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Construction of rational curves with
rational arc lengths by direct integration

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,
University of California, Davis, CA 95616, USA

Takis Sakkalis
Mathematics Laboratory, Agricultural University of Athens,
75 lera Odos, Athens 11855, GREECE

Abstract

A methodology for the construction of rational curves with rational
arc length functions, by direct integration of hodographs, is developed.
For a hodograph of the form r/(¢) = (u?(&) —v2(€), 2u(&)v(€))/w?(€),
where w(§) is a monic polynomial defined by prescribed simple roots,
we identify conditions on the polynomials u(§) and v(§) which ensure
that integration of r’(£) produces a rational curve with a rational arc
length function s(§). The method is illustrated by computed examples,
and a generalization to spatial rational curves is also briefly discussed.
The results are also compared to existing theory, based upon the dual
form of rational Pythagorean—hodograph curves, and it is shown that
direct integration produces simple low—degree curves which otherwise
require a symbolic factorization to identify and cancel common factors
among the curve homogeneous coordinates.

Keywords: rational curves; arc length function; Pythagorean—hodograph curves;
points at infinity; polynomial roots; rational function integration; residues.
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1 Introduction

The distinctive feature of a polynomial or rational Pythagorean—hodograph
(PH) curve r(&) is that the parametric speed o(§) = |r'(£)|, which specifies
the rate of change ds/d¢ of the arc length s with respect to the parameter &,
is a polynomial or rational function [2] of £&. Polynomial PH curves may be
constructed by integrating a polynomial hodograph r'(§) whose components
satisfy a Pythagorean condition. However, an alternative approach is usually
invoked [9] for rational PH curves, since integration of a rational hodograph
does not necessarily generate a rational curve. A further consequence is that,
whereas all polynomial PH curves have polynomial arc length functions, only
a subset of the rational PH curves admits rational arc lengths.

This important distinction between polynomial and rational PH curves is
often overlooked. For example, it has been stated [8] that “The Pythagorean—
hodograph (PH) curves ... are a special class of polynomial/rational curves
with polynomial/rational speed functions. They have polynomial/rational
arc lengths ...” As demonstrated in [3], however, only a special instance' of
the curves considered in [8] admits a rational arc length.

The focus of the present study is to develop a characterization of rational
curves with rational arc lengths, by an approach different from that employed
in [9] — namely, by investigating the conditions under which certain types of
rational functions have rational integrals. Specifically, in the planar case, for
a given monic polynomial w(&) with simple roots we identify the conditions
on polynomials u(&),v(§) with ged(u,v) = ged(u, w) = ged(v, w) = 1 such
that the rational functions u?/w?, uv/w?, v? /w? all admit rational integrals.
This formulation is then generalized to rational space curves.

The remainder of this paper is organized as follows. Section 2 formulates
the problem of identifying rational plane curves that have rational arc lengths
in terms of the indefinite integrals of u?/w?, uv/w?, v?/w?. Assuming that
ged(u,v) =1 and w has prescribed simple roots — which specify the points
at infinity of the curve r(§) — Section 3 then identifies linear constraints on u
and v which guarantee that these integrals are rational. By expressing these
constraints in terms of the residues of the integrands at their poles, Section 4
facilitates analysis of the linear system embodying them, and of the existence
and construction of solutions. In Section 5, this direct integration approach

'In fact, this special case corresponds to a polynomial PH curve subject to a fractional
linear (M&bius) parameter transformation.



is compared with the characterization in [9] of rational curves with rational
arc lengths as the evolutes of general rational PH curves, and examples are
employed to show that it can provide simpler and more direct constructions of
low—degree curves, avoiding the need to identify any common factors among
the homogeneous coordinates. Finally, Section 6 briefly sketches an extension
of the method to rational space curves, while Section 7 summarizes the key
results of the present study and identifies further avenues of investigation.

2 Construction by direct integration

We are interested in developing methods to identify when rational PH curves
possess rational arc lengths, by the direct integration of their hodographs. We
focus initially on plane curves r(§) = (z(£),y(§)) = (X(&)/W (&), Y (&)/W(€))
specified by homogeneous coordinate polynomials W (&), X (£), Y (¢) and then
discuss a generalization to spatial curves in Section 6.

Consider the rational hodograph r'(§) = (2/(§), y'(£)) defined by

: e§) f(§)

S6) = G VO = T8 )
for polynomials d(§), e(£), f(&) satisfying ged(e,d) = 1 and/or ged(f, d) = 1.
If z(£) and y(&) are to be rational functions, d(§) cannot possess any simple
roots, since they will incur transcendental terms upon integrating (1). We
consider here the simplest (and most general) assumption that satisfies this
requirement — namely, that d(&) is the perfect square of a polynomial w(§)
with only simple roots, i.e., d(£) = w?(§). For the parametric speed

ds
o(§) = d_£
of r(§) to be rational, €*(£) + f%(£) must also be a perfect square, and this
implies [7] that?

e(§) = u*(§) —v*(€), [f(&) = 2u(®)v(¢)

for relatively prime polynomials u(£) and v(€). Consequently, (&) + f2(€) =
[u?(€) + v*(€) ]?, and we have

u? — v? , 2uv u? + v?

ZIZ'/ = 'LU2 9 Yy = ﬁa S, = 'LU2 . (2)

2We focus here on primitive hodographs, satisfying ged(e, f) = 1 when ged(u, v) = 1.
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Hence, the integrals

u? —v? 2 uv u? + 0?2
x=/ d&yz/—ﬂ&s:/ i @)
w w

w2

must reduce to rational expressions in £ for r(§) to be a rational curve with a
rational arc length. This is equivalent to requiring that the simpler integrals

/%%,/%%,/%% (4)

yield rational expressions. Our goal is to identify, for a given w(§) with only
simple roots, conditions on u(&),v(§) which ensure that the integrals (4) are
rational. We assume, without loss of generality, that w(¢) is monic. We also
assume that ged(u, w) = ged(v, w) = 1, to eliminate the possibility of factors
common to the numerators and denominators of the integrands in (4).

When such conditions are satisfied, it is understood that any non—constant
factors common to W (§), X (§), Y () in the rational curve z(§) = X (£)/W(€),
y(&) =Y (&)/W(€) obtained from (3) must be cancelled out, so as to ensure
that ged(W, X,Y) = 1. Note that the roots of W (¢), which identify points at
infinity of the curve, are the same as the roots of w(¢), but their multiplicities
may differ. To verify this, we argue by contradiction. With ged(W, X,Y) =1
and ged(u,v) = ged(u, w) = ged(v, w) = 1, we have

(W =) W? = w* (WX —=W'X) and 2uvW? = w*(WY' —W'Y).

Since ged(u, w) = ged(v, w) = 1, the second equation implies that every root
of w is also a root of W. Now suppose &, is a root of W of multiplicity k,
that is not a root of w. Then (£ —&,)* must divide W’X and W'Y, and since
(€ — &)k divides W', we infer that (£ — &,) must divide X and Y. But this
contradicts ged(W, X,Y) = 1.

Remark 1. For any w(¢) € R[¢], the set S = {u(§),v(€) € R[{] } of pairs of
polynomials for which the integrals (4) are rational is closed under the map

(u(§), v(§)) = (au(&) + Bo(§), yul§) +dv(E)) with a, 5,7,6 € R.

3 Specifying the points at infinity

The main problem addressed herein may be phrased as follows.
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Problem 1. For any specified polynomial w(§) € R[E] with simple roots, what
conditions on the polynomials w(§) and v(&) ensure that the three indefinite
integrals (4) are all rational functions of £?

To address this problem, we need to examine the root structure of w(¢).
These roots identify the poles of the rational integrands in (3), and the points
at infinity of the rational curve r(§) = (X (&)/W(£),Y(&)/W()). In order
for a rational function to possess a rational indefinite integral, the residues at
its poles must vanish, since they will incur transcendental (trigonometric or
logarithmic) terms if non-zero. Now if () is any of the rational integrands
in (4) and &, is a pole of 7(§) of multiplicity m, then the residue of r(¢) at
&, is defined [5] as

. 1 dm_l "
refsi(g*ue 7“(5) = (m — 1)! dgm—1 (5 - 5*) 7’(&) . . (5)

Equation (5) holds whether the degree of the numerator of (&) is less than,
equal to, or greater than that of the denominator. Now if the polynomial w (&)
in (4) is of degree n, it may possess n simple roots, a single root of multiplicity
n, or a combination of simple and multiple roots whose multiplicities sum to
n. We focus here on the generic case of n simple roots, but first we mention
the case of a single root &, of multiplicity n, so that w(§) = (£ — &)™

A polynomial curve r(t) has a single point at infinity, of multiplicity equal
to the curve degree, that corresponds to an infinite value of the parameter ¢.
Under the Mobius (fractional linear) parameter transformation ¢ — £ defined
for a, f € R with a # B &, by

o f*t—l-oz

‘TR o)

the value t = oo is mapped to £ = &,. Thus, in the case w(§) = (£ — &))", on
substituting (6) into the curve defined by (3) and clearing denominators, we
obtain a polynomial curve. Hence, any u(€),v(£) that make the integrals (4)
rational with w(§) = (£ — &)™ is actually just a polynomial PH curve r(¢),
parameterized by the variable ¢ defined by the inverse of (6), namely

p = =88

5_5*




We assume henceforth that w(§) has n simple (real or complex conjugate)
roots &1, ..., &,. Assuming that it is monic, we may write

wé) = [[€-¢4), (7)

Jj=1

and it is convenient to introduce the notation

wi(@) = [[€6-¢&). k=1....n,

j=1
ik
i.e., wg(§) omits the factor £ — & from w(E), so wi (&) # 0. To ensure reqular
curves r(§), that are free of cusps and satisfy r'(§) # 0 for all £, we henceforth
assume that u(€),v(§) are relatively prime, i.e., ged(u,v) = 1.
Let 7(§) denote any of the rational integrands in (4). Since each root &
of w(¢) is a double pole of r(£), the residues (5) at these poles are

d

residue r(§) = [dg

§=¢x

(5—@)%(5)} , k=1,....n.

§=¢k

Consequently, we have

2 2 / /

. U d u wipt — w,u U

residue —= | ——5 g 2k T _ k 7
=& w dfwy | wy, Wi [ g,

and an analogous expression holds for v?/w?. Furthermore, in the case of the
integrand uv/w?, we have

, uw d v wpt —wiu v wpt —wipv U
residue — = | —— = 3 — + 3 — .
=6, w dfwy |, wi; W, wj, Wk Jeg,

Hence, for the integrals of u?/v? and v?/w? to be rational, we must have

(wpr' — wiu)u = (wpv' — wiv)v = 0 (8)
at each root &, ..., &, of w, and for the integral of uv/w? to be rational we
require

(wpu — wiu)v 4+ (wpv" — wiv)u = 0 9)



at &1,...,&,. Thus, for all three of the integrals (4) to be rational under the
assumption that ged(u,v) = 1, i.e., v and v do not vanish simultaneously,
we must have

wpr' —wpu = wpy' —wpw = 0 for £=&1,...,&,. (10)
From the conditions (10), we may deduce the following result.

Proposition 1. Let u(§),v(€), w(§) be such that w has only simple roots,
ged(u,v) =1, and the integrals (4) are rational. Then w divides uv' — u'v.

Proof : Let & be any root of w. Then by the preceding argument, at £ = &
we have wiu' — wju = wipv' —wv =0 or

-]

and since wy (&) # 0 we must have uv’ — v'v = 0 at & = &,. Together with
the fact that w has distinct roots, this implies that w divides uv’ — v'v. B

For a given polynomial w(&) of degree n, the polynomials u(¢), v(£) must
be appropriately chosen to ensure a rational arc length. If w(§) is specified
by its n roots &1, ..., &,, the satisfaction of (10) at each of these roots yields
n linear homogeneous constraints on the coefficients of u(£) and v(§). Since
this linear system is the same for u(¢) and v(&), the matrix defining it must
be rank deficient by at least 2 to obtain linearly-independent polynomials.

Remark 2. If the integrals (4) are rational when w has only simple roots,
then uv’ — v'v = pw for some polynomial p. Generically, this implies that
2m > n+ 2 if deg(u) = deg(v) = m, and my + my > n + 1 if deg(u) = my,
deg(v) = my where m; # msy. In particular, we must have uwv’ — vw'v = 0 if
deg(uv’ —u'v) < deg(w), and in this case u and v are linearly dependent and
the curve defined by (3) is therefore a straight line.

Proposition 2. When the integrals of u? /w? and v*/w?* are both rational for

u(€), v(), w(€) € RIE] satisfying ged(u, v) = ged(u, w) = ged(v,w) = 1, the
integral of uv/w? is also rational.

Proof : Recall that, when the integrals of u?/w? and v?/w? are both rational,
the condition (8) must hold at each root &, of w(§) for k = 1,...,n. Now
w(&) # 0 when ged(u, w) = 1, so wpw' — wju must vanish at & if u?/w? has
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a rational integral. Likewise, if ged(v, w) = 1, then wyv" — wjv must vanish
at & when v? /w? has a rational integral. Hence, equation (9) holds at each
root & of w(&) for k =1,...,n, and this is the condition for the integral of
uv/w? to be rational. W

Example 1. Consider u(§) = &3 — 2% v(§) =& - &+ 1, w(é) = £(E—1).
Then from (3) with 2(—1) = y(—1) = s(—1) = 0 we obtain

E -4t —38+72+26-3 3¢ -9 +12¢

#(6) = Yy WO = e W
-4 438328 —-TE6+3
5(6) = 3T (12)

Note that w divides uv’ —u'v = —£(€ —1)(£2 —£+4). Since ged(u, v) = 1 the
curve has no cusps, as seen in Figure 1. To check that this is an irreducible
curve, we write z(§) = X (§)/W (&), y(§) = Y(§)/W(£), and use Maple to
verify that its implicit equation,

f(z,y) = resultante(X(£) — 2 W(E),Y(E) —yW(E)) = 0,

does not factor into lower—order components.

4 Characterization of the residues

Proposition 2 allows us to construct primitive rational PH curves that have
rational arc lengths if we can identify, for any given w(¢) € R[] of the form
(7) with distinct roots &y, ..., &, € C, pairs of polynomials u(§),v(§) € R[¢]
with ged(u, v) = ged(u, w) = ged(v, w) = 1, such that u?/w? and v?/w? have
rational integrals. Since the same arguments apply to w and v, we focus on
the former, and consider polynomials u(§) € R[¢] with ged(u, w) = 1 that
yield rational functions for the indefinite integral

u?(§)
/w2—(§) d¢. (13)

The key result is stated in the following Proposition. Since the proof depends
on a number of preparatory results, we defer it until later.



20 k

10 -

Figure 1: The rational quintic curve with rational arc length in Example 1.
The branches of the curve that correspond to the three parameter intervals
£ € (—00,0), &€ (0,1), and £ € (1,+00) are plotted in red, blue, and green.

Proposition 3. For u(§) of degree m and w(&) of degree n as defined above,
the rationality of the integral (13) may be categorized as follows.

Case 1: m < n.
e for even n, the integral (13) is rational if and only if u(§) = 0;

e for odd n, there is a unique (modulo a constant factor) polynomial u(§)
of degree n — 1 such that the integral (13) is rational.

Case 2: m = n.

e for even n, the polynomials u(§) such that the integral (13) is rational
differ only by a constant factor;

e for odd n, the integral (13) is rational if and only if u(§) = 0.
Case 3: m > n.

e there are infinitely many polynomials u(§) such that the integral (13) is
rational.



We begin with a few examples illustrating Propositions 2 and 3.

Example 2. Let u(§) = 365 — &1 — 78 + 1162+ 2, v(€) = 362+ 1, and
w(€) = &(€2 — 1). Then we have

@ .4 16 64

7 =06 08 = BELOE-B G
Wo_ge gy2y 8, 10 vo_1l, ¢+ , 4
w? £ (6-12 (+1)27 w? & (E-12 (6+1)?

Note that ged(u,v) = ged(u, w) = ged(v,w) = 1, and the integrals (4) are
all rational, in accordance with Proposition 2.

Example 3. Let u(§) = —145&* + 1852 — 292 and w(§) = £(£2 —1)(£2 — 4)
so that m < n with n odd. Then we have the partial fraction decomposition

w5329 1764 1764 604  GOS4
w2 (€17 (412 (6-2)7  (6+2)

and each term on the right yields a rational expression upon integration.

The following lemma and corollary will be used in proving Proposition 3.

Lemma 1. Forn > 2, let 2 = (&,...,&)" be a vector of distinct complex
numbers, and let A, be the n x n matriz with elements a; = 0 and a;; =
(& — &)t fori # j. Then we have

(1) rank(A,) = n when n is even;
(2) rank(A,) =n —1 when n is odd.
Proof : Observe first that A, is a skew-symmetric matrix, i.e., AL = —A,,.

(1) For even n, we set n = 2k and show by induction on k that det(A,,) # 0.
When k = 1, we have det(Ay) = (& — &) 2 #0. For k > 1, we set b;_1 = ay;



for i =2,3,...,n. An easy calculation shows that A, then has the form

0 b1 b2 b3 bn—Q bn,1
b1b2 b1b3 bib, 2 bibn—1
—by 0
by — ba by — b3 by —bp_2 by —bp_1
—b1bo babs3 baby_2 baby—1
—by 0
by — by by — b3 ba — b2 by — bp1
—b1b3 —babs b3by,_o b3bn_1
—bs 0
by — b3 by — b3 b3 — bp_2 b3 — bp_1
s —bibp2  —bobp 2 —b3b, 2 0 bn—2bn—1
"2 by —bno by—bp o bz —by o bp—2 — bp_1
—b _blbnfl _b2bn71 _b3bn71 _bn72bn71 0
L " by —bay b —buo1 by —bas b2 — b1 1
We now divide rows 2,3,...,n and columns 2,3,...,n by by,bs,...,b, 1,
respectively, to obtain the matrix A/ specified by
[0 1 1 1 - 1 1 i
1 1 1 1
-1 0 ..
by — ba by — b3 by — bp_2 by —bp_1
. -1 . 1 N 1 1
by — b2 by — b3 by — b2 by —bp_1
-1 -1
-1 0 1 1
by — b3 ba — b3 b3 — b2 b3 — bp1 )
1 -1 -1 -1 0 1
bl - bn72 b2 - bn72 b3 - bn72 bn72 - bnfl
-1 -1 -1 -1
-1 0
by — b1 ba—bp_1 b3 —by_1 bp—2 —bp_1 ]

and note that

n—1
det(A,) = | J] 07 | det(A)).
=1

Set A = A + J,, where J,, is the n X n matrix whose elements are all equal
to 1. Then the first column of A” is (1,0,...,0)T and for even n we have

det(A”) = det(A!)) — see [10, Problem 1.2, pp. 6 and 25].
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Now let B be the (n—2) x (n — 2) matrix with elements® b;; = 1/(b; —b;)
for i # j and b;; = 0, where 2 <i,7 <mn — 1. Then if M denotes the matrix
obtained from A by deleting its first two rows and columns, we observe that
M = B+ J,_3, and therefore det(M) = det(B) — see [10, Problem 1.2]. By
the induction hypothesis, det(B) # 0 and this implies that rank(B) = n — 2.
Hence, the rank of A” (and thus of A,,) is at least n — 1. But the rank of a
skew—symmetric matrix is always even [6, Corollary 2.6.6, p. 153] and thus
rank(A,) = n, as required.

(2) For odd n, we have det(A,) = 0 — see [10, Problem 1.1, pp. 6 and 25].
Let A,,_1 be the (n — 1) X (n — 1) matrix with elements a;; defined in terms
of distinct complex numbers (&1,...,&,-1)7 as above. Then from case (1) we
have rank(A,_;) =n — 1, since n — 1 is even. But A,,_; is the matrix with
an even number of rows and columns obtained from A,, by deleting its last
row and column. Thus, rank(A,_;) = n — 1, as required. B

From Lemma 1, we may immediately deduce the following result.

Corollary 1. Let the matrices A, and J, be as in Lemma 1, and let M =
A, +cJd, forc e C. Then rank(M) = n if ¢ # 0, and for the system of linear
equations ¥ : A, X = C with X = (x1,29,...,7,)" and C = (c,c,...,c)T we
have:

(1) Supposen is odd. If ¢ # 0, then ¥ has no solution, and if c = 0, then X
has for any A a solution of the form X = X(p1, p2, .-, pn)T with p; # 0
fori=1,...,n.

(2) Suppose n is even. If ¢ # 0, then 3 has a unique solution of the form
X = (25,25, ...,25)" where 26 #£0 fori=1,...,n.

r'n

Proof : When n is even, rank(A,,) = n by Lemma 1, and the determinant of
a skew—symmetric matrix of even order remains unchanged when a constant
is added to each element [10, Problem 1.2] so rank(M) = n. When n is odd,

3Note that b; # b; for i # j.
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consider the (n + 1) x (n + 1) skew—symmetric matrix defined by

0 —¢c —c - —c
c
c

I" has the same form as the matrix A/, in the proof of item 1 of Lemma 1, but
with the first row and first column multiplied by ¢, and is thus an invertible
matrix. Since n + 1 is even, we have det(I') = det(I" + ¢J,11). However,
det(I' + cJp41) = ¢ det(A,, + ¢J,) # 0, so rank(M) = n.

(1)

Suppose Y has a solution for ¢ # 0. Then the rank of the matrix A,
augmented by the column vector C' is equal to the rank of A,,, namely
n — 1. Now if we subtract C' from each column of A,,, we obtain the
matrix A, — ¢ J,, whose rank must be n — 1. But the latter matrix has
rank n from item (1), a contradiction.

Now suppose ¢ = 0. Since rank(A4,) =n — 1, ¥ has a one-dimensional
solution of the form X = A (py,pa,...,pn)%. Finally, if p; = 0 for
some i, we may assume (by rearranging the order of the &;) that i = 1.
Then, if B is the (n—1) X (n— 1) matrix defined in terms of the vector
(by, b3, ...,b,_1)T as in the proof of Lemma 1, X; = A (pa, ..., pn)7 isa
solution of the system B X = (0,...,0)". But since rank(B) = n — 1,
this system has only the trivial solution, a contradiction.

Since rank(A4,) = n, the matrix A, is invertible, and the system > has

a unique solution X = (2§, x5,...,25)T = A 1C for each ¢ # 0, with

x¢ # 0 by an argument similar to that used in item (1). ®

The motivation for Lemma 1 is as follows. For w(§) of the form (7) and
a polynomial u(§) € R[¢] of degree m, the partial fraction decomposition of

u(§)/w(€) is

we L)
w(©) +Z£ g = ey (1)

12



where p(€) is 0 if m < n; a constant ¢ if m = n; and a polynomial of degree
m — n if m > n. Note that ged(u, w) = 1 if and only if the residues satisfy
ri #0fori=1,...,n. Now from (14) we obtain

u?(&) 2r;r; " 27 p(€) 15
W (¢) +Z£ e *;g oo X W
Using (5), we can now compute the residues of (15) at { =& fork=1,...,n.

The residues of the first two terms in (15) at these poles are zero. To evaluate
the residues of the third term, we note that
1 _ n aj;
E-&E-&) €-& §-§&
where a;; = 1/(§ — &), and the residue of this expression at { = & is just

a;j0;r, + a0z, where the Kronecker symbol 9, is equal to 1 if r = s and 0
otherwise. From this, the residue of the third term can be expressed as

n—1 n
Z Z 2 T (aijéik + CLji(Sjk) .
i=1 j=i+1

Since only the indices 1 = k < j and ¢ < k = j make non—zero contributions
to this expression, it may be reduced? to

27y Z ag;ri + QTkZakm.

j=k+1

Combining these sums yields the residue of the third term at £ = & as

2 Tk Z Qp;T5 .
2
Finally, the residue of the fourth term in (15) is 2 p(&x)rk. Thus, combining
the residues of the third and fourth terms, and cancelling the common factor

27y (since ry # 0 for k = 1,...,m), the condition for (15) to have a rational
integral reduces to the system of linear equations

Zak]r]: £k> ]{321,...,71

J#k

4Note that, with 1 < i < j < n, only one of the terms in ;0% + a6, cannot vanish.

13



for the residues 71, ..., 7, of u(€)/w(¢). Upon setting R = (r1,...,r,)T and
P=—(p&),...,p(&))T, this can be expressed in matrix form as

AR = P, (16)

where the skew—symmetric matrix A, is defined in Lemma 1.
For a given P, a solution R = (r1,...,7,)" of the system (16) is called a
residues vector, and is said to be a good solution when r; #0 fori=1,...,n

and the expression (14) generates a polynomial u(§) € R[{]. Note that the
polynomials u(&£) and v(§) constructed from two linearly—independent good
solutions must be verified to satisfy the condition ged(u,v) = 1, as required
in Proposition 2 for all of the integrals (4) to be rational.

Remark 3. Note that the solutions to (16) are independent of the ordering
of the roots of w(€). For any given root vector = = (£1,...,&,)  let = =112
be another ordering, specified by a permutation matrix IT with II7 = II~!.
Then the matrices A,, and fln associated with the root vectors = and = are
related by A, = IT A, II”. Consequently, if R is a solution of (16) for a given
P, then R =1II R is a solution of A,R = P where P = II P.

We show that for certain P the system (16) always admits good solutions.
If the roots of w(§) are all real, any vector R = (ry,...,r,)T with real r; # 0
fori=1,...,nis a good solution, since a real u(§) can be constructed from
(14) with p(¢) matching values p(&;), ..., p(&,) obtained from P = A, R. If
w(€) has complex roots,® we order them as Z = (&;,...,&, &, &5, -+, &,&)T
where k + 21 = n, such that {; € R for : = 1,...,k and &;,&; € C\ R are
conjugate pairs for ¢ = 1,....[, and let A, be the matrix constructed from
them as in Lemma 1. Then the following result provides a sufficient condition
for a good solution.

Lemma 2. For Z = (&, ...,&,&,,&, -+, &,&)T we have:

1. Any vector of the form R = (ry,...,rp, 11,05, ...,1,v5)T withr; #0 €
R fori=1,....,k andr; #0€ C fori=1,...,1 is a good solution.

2. Let P= (p1,...,pr,P1,P},- -, P, P}). withp; € R fori=1,... .k and
pi,p; €C fori=1,...,1if nis even, and P = (0,...,0)" if n is odd.
Then if the system (16) has a solution R = (ry,...,r,)T withr; # 0 for

SFor clarity, italic and bold characters are employed here to distinguish between real
and non-real values.
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i=1,...,n, it must be of the form (r1,...,rp, 1,05, ... 15, v5) T where
r, €R forio=1,....;k andr;,xr; € C fori=1,...,1.

Proof. Let = = (&1, ..., &, €50, €, ... &,€)T be a re-ordering of the roots of

w(§) and let A, be the matrix constructed from = as in Lemma 1. Note that
E=Z"and A, = A%. Also, let R= (ry,...,r,v5,ry,...,v5,1))T = R*.

1. IfALR=P=(p1,...,ps,X1,¥1,-. ., X, ¥1)%, then A,R = (py,...,px,
Vi, X1, ,~yl,xl)T. But AYR* = P* = (p1,- -, Pk; X1, Y75 - - x5y,
and since A,, = A} and R = R*, the values x;, y; must be conjugates, so
P is of the form (p1, ..., pk, P1, P}, -, P1, ;)T . Therefore, p(¢) € R[¢]
since p(&) = —p; for i = 1,... k and p(§;) = —ps, p(&;) = —p; for
i=1,...,1. Also, the sum on the right in (14) is real, since the complex
terms occur in conjugate pairs. Hence, u(&) is a real polynomial.

2. Let R=(r1,...,7%, a1, by,...,a;, b)) be a solution of (16) with non—
zero elements. Then with R = (ry,..., 7, by, ay,..., by, a)7 and P* =
(P1s- - PEs P} PL, - -5 P P1)T we have A,R = P*. Since A, = A*,
this implies that A;R — P* and consequently A,R* = P. Hence,
we obtain A, R = A,R* = P. If n is even, A, is invertible, and we
have R* = R, so R has the stated form. If n is odd, A,R = P has
a one-dimensional solution of the form R = X(py,...,p,)T by item 2
of Corollary 1. Hence, R = A\ (p1,...,pn)T and R* = \o(p1, ..., pn)7.
Since n is odd w(§) must have at least one real root, which implies that
r1 € R, and consequently B* = R, so R has the stated form.

We are now ready to proceed with the proof of Proposition 3.

Proof :
Case 1: m < n. In this case, note that P = (0,...,0)7 since p(¢) = 0.

e Ifniseven, then A, is invertible, and from (16) we have R = (0, ...,0)T.
Consequently, from (14) we deduce that u(£) = 0.

e If n is odd, then by item 2 of Corollary 1 and item 2 of Lemma 2,
equation (16) has the good solution R = X (p1, p2, ..., pn)T with A, p; €
C, so u(€) is unique up to a constant factor as required.

Case 2: m = n. In this case, we take p(§) = ¢ € R, with ¢ # 0 for u(§) # 0.
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e If nis even, then R = A 1C with C' = (¢, c,...,c)T is a good solution,
as indicated by item 3 of Corollary 1 and item 2 of Lemma 2. Hence,
the polynomials u(&) differ only by a constant factor.

e Ifnisodd, by item 2 of Corollary 1, equation (16) has no solution when
¢ # 0. A solution exists only when ¢ = 0, corresponding to u(§) = 0.

Case 3: m > n. If the roots &1, ..., &, of w(&) are all real, then any vector
R=(ry,...,rn)T € R* withr; #0,i=1,...,n is a good solution. If w(&)
has complex conjugate roots, any vector R = (ry,..., 7%, 11,15, ..., 1, 17)7 of

the form in Lemma 2, with non—zero elements, is a good solution. Hence,
there are infinitely many polynomials «(€) such that (13) is rational. ®

Case 3 of Proposition 3 is of primary interest, since we require linearly—
independent polynomials u(¢), v(€) to define a non—trivial rational PH curve
r(§) with rational arc length. Note that, from any two linearly-independent
polynomials u(&), v(§) such that the integrals (4) are rational for a prescribed
w(§), we may construct further examples by means of Remark 1.

We focus here on the construction of u(§), the construction of v(£) being
exactly analogous. Defining a monic polynomial w(&) of degree n by distinct
real roots &1, ..., &,, we construct the matrix A, in Lemma 1, and for m > n
we assign values R = (11, ...,r,)? for the residues that define a good solution
of the linear system (16). The polynomial p(§) is then constructed from the
values P = (—p(&1),...,—p(&))" = A, R obtained from (16) as a Lagrange
interpolant. Finally, we recover u(§) using (14) as

u(€) = w(§)

MO+ &)] . (7)

Note that, by Lemma 2, u(§) is a real polynomial if complex conjugate values
are assigned to the residues, since equation (16) furnishes complex conjugate
values for p(£) at the corresponding complex conjugate roots of w(&).

A second polynomial v(£) may be constructed in the same manner, and it
must be verified that ged(u,v) = 1 to satisfy the conditions of Proposition 2,
and ensure that u(¢) and v(§) are linearly independent. The curve r(£) and its
arc length function s(§) are then constructed by substituting w(§), v(§), w(§)
into expressions (3). The following examples serve to illustrate the procedure
in more concrete terms.
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Example 4. Consider a case with n odd, namely w(¢) = £(£2 — 1)(£? — 4)
with roots = = (0,1, —1,2, —2)T. Then we obtain the matrix

0o -1 1 -4 1
1 0 3 -1 3
As = | -1 =2 0 -1 1|,
1 1 1
s L o3 03
1 1 1
=2 =5 —1 -3 0]

and rank(As) = 4 by Lemma 1. Hence, the system (16) has a solution if and
only if the matrix A5 augmented by the column vector P = (py, pa, p3, pa, ps)"
is also of rank 4, where p; = —p(§;) for i = 1,...,5. By Gaussian elimination
to reduce this augmented matrix to row echelon form, the condition for it to
be of rank 4 may be identified as

7T3p1 —42ps —42ps + T8 ps +78ps = 0. (18)

For the choice P = (0,0,0,0,0)" the linear system (16) has the good solution
R=X\(-73,42,42, —78,78)T where A € R. For this case, p(¢) = 0 and from
(17) we obtain u(£) = —145 &1+ 185 &2 — 292. Then from Proposition 3, this
is (modulo a constant factor) the unique polynomial of degree < 4 for which
ged(u,w) = 1 and the integral (13) is rational.

For P = (0,2,—2,1,—1)T/12 satisfying (18), the system (16) has the good
solution R = (—437, 252, 252, —468, —468)T /6. We have p(&) = (€3 — 5¢)/24
such that p(&) = —p; for i = 1,...,5 and we construct

5

R;

pl&) +

O+ 2o
Note that ged(v, w) = 1, and the integral of v?(£)/w?(€) is rational. We also
have ged(u, v) = 1, with u(€) as defined above.
To illustrate that further solutions of the system (16) are possible, we consider
the values P = (6, 1,2, —2, —2)7 /12 satisfying (18). Then we obtain the good
solution R = (881, —85, —504,942,942)7/12. Using the same procedure as
above, we have p(§) = (=5&* — € +32€2 +4¢& — 36)/72 and we construct
the polynomial h(§) given by

— 58 — B4 BTET 4+ 965 —2166° + 104826 + 27263 — 13382€2 + 21144
72 ‘

€8 — 1065 — 3447 &4 4 4400 £2 — 6992

o(©) = w(®) =
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Then the integral of h%(€) /w?(£) is rational, and we observe that ged(h, w) =
ged(h,u) = ged(h,v) = 1.

Example 5. Consider a case with n even, namely w(¢) = £(£2 — 1)(€ — 2)
with roots = = (0, —1,1,2)7. Then the matrix

01 -1 —3
A4:_10_%_%
1+ 0 -1
L35 1 0

has rank 4 by Lemma 1, so the system (16) has a solution for any P € R*.

For the values P = (1,1,1,1)7 the linear system (16) has the good solution
R = (—14,18,14,—18)"/13. In this case p(¢) = —1, and from (14) we obtain

13804268 —2782 + 146 - 28

u(®) =

By Proposition 3, this is the unique polynomial (modulo a constant factor)
of degree < 4 for which ged(u, w) = 1 and the integral (13) is rational.

For the residues vector R = (—1,3,2,3)T we obtain the corresponding values
P = (=1,-2,-5,5)7/2, and the interpolation conditions p(&;) = —p; for
1=1,...,4 yield

—19& + 1562+ 286+ 6

p(§) = D

Then we construct the polynomial

o(€) = —19€T 4+ 53E5 4 17¢5 — 1036047463 — 5824126 — 24
N 12

such that ged(v, w) = 1 and the integral of v*(£)/w?(€) is rational. Also note
that ged(u, v) = 1, where u(§) is as defined above.

Example 6. Consider the polynomial w(§) = €2+ 1 with complex conjugate
roots Z = (i, —i)%, for which we have the matrix

0 —1ii
o0 |

2

A2:
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Choosing P = (1 +1i,1 —i)T yields the linear polynomial p(¢) = € + 1, and
solving (16) gives R = (2+2i,2—21)T for the residues. Then, invoking (17),
we construct the polynomial u(£) = €3+ &2 +5& — 3. On the other hand, by
choosing P = (2 —1,2 +1)T we obtain p(£) = — & + 2, and with the residues
R = (—2+4i,—2—41i)T we obtain the polynomial v(§) = —&34+2£2-5£—6
from (17). We observe that ged(u,w) = ged(v, w) = ged(u,v) = 1, and by
substituting into (3) and choosing x(0) = y(0) = s(0) = 0, we obtain the
rational quintic curve defined by

W() = 3(&+1),

X(€) = 968 - —-156-9),

V() = £(—2&6"+386%—386% —45£+108),
which has the rational arc length function

S(€) = E(26Y =383 +65E%+45& +135) ‘
3@+ 1)
The constructed curve is shown in Figure 2. It may be regarded as the sum of
the cubic polynomial curve (z(£),y(§)) = (362 —3£—48, —2£3+£2—12£—16)
and the quadratic rational curve (z(£),y(€)) = (=24 £+48,48 £+16)/(£2+1).

Example 7. Consider the polynomial w(§) = £(£ —1)(£2+1) with the roots
Z=(0,1,i,—1)T for which we obtain the matrix

0 -1 i —i
4 - |1 0 11+ i(1-19)
, =

—i —3(1+1) 0 —1i

i —3(1—i) 1i 0 |

In accordance with Lemma 2, we take P = (1,1,1+1,1 —1)T and this yields
the polynomial p(§) = — %53 + % ¢ 4+ 1. Solving (16), we obtain the solution
R=1(2,3,—-3—1i,—3+1)7 for the residues. Finally, using (17), we construct

the polynomial
— T+ +2¢ 58 +1562 426 -2
One can verify that ged(u,w) = 1 and v?(€)/w?(€) has a rational integral.
By a different choice of P, consistent with Lemma 2, we may obtain another
polynomial v(§) with ged(v, w) = ged(u, v) = 1, and thus construct a rational
curve with rational arc length by substituting into (3).
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Figure 2: The rational quintic curve with rational arc length in Example 6.

5 Evolutes of planar rational PH curves

An explicit characterization of planar rational PH curves r(§) = (x(§), y(€))
that admit rational arc length functions s(&) was identified by Pottmann [9].
Namely z(£), y(§), s(§) are given in terms of two relatively prime polynomials
a(€),b(€) and a rational function h(£) by the expressions

v — a? ab 2ab a’ —b?
- H - H, y=—2 g- =" _p (19
T ey ab—av 0 VT a2t 2(a'b—all) (19)
a? + b? ,
s =h+ mH + constant , (20)

where H (&) is the rational function defined by

a® + b?
H=_———_" _}. 21
2 (a’b — al) (21)

These curves are identified in [9] as the evolutes (loci of centers of curvature)
of general planar rational PH curves. For example, the rational PH quartics
are involutes of the unique polynomial PH cubic, the Tschirnhaus cubic [4].
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Setting h = f/g for polynomials with ged(f, g) = 1, we have

(0> + ) (f'g — f9) : q
d H =
2 (a'b — ab') g? an 2 (a'b —abl)?g>

where the polynomial ¢ can be written as

q = (@®+0)[(adb—aV)(f"g— fg")— (@"b—ab")(f'g— fd)]g
2(a'b—ab)(f'g— fg)[(ad +bb) g — (a®+b*) g']. (22)

On substituting into (19), the homogeneous coordinates of the curve (z,y) =
(X/W,Y /W) can be expressed as

W = 4[(db—at)g]?,
X = 200" —a®)(d'b—ab')*(f'g - fg') g — 2abq,
Y = 4dab(a'b—ab')*(f'g— fg') g — (a® =) q. (23)

Hence, the points at infinity correspond to the roots of (a’b—ab’) g, and they
appear to be (at least) triple points. The corresponding arc length (20) is
/ / 2 2 / /
8:2(ab—ab)fg+(a +b)(fg_fg)+constant. (24)
2 (a'b — ab’) g?

Note that, whereas expressions (19)—(20) involve four polynomials (a,b and
the numerator and denominator of h) the form (3) depends on only the three
polynomials u, v, w. However, the latter requires u,v to be chosen a priori
for a given w so as to ensure rationality of the integrals (4).

If any of a, b or g are of degree > 2, then w has (in general) more than one
distinct root, so the expressions (23) define a proper rational curve with more
than one point at infinity (i.e., not a re-parameterized polynomial curve).

The form (23) of a plane rational curve r(§) = (z(£), y(£)) with a rational
arc length is constructed in [9] by considering the family of osculating planes
to the (spatial) curve of constant slope s(§) = (x(§),y(£), s(§)), wherein the
rational function s(§) is specified as the arc length of the curve r(¢). However,
as the following example illustrates, it is not difficult to construct instances
of rational curves with rational arc lengths, through direct integration of (2),
that (without simplification) are incompatible with the form (23).

The focus of this study has been on cases in which w(§) in (3) has only
simple roots, since the analysis is more involved if w(§) has multiple roots.
We provide the following example to illustrate the existence of rational curves
with rational arc lengths when the roots of w(§) are not all simple.

H =
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Example 8. Consider the rational PH curve r(¢) = (z(§), y(§)) constructed
by integrating the expressions

u?(§) — v*(§) 2u(§)v(§)
wi§) w(§)

with w(§) = €2 —4&+2, v(€) = =26+ 1, w(€) = (£ — 1). Note that,
with these choices, the integrals (4) are rational, although w(¢) has a double
root. Now since £ = 0 and £ = 1 identify points at infinity on r(¢), we take
integration constants such that x(—1) = y(—1) = 0, and the homogeneous
coordinate polynomials

W(E) = 38(€-1),

X(€) = —156" +1263 +1262 — 126+ 3,
Y(€) = 136" +138 4662 - 166+ 4, (26)

y(§) = (25)

z'(§) =

define the resulting rational PH curve r(£) = (X (&)/W (&), Y (£)/W(£)). The
parametric speed o (&) = |r/(£)], satisfying 2/2(£) +y2(£) = 0%(€), is specified
by the rational function

8342462 206 +5
§HE—1)°
Since the numerator has only complex conjugate roots, o(£) > 0 for all £ and

the curve is free of cusps. The curve arc length s(¢), obtained by integrating
o(§) with s(—1) =0, is

o(§) =

—20& + 1T+ 1262 -20€645
3E3(¢—1) '

Using the method described in Example 1, it was verified that the expressions
(26) define an irreducible algebraic curve.

s(§) = (27)

At first sight, the curve (26) seems inconsistent with the formulation (23),
since W () is evidently not the perfect cube of a polynomial. The resolution
of this paradox requires a detailed analysis, through which the appropriate
polynomials a(&),b(§) and f(£),g(£) to be used in (23) are determined.

The rational curves with rational arc lengths were identified in [9] as the
evolutes of general rational PH curves. Conversely, the general rational PH
curves are involutes of rational curves with rational arc lengths. The involute
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r;(§) corresponding to parameter value £ = 7 of a curve r(§) with arc length
function s(¢) and unit tangent t(£) can be expressed as

ri(§) = r(§) = [s(&) —s(7) ] t(S) (28)

It may be viewed as the locus traced by the end of a string wrapped around
r(§) for £ > 7, that is kept taut as it is unwrapped from r(£). The involute of
the curve r(§) = (z(£),y(£)) specified by the homogeneous coordinates (26),
with unit tangent t(&) = (2/(£),v'(£))/o(§) and the arc length function (27)
was computed symbolically using the Maple computer algebra system.

Since the resulting symbolic expressions are rather cumbersome, we focus
on the representative case 7 = —1, for which the involute r;(§) specified by
(28) is a rational quintic, defined by the homogeneous coordinates

Wi(€) = 3€(£1 —8&% +24€2 —20£ +5),
Xi(§) = (E+1)*(56 —50£2+55¢ — 16),
Yi(€) = (€+1)* (=136 +506% — 456 +12), (29)

and it is a rational PH curve, since it has the rational parametric speed

_A(E+1)(20€° — 37824 25¢ — 5)
oi(§) = 3E2(E4 —B8EF+24€2-20£+5)

(30)

We will show that the evolute of the curve (29), defined by the homogeneous
coordinates (26), is consistent with the expressions (23) through cancellation
of a factor common to W, X, Y. In order to do this, we use Maple to identify

the appropriate polynomials a(&),b(§) and f(€), g(€) in (23).
The tangent and normal to a rational PH curve are specified in [9] as

(a* — b, — 2 ab)

(2ab,a® — v?)
a? +b? '

a? + b2

t = (t,,ty) = , n = (ng,n,) =

Equating t to the expression obtained by substituting (29) and (30) into

(WiX! — WX, WY/ = W/Y)

t = ,

we obtain a and b as

(31)



Now the equation of the tangent line at the point £ of the involute is

8] o8]

and this can be written as

(&) x4+ ny(§)y = h(E),

where the support function h(§), specifying the distance of the tangent line
from the origin, is defined by

Y

Nz (§) [f -

n:(6) Xi(€) + 1y (§)Yi(§)
Wi(§) '

Substituting for n, (&), n,(€), Wi(€), Xi(€), Yi(€), we identify f(£) and g(§) as
the numerator and denominator of the rational quartic function

[ _ (€ +DE-59
g(§)  3(¢'—8&+248-20645)
Finally, having identified a(£), b(§) and f(€), g(§) the expressions (23) can be
evaluated. Upon factorizing them, we obtain

W(g) = 864&°(¢ — 1)°[a’(§) + () I,
X(§) = =864 (¢ — 1)°[a®() + V(O (€ +1)(5& —4€ +1),
Y(€) = —288( —1)°[a*(€) + b () P(E+1)(13€* =262 +20£ — 4)

) _
where

(&) =

hE) = (32)

a?(€) +b2(€) = €1 —8E3 +24¢€* — 206 + 5. (33)

Although W, XY are nominally of degree 18, they possess the common factor
288 (€ — 1)?[a?(€) + b*(€)]? of degree 14 which, when divided out, yields the
original quartic curve defined by (26).

Remark 4. The common factor (£ —1)?[a?(&) +b*(€) ]2 of W(E), X (£),Y(§)
in Example 8 is remarkable. If, instead of (31) and (32), we use freely—chosen
quadratics a(£), b(§) and quartics f(§), g(£) in (23) then W (), X (€), Y (§) are
of degree 18, and in general they possess no common factors. From (32) and
(33), we see that g(¢) = 3[a?(£) +b%(¢)] in Example 8, and it is evident from
(22)-(23) that W(£), X(£),Y(€) have a?(€) + b*(€) as a common factor, but
it is not obvious why its cube appears as a common factor.
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The conditions on a, b and f, g that incur common factors among W, X, Y
are not easily discerned from the expressions (23). Thus Example 8 highlights
the ability of the direct integration approach, based on choosing polynomials
u, v, w in (25), to generate low—degree curves without the need for a symbolic
factorization to extract common factors among the expressions (23).

A similar situation arises with regard to the curve in Example 1 (for which
w(€) has simple roots). By the same reasoning used above, the polynomials
a(€),b(§) may be identified as

£ -3 +e—1
\/§ )

—(E+DE-1*
\/§ )

a(§) = b(€) =

and we obtain
ne) = L8 _  EHDE -4+ DRE-5E+5)
g(€)  3(€—4&+5& —28+38 -26+1)
Substituting (), b(§) and f(€), g(£) into (22)—(23) and factorizing then gives
W(g) = —1088%(¢ — 1)°(&” — £ +4)*[a”(§) +0*(§) I,
X(©) = =368(€ = 1)°(E€ = E+4)°[a*( O + V(O P(E+ 1) =5 +3),
Y(§) = —1088%(6 — 1)*(&” — € +4)°[a®(§) + V(&) P(E + 1)(€ — 2)*,

where

() +0%(€) = € —4€ +5¢' 28 +3& —2¢+1.
W, X,Y are nominally of degree 30, 33, 32 but they have the common factor
36 E2(E—1)%(E2—E&+4)3[a® (&) +1%(€) |? of degree 28, and eliminating it yields
the original rational quintic curve (11). Again, this simplification is specific
to the curve considered in Example 1 — substituting general cubics a, b and
polynomials f and g of degree 7 and 6 in (22)—(23) yields an irreducible curve
with deg(W) = 30, deg(X) = deg(Y) = 33, and ged(W, X,Y) = 1.

As in Example 8, we have g = 3 (a®+b%) in this case, but it is not obvious
why the cube of a?+b? appears as a common factor of W, X, Y. Example 1 is
thus another simple rational curve with a rational arc length, constructed by
direct integration, that is not easy to identify from the expressions (22)—(23).

6 (eneralization to space curves

We now briefly consider how the preceding discussion, which focused on plane
rational curves with rational arc lengths, can be generalized to rational space
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curves. Consider the hodograph r'(§) = (2/(£),v'(£), 2/(£)) of a rational space
curve, specified as

: e§) e 9(¢§)
R - NEGEE - MRy -

for polynomials d(£),e(§), f(£), g(§) with at least one of ged(e, d), ged(f, d),
ged(g, d) equal to 1. As in the planar case, the denominator polynomial d(§)
cannot have any simple roots if x(§),y(£), z2(§) are to be rational, and we
choose d(£) = w?(£), where w(€) is a polynomial with only simple roots.

Now for the parametric speed of r(£) to be rational, €?(&) + f2(£) + ¢*(€)
must be a perfect square, and this implies [1] that

e(€) = u(€) +v*(&) — p*(§) — ¢*(6).
F(&) = 2[u(€)q(§) +v(&)p()],
9(&) = 2[v(§)q(&) —u(&)p(&)],

for polynomials u(&),v(£), p(€), ¢(€) and consequently €?(&) + f2(€) + ¢g2(€) =
[u?(€) +v23(&)+p*(€) +4¢%(€) ]?. To obtain a rational space curve with rational

arc length, we must choose u(&),v(§), p(£), ¢(£), for a given w(&) with simple
roots, so as to ensure that the indefinite integrals of the rational functions
,_uwHvi—p’—¢ . 2(ugtwp)  , _ 2(vg—up)

r = ’UJ2 ) Yy = ’UJ2 ) IS ’UJ2 )

, w0+ pt 4
s = 5 )
w

are rational expressions in &. A sufficient condition for this can be formulated
through a simple adaptation of the approach used for planar curves. Namely,
for a given w(¢) we choose right-hand sides in (16) so as to obtain solutions
defining four linearly independent and pairwise relatively prime polynomials
w(€),v(€), p(€), q(€) such that u?/w?, v?/w?, p?/w?, ¢*/w? all have rational
integrals, and this ensures that uq/w?, vp/w?, vq/w?, up/w? also have rational
integrals. Hence, integration of 2, v’, 2/, s’ yields a rational space curve with
a rational arc length.

Example 9. For w(§) = £(€ — 1), the relatively prime polynomials

u) = —&€+E-1, v =€ -26+2,

26



p(§) = 28 +38+6—1, q(§) = - +48-26+2,
correspond respectively to values P = (1,1)T, P = (-1,-2)T, P = (—-1,1)%,
P=(-3,-2Tand R= (1,-1)", R=(-2,1)", R=(1,1)", R = (-2,3)T
in equation (16). These polynomials generate the rational quintic curve r(¢)
specified by the homogeneous coordinates

(&) = 3¢8(E-1),

(6) = —4& +226" —18¢% —10€% + 34¢,
(€) = =4 + 4P +1263 +2662 — 26— 24,
(6) = —26° +264 +36€% — 3267 — 466+ 18,

N e =

which has the rational arc length function

68— 18+ 1283 —30&% —36£+ 30
a 36(6—-1) ’

where we assume integration constants such that r(—1) = 0 and s(—1) = 0.

s(€)

7 Closure

A novel approach to characterizing rational curves with rational arc length
functions has been introduced. For planar curves this is based on identifying,
for a given polynomial w (&) with simple roots, conditions on two polynomials
u(€),v(€) satisfying ged(u, v) = ged(u, w) = ged(v, w) = 1 which ensure that
the integrals of u?/w?, uv/w?, v?/w?* are rational functions. A generalization
to the case of rational space curves was also briefly sketched.

The focus of this study was on elucidating the underlying basic theory to
support the construction of rational curves with rational arc lengths by direct
integration. This facilitates the development of algorithms for the design of
curve segments that satisfy desired geometrical constraints (e.g., prescribed
end points and tangents), as required in practical applications.

The direct integration scheme was compared with prior theory concerning
rational curves with rational arc lengths, based upon the dual representation
for rational Pythagorean—hodograph curves, and examples were used to show
that straightforward constuctions of low—degree curves are possible in cases
where the prior approach requires symbolic factorization of the homogeneous
coordinates to identify and extract common non—constant factors.
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A number of issues concerning the methodology proposed herein deserve
further investigation. First, as noted above, it should be exploited to develop
algorithms that address practical design problems — e.g., the construction
of G' Hermite interpolants with prescribed arc lengths. Second, the theory
should be extended to relax the assumptions made herein that w(§) has only
simple roots, and that ged(u,v) = ged(u, w) = ged(v,w) = 1. Finally, the
non—obvious circumstances that incur common factors in the homogeneous
coordinates (23) deserve further elucidation. These are non—trivial problems,
that will require separate substantive studies.
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