construction of the basis functions independent of the

AS-G1 domain parametrization. The construction of the basis (and of its dual basis) is based on the

decomposition of the space A into the direct sum of three subspaces called the patch-interior, the

edge and the vertex function space. The resulting basis and the dual basis have a simple form, since

the single functions are locally supported and are explicitly given by closed form representations.

This paper presents the foundation for further studies of C1 isogeometric spaces over AS-G1

multi-patch parametrizations, by providing a basis and corresponding projectors. A first planned

topic for future research is the theoretical investigation of the properties of the space A, such as

approximation error and stability estimates for h-refined meshes, which can be built upon a suitable

dual basis. Moreover, one may also construct a basis forming a partition of unity, following the ideas

presented in [12], based on local triangular Bézier surfaces at the vertices. We are also planning

to extend the construction to surface domains and to use our approach to perform Kirchhoff-Love

shell analysis for different linear and non-linear model configurations. Another challenging task

will be the extension to volumetric domains. So far, no generalization of AS-G1 parametrizations

to volumetric domains is known.
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Appendix A. Proof of Lemma 5 and 6

Proof of Lemma 5. Let φm1,m2 = ∂m1
x1
∂m2
x2
ϕ(x(i)). Assume ık−1, ık+1 ∈ IΩ (this is not true in

general for boundary vertices, if so the proof below simplifies in a trivial way). On each patch Ω(ı`),

` = k − 1 or ` = k + 1, we can write the pull-back of ϕ and of the projection Π
A(ık)

x(i)

ϕ as

f (ı`)(ξ1, ξ2) = ϕ ◦ F(ı`)(ξ1, ξ2)

and

f
(ık,ı`)
h (ξ1, ξ2) = (Π

A(ık)

x(i)

ϕ) ◦ F(ı`)(ξ1, ξ2).

We have by definition, using the abbreviations ∇φ = (φ1,0, φ0,1) and

Hφ =

 φ2,0 φ1,1

φ1,1 φ0,2

 ,

and using the chain rule of differentiation, that

f (ı`)(0, 0) = φ0,0,

∂1f
(ı`)(0, 0) = ∇φ∂1F

(ı`)(0, 0),

∂2f
(ı`)(0, 0) = ∇φ∂2F

(ı`)(0, 0),

∂2
1f

(ı`)(0, 0) = (∂1F
(ı`)(0, 0))T Hφ ∂1F

(ı`)(0, 0) +∇φ ∂1∂1F
(ı`)(0, 0),

∂1∂2f
(ı`)(0, 0) = (∂1F

(ı`)(0, 0))T Hφ ∂2F
(ı`)(0, 0) +∇φ ∂1∂2F

(ı`)(0, 0),

∂2
2f

(ı`)(0, 0) = (∂2F
(ı`)(0, 0))T Hφ ∂2F

(ı`)(0, 0) +∇φ ∂2∂2F
(ı`)(0, 0).

(A.1)

Consider the basis transformations from {b+0 , b
+
1 , b

+
2 } to {c+

0 , c
+
1 , c

+
2 } and from {b−0 , b

−
1 } to {c−0 , c

−
1 },

with

∂jξc
+
i (0) = δji for j = 0, . . . , 2, and ∂jξc

−
i (0) = δji for j = 0, 1,

where δji is the Kronecker delta. Then, recalling (23) and (25), we can rewrite the functions f
(ık,ık−1)
h

and f
(ık,ık+1)
h in terms of the new bases:

f
(ık,ık−1)
h (ξ1, ξ2) =

∑2
j=0 d0,j

(
c+
j (ξ2)c0(ξ1)− β(ık,ık−1)(ξ2)(c+

j )′(ξ2)c1(ξ1)
)

+
∑1

j=0 d1,j α
(ık,ık−1)(ξ2)c−j (ξ2)b1(ξ1),

(A.2)

and

f
(ık,ık+1)
h (ξ1, ξ2) =

∑2
j=0 d0,j

(
c+
j (ξ1)c0(ξ2)− β(ık,ık+1)(ξ1)(c+

j )′(ξ1)c1(ξ2)
)

−
∑1

j=0 d1,j α
(ık,ık+1)(ξ1)c−j (ξ1)b1(ξ2).

(A.3)
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Considering (A.2), we then have

f
(ık,ık−1)
h (0, 0) = d0,0,

∂2f
(ık,ık−1)
h (0, 0) = d0,1,

∂2
2f

(ık,ık−1)
h (0, 0) = d0,2,

∂1f
(ık,ık−1)
h (0, 0) = p

hα
(ık,ık−1)(0) d1,0 − β(ık,ık−1)(0) d0,1,

∂1∂2f
(ık,ık−1)
h (0, 0) = p

hα
(ık,ık−1)(0) d1,1 − β(ık,ık−1)(0) d0,2

+ p
h(α(ık,ık−1))′(0) d1,0 − (β(ık,ık−1))′(0) d0,1;

(A.4)

using the abbreviated notation

t(ık)(ξ) = ∂2F
(ık−1)(0, ξ) = ∂1F

(ık+1)(ξ, 0)

and

d(ık)(ξ) = 1

α(ık,ık−1)(ξ)

(
∂1F

(ık−1)(0, ξ) + β(ık,ık−1)(ξ) ∂2F
(ık−1)(0, ξ)

)
= − 1

α(ık,ık+1)(ξ)

(
∂2F

(ık+1)(ξ, 0) + β(ık,ık+1)(ξ) ∂1F
(ık+1)(ξ, 0)

)
we can determine all di,j from the interpolation conditions

f
(ık,ık−1)
h (0, 0) = f (ık−1)(0, 0),

∂2f
(ık,ık−1)
h (0, 0) = ∂2f

(ık−1)(0, 0),

∂2
2f

(ık,ık−1)
h (0, 0) = ∂2

2f
(ık−1)(0, 0),

∂1f
(ık,ık−1)
h (0, 0) = ∂1f

(ık−1)(0, 0),

∂1∂2f
(ık,ık−1)
h (0, 0) = ∂1∂2f

(ık−1)(0, 0)

and both (A.1) and (A.4):

d0,0 = φ0,0,

d0,1 = ∇φ t(ık)(0),

d0,2 = (t(ık)(0))T Hφ t(ık)(0) +∇φ (t(ık))′(0),

p
hd1,0 = ∇φ d(ık)(0),

p
hd1,1 = (t(ık)(0))T Hφ d(ık)(0) +∇φ (d(ık))′(0).

(A.5)

Hence, there exists a projector Π
A(ık)

x(i)

satisfying (39). We can reason similarly on (A.3), where we

have

f
(ık,ık+1)
h (0, 0) = d0,0,

∂1f
(ık,ık+1)
h (0, 0) = d0,1,

∂1∂1f
(ık,ık+1)
h (0, 0) = d0,2,

∂2f
(ık,ık+1)
h (0, 0) = − p

hα
(ık,ık+1)(0) d1,0 − β(ık,ık+1)(0) d0,1,

∂1∂2f
(ık,ık+1)
h (0, 0) = − p

hα
(ık,ık+1)(0) d1,1 − β(ık,ık+1)(0) d0,2

− p
h(α(ık,ık+1))′(0) d1,0 − (β(ık,ık+1))′(0) d0,1.

(A.6)
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In fact, after inserting (A.5) into (A.6) and simplifying, we obtain (A.1) for ` = k + 1. Hence, the

projector Π
A(ık)

x(i)

also satisfies (40), which concludes the proof.

Proof of Lemma 6. We use again the abbreviated notation f (ık) = ϕ◦F(ık) and f
(ı`,ık)
h = (Π

A(ıl)

x(i)

ϕ)◦

F(ık), where by definition f
(ı`,ık)
h = 0 for ` 6= k − 1, k, k + 1.

Then we have

(ΠA
x(i)

ϕ) ◦ F(ık) = f
(ık−1,ık)
h − f (ık,ık)

h + f
(ık+1,ık)
h . (A.7)

The active degrees-of-freedom of three terms in (A.7) with respect to the underlying tensor-product

spline space Sp,rh are pictured in Figure A.6.

ξ1

ξ2

Figure A.6: Active degrees-of-freedom of the functions in (A.7) with respect to the tensor-product spline space

Sp,r
h : The degrees of freedom corresponding to f

(ık−1,ık)

h depicted in green, corresponding to f
(ık,ık)
h in black and

corresponding to f
(ık+1,ık)

h in blue.

By definition and thanks to the interpolation properties (38) and (39)–(40) we have:

f
(ık+1,ık)
h (0, 0) = f (ık)(0, 0),

∂2f
(ık+1,ık)
h (0, 0) = ∂2f

(ık)(0, 0),

∂2
2f

(ık+1,ık)
h (0, 0) = ∂2

2f
(ık)(0, 0),

∂1f
(ık+1,ık)
h (0, 0) = ∂1f

(ık)(0, 0),

∂1∂2f
(ık+1,ık)
h (0, 0) = ∂1∂2f

(ık)(0, 0),

∂2
1f

(ık+1,ık)
h (0, 0) = 0,

and
f

(ık,ık)
h (0, 0) = f (ık)(0, 0),

∂1f
(ık,ık)
h (0, 0) = ∂1f

(ık)(0, 0),

∂2f
(ık,ık)
h (0, 0) = ∂2f

(ık)(0, 0),

∂1∂2f
(ık,ık)
h (0, 0) = ∂1∂2f

(ık)(0, 0),

∂2
1f

(ık,ık)
h (0, 0) = 0,

∂2
2f

(ık,ık)
h (0, 0) = 0,
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and
f

(ık−1,ık)
h (0, 0) = f (ık)(0, 0),

∂1f
(ık−1,ık)
h (0, 0) = ∂1f

(ık)(0, 0),

∂2
1f

(ık−1,ık)
h (0, 0) = ∂2

1f
(ık)(0, 0),

∂2f
(ık−1,ık)
h (0, 0) = ∂2f

(ık)(0, 0),

∂1∂2f
(ık−1,ık)
h (0, 0) = ∂1∂2f

(ık)(0, 0),

∂2
2f

(ık−1,ık)
h (0, 0) = 0.

Using the above relations into (A.7) we get (42).

Finally, if f (ık) vanishes, then all the derivatives above are null and, by definition, f
(ık−1,ık)
h ,

f
(ık,ık)
h and f

(ık+1,ık)
h are null.

Appendix B. Extension to non-uniform knots and (partially) matching meshes

Note that one can extend the presented construction easily to multi-patch domains with non-

uniform meshes and partially matching interfaces. We will briefly sketch the necessary adaptions.

We assume to have different spline spaces S(i) for every patch Ω(i) with i ∈ IΩ. Every space satisfies

S(i) = S(i)
1 ⊗ S

(i)
2 ,

where S(i)
k is a univariate spline space of degree p and regularity r, having n

(i)
k distinct inner knots

0 < η
(i)
k,1 < η

(i)
k,2 < . . . < η

(i)

k,n
(i)
k −1

< 1,

each with multiplicity p− r and having 0 and 1 as boundary knots with multiplicity p+ 1.

Having defined different spaces for every patch, we change Assumption 4 and Definition 9 and

assume F(i) ∈ S(i)×S(i) as well as f
(i)
h = ϕh ◦F(i) ∈ S(i). Now, in order to have a sufficiently large

C0 isogeometric space along every interface, we need that the knot meshes are (partially) matching

along all interfaces.

Assumption 26. Consider an interface Σ(i), with i ∈ I◦Σ. Assume F(ı1), F(ı2) are in standard form

for Σ(i). Then the corresponding meshes are

• matching, i.e., S(ı1)
2 = S(ı2)

1 , or

• partially matching, i.e., S(ı1)
2 ⊆ S(ı2)

1 or S(ı2)
1 ⊆ S(ı1)

2 .

Note that two meshes are matching along an interface, if the corresponding knots are the same.

The meshes are partially matching along an interface, if the knots of one patch are a subset of the

knots of the other.

The space A can be constructed just as for uniform meshes. The patch-interior basis (Definition

16) needs no additional modification. The edge-interior basis (Definition 18) uses spaces S+ and

S−, which are built from S(ı1)
2 ∩ S(ı2)

1 by reducing the knot multiplicity by one or reducing the

polynomial degree by one, respectively. See [21] for a construction of the complete basis for non-

uniform knots. The vertex basis (Definition 21) is defined as a linear combination of patch and

edge contributions and can be constructed analogously.
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Appendix C. Another approximating subspace Ã ⊆ V1

Instead of the space A given in (19), one can consider a slightly larger subspace Ã ⊆ V1, which

contains all isogeometric functions which are C2 at the interior vertices and boundary vertices of

valency ν ≥ 3 and are C1 everywhere else. The space Ã is given by

Ã =

⊕
i∈IΩ

Ã◦
Ω(i)

⊕
⊕
i∈I◦Σ

Ã◦
Σ(i)

⊕
 ⊕
i∈I◦X∪Ĩ

Γ
X

Ax(i)

 ,

where the indices in ĨΓ
X ⊆ IΓ

X represents all boundary vertices of valency ν ≥ 3. In contrast to (19),

different patch interior spaces, denoted by Ã◦
Ω(i) , and different edge function spaces, denoted by

Ã◦
Σ(i) , are used to generate the space Ã. A further difference is that the new edge function space

Ã◦
Σ(i) will be now only taken for all interfaces, and that the vertex function space Ax(i) have to

be only selected for all interior vertices and for all boundary vertices of valency ν ≥ 3. Below, we

will present the definitions of the spaces Ã◦
Ω(i) and Ã◦

Σ(i) , which will be similar to the ones for the

spaces A◦
Ω(i) and A◦

Σ(i) , see Definition 16 and 18, respectively.

Before, we will need some additional assumptions and definitions. We assume that in case of

β(i) ≡ 0 for Σ(i), i ∈ I◦Σ, the functions β(i,ı1) and β(i,ı2) are selected as β(i,ı1) ≡ β(i,ı1) ≡ 0. For each

Σ(i), i ∈ I◦Σ, let

z
(i)
β = {ξ0 ∈ h, . . . , (n− 1)h | β(i)(ξ0) = 0}, h(i)

β =

 0 if β(i) ≡ 0,

1 otherwise,

and

d(i)
α = max(deg(α(i,ı1)),deg(α(i,ı2))).

Since α(i,ı1) and α(i,ı2) are linear polynomials, and β(i) is a quadratic polynomial, we obtain that

d
(i)
α ∈ {0, 1} and z

(i)
β ∈ {0, 1, 2, n}, cf. [21]. For each ` ∈ {1, . . . , n − 1}, we denote by Sp,rh,` the

univariate spline space of degree p on the parameter domain [0, 1], constructed from the open

knot vector with n non-empty knots spans with (mesh) size h = 1/n, where the inner knots ih,

i ∈ {1, . . . , n−1} with i 6= `, have multiplicity p−r, and the inner knot `h has multiplicity p−r+1.

This means that functions of the space Sp,rh,` are Cr on [0, 1] except at the inner knot `h, where they

are only Cr−1 .

We first define the patch interior space Ã◦
Ω(i) ⊇ A◦Ω(i) . In contrast to the space A◦

Ω(i) , the

isogeometric functions of the space Ã◦
Ω(i) need not have vanishing values and gradients at possible

boundary edges of the multi-path domain Ω, but still have vanishing values and gradients at the

patch interfaces.

Definition 27. Let i ∈ IΩ, we define the space Ã◦
Ω(i) as

Ã◦
Ω(i) = span

{
B

(i)
j : Ω

(i) → R such that B
(i)
j ◦ F(i) = bj, for j ∈ Ĩ◦

Ω(i)

}
where the index set Ĩ◦

Ω(i) takes all j ∈ I which do not belong to the C1 data of an interface Σ(ı),

with ı ∈ I◦Σ, or to the C2 data of a vertex x(ı), with ı ∈ I◦X ∪ ĨΓ
X .
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The definition of the edge function space Ã◦
Σ(i) ⊇ A◦Σ(i) is based on the construction of the

(entire) C1 isogeometric space for AS-G1 two-patch geometries presented in [21].

Definition 28. Let Σ(i), for i ∈ I◦Σ, be an interface in standard form. Consider the univariate spline

spaces S̃+ = S
p,r+h

(i)
β

h and S̃− = Sp−d
(i)
α ,r

h , with bases {b̃+j }j∈Ĩ+ , and {b̃−j }j∈Ĩ− , respectively, where

Ĩ± = {0, . . . , Ñ±−1} with Ñ+ = (p−r−h(i)
β )(n−1)+p+1 and Ñ− = (p−d(i)

α −r)(n−1)+p−d(i)
α +1.

For each ` ∈ {1, . . . , n − 1}, let b̃#` be a B-spline of the space Sp,rh,` with the property b̃#` (`h) 6= 0

which have vanishing derivatives up to second order at both interface vertices. We define the index

set

Ĩ# =

 ∅ if z
(i)
β = 0 or β ≡ 0,

{` ∈ {1, . . . , n− 1} | β(i)(`h) = 0 and b̃#` exists} otherwise,

and ĨΣ(i) = (̃I+ × {0}) ∪ (̃I− × {1}) ∪ (̃I# × {2}). In addition, let c0 = b0 + b1 and c1 = h
p b1. We

define the space ÃΣ(i) as

ÃΣ(i) = span
{

B̃
(i)
j : Ω

(ı1) ∪ Ω
(ı2) → R, for j ∈ ĨΣ(i)

}
,

where
B̃

(i)
(j1,0) ◦ F(ı1)(ξ1, ξ2) = b̃+j1(ξ2)c0(ξ1)− β(i,ı1)(ξ2)(̃b+j1)′(ξ2)c1(ξ1),

B̃
(i)
(j1,0) ◦ F(ı2)(ξ1, ξ2) = b̃+j1(ξ1)c0(ξ2)− β(i,ı2)(ξ1)(̃b+j1)′(ξ1)c1(ξ2),

for j1 ∈ Ĩ+,

B̃
(i)
(j1,1) ◦ F(ı1)(ξ1, ξ2) = α(i,ı1)(ξ2)̃b−j1(ξ2)b1(ξ1),

B̃
(i)
(j1,1) ◦ F(ı2)(ξ1, ξ2) = −α(i,ı2)(ξ1)̃b−j1(ξ1)b1(ξ2),

for j1 ∈ Ĩ−, and

B̃
(i)
(j1,2) ◦ F(ı1)(ξ1, ξ2) = b̃#j1(ξ2)c0(ξ1)− β(i,ı1)(ξ2)(̃b#j1)′(ξ2)c1(ξ1) +

β(i,ı1)(j1h)

α(i,ı1)(j1h)
α(i,ı1)(ξ2)(̃b#j1)′(ξ2)c1(ξ1),

B̃
(i)
(j1,2) ◦ F(ı2)(ξ1, ξ2) = b̃#j1(ξ1)c0(ξ2)− β(i,ı2)(ξ1)(̃b#j1)′(ξ1)c1(ξ2) +

β(i,ı2)(j1h)

α(i,ı2)(j1h)
α(i,ı2)(ξ1)(̃b#j1)′(ξ1)c1(ξ2),

for j1 ∈ Ĩ#. Let then Ã◦
Σ(i) be the subspace of ÃΣ(i) , given by

Ã◦
Σ(i) = {ϕh ∈ ÃΣ(i) : ∂m1

x1
∂m2
x2
ϕh(x(ı)) = 0 for all ı ∈ I◦X ∪ ĨΓ

X and m1,m2 ≥ 0 and m1 +m2 ≤ 2}.

Remark 10. In contrast to the subspace A, the dimension of the subspace Ã depends on the domain

parametrization. Let Â◦
Ω(i) = Ã◦

Ω(i) and let

Â◦
Σ(i) = {ϕh ∈ AΣ(i) : ∂m1

x1
∂m2
x2
ϕh(x(ı)) = 0 for all ı ∈ I◦X ∪ ĨΓ

X , and m1,m2 ≥ 0 and m1 +m2 ≤ 2}.

Then, the subspace

Â =

⊕
i∈IΩ

Â◦
Ω(i)

⊕
⊕
i∈I◦Σ

Â◦
Σ(i)

⊕
 ⊕
i∈I◦X∪Ĩ

Γ
X

Ax(i)


with A ⊆ Â ⊆ Ã ⊆ V1, would be another choice of a C1 isogeometric subspace, and its dimension

is as the dimension of the subspace A independent of the domain parametrization.
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continuous functions on planar multi-patch geometries. Comput. Methods Appl. Mech. Engrg.,

316:209 – 234, 2017.

[21] M. Kapl, G. Sangalli, and T. Takacs. Dimension and basis construction for analysis-suitable

G1 two-patch parameterizations. Computer Aided Geometric Design, 52–53:75 – 89, 2017.

[22] M. Kapl, G. Sangalli, and T. Takacs. Construction of analysis-suitable G1 planar multi-patch

parameterizations. Computer-Aided Design, 97:41 – 55, 2018.
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