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Mapping rational rotation-minimizing frames

from polynomial curves on to rational curves

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA

Zbyněk Š́ır

Faculty of Mathematics and Physics,
Charles University in Prague,

Sokolovská 83, 186 75 Praha 8, Czech Republic

Abstract

Given a polynomial space curve r(ξ) that has a rational rotation–minimizing frame
(an RRMF curve), a methodology is developed to construct families of rational space
curves r̃(ξ) with the same rotation–minimizing frame as r(ξ) at corresponding points.
The construction employs the dual form of a rational space curve, interpreted as the
edge of regression of the envelope of a family of osculating planes, having normals in
the direction u(ξ) = r

′(ξ)× r
′′(ξ) and distances from the origin specified in terms of

a rational function f(ξ) as f(ξ)/‖u(ξ)‖. An explicit characterization of the rational
curves r̃(ξ) generated by a given RRMF curve r(ξ) in this manner is developed,
and the problem of matching initial and final points and frames is shown to impose
only linear conditions on the coefficients of f(ξ), obviating the non–linear equations
(and existence questions) that arise in addressing this problem with the RRMF curve
r(ξ). Criteria for identifying low–degree instances of the curves r̃(ξ) are identified,
by a cancellation of factors common to their numerators and denominators, and the
methodology is illustrated by a number of computed examples.

Keywords: rotation–minimizing frames; rational curves; edge of regression;
rational functions; polynomial factorization; spatial motion interpolants.
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1 Introduction

An adapted orthonormal frame (t(ξ),u(ξ),v(ξ)) on a space curve r(ξ) consists of the unit
tangent t(ξ) = r′(ξ)/‖r′(ξ)‖ and unit vectors u(ξ),v(ξ) that span the curve normal plane.
The frame angular velocity ω specifies its variation along the curve through the relations

dt

ds
= ω × t,

du

ds
= ω × u,

dv

ds
= ω × v,

where s denotes the curve arc length. The frame (t,u,v) is said to be a rotation–minimizing

frame (RMF) — or Bishop frame [3] — if its angular velocity satisfies ω · t ≡ 0, i.e., the
normal–plane vectors u and v exhibit no rotation about the tangent t.

Rotation–minimizing frames have diverse applications in robotics, computer animation,
5–axis CNC machining, swept surface constructions, spatial motion planning, and related
fields. Since the construction of RMFs on general polynomial/rational curves amounts [26]
to integrating a first–order differential equation, many numerical approximation schemes
have been formulated [16, 22, 23, 24, 25, 27, 29, 30, 31, 32]. On the other hand, there has
been increasing interest in the identification of curves that admit exact RMFs [4, 5, 8, 11,
12, 13, 17, 18, 19, 21] — i.e., the frame vectors (t(ξ),u(ξ),v(ξ)) have a rational dependence
on the parameter ξ, and the angular velocity satisfies ω(ξ) · t(ξ) ≡ 0 (see [9] for a review).
Such curves are necessarily Pythagorean–hodograph (PH) curves [7], since only PH curves
have rational unit tangents. These studies have focused primarily on polynomial PH curves,
although the paper [1] constructs rational curves with rational RMFs by applying Möbius
transformations in R

3 (composed of inversions in planes and spheres) to piecewise planar
PH cubics, and thereby solves a G1 Hermite interpolation problem.

The present study adopts a different approach to the construction of rational curves
with rational RMFs, which exploits the hodograph structure r′(ξ) of polynomial PH curves
with rational rotation–minimizing frames (or RRMF curves). Namely, the vector u(ξ) =
r′(ξ) × r′′(ξ) is employed to define a (non–unit) binormal vector for a space curve r̃(ξ).
The family Π(ξ) of osculating planes of r̃(ξ) can then be defined by introducing a support
function f(ξ) such that f(ξ)/‖u(ξ)‖ specifies their distances from the origin. The envelope
of the planes Π(ξ) defines the tangent developable of the rational curve r̃(ξ), which may be
recovered as the edge of regression [28] (or cuspidal edge) of the tangent developable.

The rational curve r̃(ξ) has exactly the same RMF (t(ξ),u(ξ),v(ξ)) as the polynomial
RRMF curve r(ξ), and an explicit parameterization of it may be derived in terms of u(ξ)
and f(ξ). Moreover, we show that these new curves r̃(ξ) greatly simplify the interpolation
of initial and final points and frames, because of their linear dependence on f(ξ) — with
polynomial RRMF curves this is a non–linear problem, and for the quintic RRMF curves
it is known [13] that solutions do not exist for all instances of the boundary data.

The plan for the remainder of this paper is as follows. First, some relevant properties
of the polynomial RRMF curves are briefly summarized in Section 2. These are employed
in Section 3 to develop an explicit parameterization for rational curves r̃(ξ) that have the
same (rational) RMF as a given polynomial RRMF curve r(ξ), and some key features of this
representation are discussed. Section 4 identifies conditions under which low–degree curves
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r̃(ξ) can be obtained by cancellation of factors common to the numerator and denominator,
through appropriate choices of f(ξ). Based upon the linear dependence of r̃(ξ) on f(ξ), the
extreme simplicity with which given initial and final points can be interpolated, r̃(0) = pi

and r̃(1) = pf , is then illustrated in Section 5. In Section 6 we describe some computed
examples, to illustrate implementation of the method. Finally, Section 7 summarizes the
key findings of the present study, and suggests avenues for further investigation.

2 Rational RMFs on polynomial PH curves

Recall [6, 10] that a polynomial PH space curve r(ξ) may be constructed from a quaternion
polynomial

A(ξ) = u(ξ) + v(ξ) i+ p(ξ) j+ q(ξ)k (1)

by integration of the hodograph specified by the product1

r′(ξ) = A(ξ) iA∗(ξ), (2)

where A∗(ξ) = u(ξ)− v(ξ) i− p(ξ) j− q(ξ)k is the conjugate of A(ξ). If A(ξ) is of degree
m, and specified in Bernstein form on ξ ∈ [ 0, 1 ] as

A(ξ) =

m∑

i=0

Ai

(
m

i

)

(1− ξ)m−iξi, (3)

it generates the spatial PH curve of odd degree n = 2m+ 1 defined (up to an integration
constant) by

r(ξ) =

∫

r′(ξ) dξ =

∫

A(ξ) iA∗(ξ) dξ. (4)

The parametric speed of r(ξ) — the derivative ds/dξ of the curve arc length s with respect
to the parameter ξ — is σ(ξ) = |A(ξ)|2 = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ).

Every spatial PH curve is equipped with a rational adapted orthonormal frame — the
Euler–Rodrigues frame (ERF) — defined [5] by

(e1(ξ), e2(ξ), e3(ξ)) =
(A(ξ) iA∗(ξ),A(ξ) jA∗(ξ),A(ξ)kA∗(ξ))

|A(ξ)|2 , (5)

wherein e1(ξ) is the curve tangent, and e2(ξ), e3(ξ) span the normal plane. This is not (in
general) an RMF, since it has [9] the angular velocity component

ω1 = ω · e1 =
2(uv′ − u′v − pq′ + p′q)

σ2

1Calligraphic characters such asA denote quaternions, with scalar and vector parts scal(A) and vect(A).
The choice of the unit vector i in (2) is merely conventional — any other unit vector may be used instead,
corresponding to a change of coordinates.
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in the direction of the tangent e1 = t. However, if we introduce new normal–plane vectors
u(ξ),v(ξ) defined by rotating e2(ξ), e3(ξ) about e1(ξ) by the angle function

θ(ξ) = − 2 arctan
b(ξ)

a(ξ)

for relatively prime polynomials a(ξ), b(ξ) — i.e., we set

[
u(ξ)
v(ξ)

]

=
1

a2(ξ) + b2(ξ)

[
a2(ξ)− b2(ξ) −2 a(ξ)b(ξ)
2 a(ξ)b(ξ) a2(ξ)− b2(ξ)

] [
e2(ξ)
e3(ξ)

]

, (6)

this rotation induces an angular velocity dθ/ds = 2(a′b − ab′)/σ (a2 + b2) of e2, e3 about
e1 = t. Consequently, dθ/ds precisely cancels the ERF angular velocity component ω1,
and (t(ξ),u(ξ),v(ξ)) is a rational RMF, if relatively prime polynomials a(ξ), b(ξ) exist that
satisfy [21] the condition

uv′ − u′v − pq′ + p′q

u2 + v2 + p2 + q2
=

ab′ − a′b

a2 + b2
. (7)

The existence of polynomial PH space curves with rational RMFs (or RRMF curves)
satisfying (7) has been characterized [4, 5, 8, 12, 18, 19] by systems of algebraic constraints
on the coefficients A0, . . . ,Am of the quaternion polynomial (3). A survey of these results
may be found in [9], and a comprehensive theory of RRMF curves was formulated in [11].
The simplest instances are the quintic RRMF curves [8] which satisfy (7) with deg(A) = 2
and deg(a, b) = 2 subject to the vector constraint

vect(A2 iA∗

0) = A1 iA∗

1, (8)

and the degree 7 RRMF curves [17, 21] that satisfy (7) with deg(A) = 3 and deg(a, b) = 0
subject to the system of five scalar constraints

scal(A0 iA∗

1) = scal(A0 iA∗

2) = 0,

3 scal(A1 iA∗

2) + scal(A0 iA∗

3) = 0, (9)

scal(A1 iA∗

3) = scal(A2 iA∗

3) = 0.

For brevity, we focus here on the former instance. The latter instance corresponds to the
case in which the ERF is itself rotation–minimizing — i.e., the normal–plane rotation (6)
is not necessary to define an RMF.

3 Mapping RMFs to rational curves

The construction of RRMF curves that satisfy prescribed boundary conditions (end points
and frames) is complicated by the non–linear nature of the constraints on A0, . . . ,Am that
identify RRMF curves, and the end–point displacement equation resulting from integration
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of the hodograph (2). With the quintic RRMF curves characterized by the vector condition
(8), the end–point displacement requires a real degree 6 polynomial to have a positive real
root, and this does not hold [13] for all possible input data. For the degree 7 RRMF curves
identified by the five scalar constraints (9), a system of four quadratic equations in four
real variables (dependent on two free parameters) must be solved numerically [17].

To circumvent these difficulties, we consider here the set of all rational PH curves r̃(ξ)
with the same RMF as a given (polynomial) RRMF curve r(ξ) defined by the hodograph
(2). With these curves, satisfaction of the end–point displacement will impose only linear

conditions on the available degrees of freedom. Such curves r̃(ξ) are evidently of the form

r̃(ξ) =

∫

λ(ξ)A(ξ) iA∗(ξ) dξ (10)

for some rational function λ(ξ). However, the integral (10) does not necessarily generate a
rational curve for any choice of λ(ξ) — in other words, for a prescribed tangent indicatrix
t(ξ) = A(ξ) iA∗(ξ)/|A(ξ)|2 it is not possible to freely specify the rational parametric speed
σ̃(ξ) = |r̃′(ξ)| = |λ(ξ)| |A(ξ)|2 and ensure that (10) yields a rational curve.

In lieu of (10), we choose a different approach here, wherein r̃(ξ) is constructed as the
edge of regression [28] of a one–parameter family of osculating planes — defined by a family
of binormal vectors constructed from r′(ξ) together with a rational support function f(ξ)
that determines their distances from the origin. An explicit form for r̃(ξ) has been presented
in Proposition 1 of [20], based on specifying the tangent indicatrix through stereographic
projection of a plane rational curve. We adopt an alternative approach here, that employs
the quaternion product (2) — where A(ξ) defines an RRMF curve — to specify the tangent
indicatrix. Since r′ = σ t, r′′ = σ′t+ σ t′, and t′ = σ κn, we obtain r′ × r′′ = σ3κb (where
n, b, and κ are the principal normal, binormal, and curvature of r(ξ)). Omitting the factor
σ3κ, we define a (non–unit) vector in the direction of the binormal by

u(ξ) = r′(ξ)× r′′(ξ) = (A(ξ) iA∗(ξ))× (A(ξ) iA∗(ξ))′ . (11)

Using standard rules of quaternion algebra, the expression on the right can be written as

σ(ξ) 1
2
(A′(ξ)A∗(ξ)−A(ξ)A′∗(ξ))

︸ ︷︷ ︸

w1(ξ)

+(A(ξ) i) 1
2
(A′∗(ξ)A(ξ)−A∗(ξ)A′(ξ))

︸ ︷︷ ︸

w2(ξ)

(A(ξ) i)∗,

where w1 = vect(A′A∗), w2 = vect(A′∗A) are of equal magnitude (since σ = AA∗ we have
σ′ = A′A∗ +AA′∗, and hence vect(σ′) = vect(A′A∗) + vect(AA′∗) = 0).

Then, for any rational function f(ξ), we introduce the family of osculating planes Π(ξ)
defined in terms of free coordinates p = (x, y, z) by the equation

Π(ξ) : u(ξ) · p = f(ξ). (12)

Here u(ξ) defines the normal to the plane Π(ξ), and f(ξ)/‖u(ξ)‖ is its (signed) distance
from the origin. The edge of regression of the envelope of this family of osculating planes
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is a rational PH curve r̃(ξ) with the same rational RMF as the polynomial PH curve (4),
and every rational PH curve with the same rational RMF as the polynomial RRMF curve
r(ξ) can be obtained in this manner.

The explicit form of r̃(ξ) in terms of u(ξ) and f(ξ) has been derived in [20] as

r̃(ξ) =
f(ξ)u′(ξ)× u′′(ξ) + f ′(ξ)u′′(ξ)× u(ξ) + f ′′(ξ)u(ξ)× u′(ξ)

∆(ξ)
, (13)

where
∆(ξ) = u(ξ) · [u′(ξ)× u′′(ξ) ] = det[u(ξ),u′(ξ),u′′(ξ) ]. (14)

Remark 1 Setting f(ξ) = c(ξ)/d(ξ) for relatively prime polynomials c(ξ) and d(ξ), the
homogeneous coordinates W̃ (ξ), X̃(ξ), Ỹ (ξ), Z̃(ξ) for the rational curve (13) can be derived
and, in the absence of common factors, r̃(ξ) has the denominator W̃ (ξ) = d3(ξ)∆(ξ).

Now the vector (11) and its first two derivatives are given by

u(ξ) = r′(ξ)× r′′(ξ), u′(ξ) = r′(ξ)× r′′′(ξ), u′′(ξ) = r′′(ξ)× r′′′(ξ) + r′(ξ)× r′′′′(ξ),

and by using the vector identity

(a× b)× (c× d) = [ a · (b× d) ] c− [ a · (b× c) ]d

we can express the cross products in (13) as follows:

u(ξ)× u′(ξ) = det[ r′(ξ), r′′(ξ), r′′′(ξ) ] r′(ξ),

u′(ξ)× u′′(ξ) = det[ r′(ξ), r′′′(ξ), r′′′′(ξ) ] r′(ξ) + det[ r′(ξ), r′′(ξ), r′′′(ξ) ] r′′′(ξ), (15)

u′′(ξ)× u(ξ) = − det[ r′(ξ), r′′(ξ), r′′′′(ξ) ] r′(ξ)− det[ r′(ξ), r′′(ξ), r′′′(ξ) ] r′′(ξ).

Lemma 1 The polynomial (14) occurring in the denominator of the rational curve (13)
can be expressed in terms of the hodograph (2) and its derivatives as

∆(ξ) = (det[ r′(ξ), r′′(ξ), r′′′(ξ) ])2. (16)

Proof : This follows directly from substituting the above expressions for u(ξ), u′(ξ), u′′(ξ)
into (14) and simplifying.

Remark 2 Since (13) is a rational PH curve, it may have real points at infinity. In the
case that f(ξ) is a polynomial, they occur only when the denominator ∆(ξ) has real roots.
Since the torsion of r(ξ) is τ(ξ) = det[ r′(ξ), r′′(ξ), r′′′(ξ) ]/|r(ξ)× r′′(ξ)|2, Lemma 1 shows
that the points at infinity of r̃(ξ) correspond precisely to the points of zero torsion on r(ξ).
Consequently, we have the following result.

Lemma 2 If r(ξ) has no points of zero torsion on a real interval I, and f(ξ) is polynomial,

then r̃(ξ) has no points at infinity on the interval I.
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Remark 3 Every polynomial PH curve satisfies [14] the relation

‖ r′(ξ)× r′′(ξ)‖2 = 4 σ2(ξ) ρ(ξ), (17)

where the polynomial ρ(ξ) can be expressed [14] in terms of the components of (1) and its
derivative as

ρ = (up′ − u′p+ vq′ − v′q)2 + (uq′ − u′q − vp′ + v′p)2. (18)

Thus the unit binormal vector u(ξ)/‖u(ξ)‖ is rational if and only if ρ(ξ) is a perfect square.
Polynomial PH curves that possess this property are known [2, 14, 15] as double PH curves

— they have rational Frenet frames and curvatures.

Proposition 1 For the quintic RRMF curves generated from (2) by a quadratic quaternion

polynomial A0(1−ξ)2+A12(1−ξ)ξ+A2ξ
2 with coefficients satisfying (8), the triple product

r′(ξ) · (r′′(ξ)× r′′′(ξ)) has the factorization

r′(ξ) · (r′′(ξ)× r′′′(ξ)) = σ(ξ) h(ξ), (19)

where σ(ξ) = |A(ξ)|2 is the quartic parametric speed, and h(ξ) is a quadratic polynomial.

Proof : To simplify the analysis, we consider curves in canonical form, with A0 = 1. This
is achieved by multiplying A(ξ) with A−1

0 = A∗

0/|A0|2, corresponding to the imposition of
a scaling/rotation transformation on r′(ξ), which does not alter its RRMF nature, so that
r′(0) = (1, 0, 0). The condition (8) is then satisfied [8] with coefficients of the form

A0 = 1, A1 = u1 + v1i+ p1j+ q1k,

A2 = u2
1 + v21 − p21 − q21 + γ i+ 2(u1p1 − v1q1) j+ 2(u1q1 + v1p1)k,

where u1, v1, p1, q1, γ are free (real) parameters. By forming r′(ξ) · (r′′(ξ)× r′′′(ξ)) in terms
of these coefficients, and factorizing it symbolically in Maple, it is seen to be the product
of the quartic parametric speed

σ(ξ) =
4∑

i=0

σi

(
4

i

)

(1− ξ)4−iξi

with coefficients given [8] by

σ0 = 1, σ1 = u1, σ2 = u2
1 + v21 +

1
3
(p21 + q21), σ3 = u1|A1|2 + v1γ, σ4 = |A1|4 + γ2,

and the quadratic polynomial

h(ξ) = 48(p21 + q21) [ 2 v1(1− ξ)2 + γ 2(1− ξ)ξ + 2(γ u1 − |A1|2v1) ξ2 ]. (20)

To express these results in terms of general coefficients, we note first that

r′(ξ) · (r′′(ξ)× r′′′(ξ)) = − scal(r′(ξ) r′′(ξ) r′′′(ξ)). (21)
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On multiplying A(ξ) with A0 to restore r
′(ξ) to its original configuration, r′(ξ), r′′(ξ), r′′′(ξ)

becomeA0 r
′(ξ)A∗

0, A0 r
′′(ξ)A∗

0, A0 r
′′′(ξ)A∗

0. Thus, the quaternion product r′(ξ) r′′(ξ) r′′′(ξ)
in (21) becomes |A0|4A0(r

′(ξ) r′′(ξ) r′′′(ξ))A∗

0, and since scal(A0QA∗

0) = |A0|2 scal(Q) for
any quaternion Q, we see that r′(ξ)·(r′′(ξ)×r′′′(ξ)) is mapped to |A0|6 r′(ξ)·(r′′(ξ)×r′′′(ξ)).
Hence, since σ(ξ) becomes |A0|2 σ(ξ), the polynomial h(ξ) becomes |A0|4 h(ξ).

Note that the factorization (19) of r′(ξ) · (r′′(ξ)×r′′′(ξ)) is specific to the quintic RRMF
curves satisfying the condition (8) — it does not hold for general quintic PH space curves.

Remark 4 From equations (17)–(18) and Proposition 1, we observe that the torsion of a
quintic RRMF curve has the simple form

τ(ξ) =
r′(ξ) · (r′′(ξ)× r′′′(ξ))

| r′(ξ)× r′′(ξ) |2 =
h(ξ)

4 σ(ξ)ρ(ξ)
,

where h(ξ) is quadratic, and σ(ξ) and ρ(ξ) are quartic. Furthermore, these curves have
the non–constant curvature/torsion ratio

κ(ξ)

τ(ξ)
=

8 ρ3/2(ξ)

σ(ξ) h(ξ)
,

and consequently they are not, in general, helical curves [14]. From (20) we observe that
the canonical–form RRMF quintic degenerates to a planar curve2 if either p1 = q1 = 0 or
v1 = γ = 0. In both cases, the coefficients A0,A1,A2 are linearly dependent.

Example 1 Consider Example 8.2 in [11], for which

A(ξ) = (7 ξ2 − 22 ξ + 10) + (−19 ξ2 + 14 ξ) i+ (−26 ξ2 + 16 ξ) j+ (−2 ξ2 + 12 ξ)k.

The resulting polynomial PH curve

r(ξ) =





− 54 ξ5 + 10 ξ4 + 140 ξ3 − 220 ξ2 + 100 ξ
192 ξ5 − 270 ξ4 − 40 ξ3 + 120 ξ2

88 ξ5 − 470 ξ4 + 520 ξ3 − 160 ξ2





admits an RMF, obtained from the Euler–Rodrigues frame via the normal–plane rotation
(6) with a(ξ) = 27 ξ2− 22 ξ+10 and b(ξ) = −19 ξ2+14 ξ. The parametric speed of r(ξ) is

σ(ξ) = 10 (109 ξ4 − 172 ξ3 + 122 ξ2 − 44 ξ + 10).

Now the non–unit binormal vector (11) becomes

u(ξ) = 400





3324 ξ6 − 7752 ξ5 + 7872 ξ4 − 3984 ξ3 + 840 ξ2

1225 ξ6 − 3030 ξ5 + 4230 ξ4 − 4640 ξ3 + 2790 ξ2 − 780 ξ + 80
− 633 ξ6 + 1854 ξ5 − 3804 ξ4 + 3288 ξ3 − 930 ξ2 − 60 ξ + 60



 ,

2Every planar PH curve is trivially an RRMF curve.
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and expression (16) yields

∆(ξ) = [ 960000(2 ξ2 − 19 ξ + 7)(109 ξ4 − 172 ξ3 + 122 ξ2 − 44 ξ + 10) ]2.

The polynomial PH curve r(ξ) corresponds to the support function

f(ξ) = 8000 ξ3(436 ξ6 − 7245 ξ5 + 20424 ξ4 − 25802 ξ3 + 18132 ξ2 − 7470 ξ + 1400).

If we replace f(ξ) by the rational function f̃(ξ) defined as

320000 ξ3(11387 ξ6 − 290136 ξ5 + 893466 ξ4 − 1179172 ξ3 + 854730 ξ2 − 363000 ξ + 70000)

(ξ + 10)3

we obtain from (13) the rational quintic curve

r̃(ξ) =
800

(ξ + 10)5





−13420 ξ5 + 4000 ξ4 + 30000 ξ3 − 50000 ξ2 + 25000 ξ
46643 ξ5 − 67850 ξ4 − 7000 ξ3 + 30000 ξ2

19776 ξ5 − 111200 ξ4 + 126000 ξ3 − 40000 ξ2



 ,

which results3 from cancelling a factor proportional to ∆(ξ), of degree 12, common to the
numerator and denominator of the expression (13). The parametric speed σ̃(ξ) = ‖r̃′(ξ)‖
of r̃(ξ) is related to the parametric speed σ(ξ) of the RRMF curve r(ξ) by

σ̃(ξ) =
2000000

(ξ + 10)6
σ(ξ).

The curves r(ξ) and r̃(ξ) have the same tangent indicatrix and the same rational RMF, as
shown in Figure 1. In this example, the polynomial (18) proves to be just a multiple of
the parametric speed, ρ(ξ) = 400 σ(ξ), and consequently ‖u(ξ)‖ = 40 [ σ(ξ) ]3/2.

4 Degree reduction of rational curves

When deg(A) = m, we have deg(r′) = 2m and hence deg(u) = 4m−2, deg(u×u′) = 8m−6,
deg(u′′×u) = 8m−7, deg(u′×u′′) = 8m−8, and deg(det[ r′(ξ), r′′(ξ), r′′′(ξ) ]) = 6(m−1)
due to a cancellation of leading terms. Hence, if we choose a polynomial support function
f(ξ) of degree l, the numerator and denominator of the curve (13) are of degree l+8(m−1)
and 12(m−1) in the absence of any common factors. Since the simplest non–trivial RRMF
curves correspond [8] to the case m = 2, the minimum degrees of the numerator and the
denominator are l + 8 and 12, if they are relatively prime. These degrees are even higher
if f(ξ) is a rational function with a degree l numerator and a non–constant denominator.
However, as the rational quintic constructed in Example 1 shows, curves r̃(ξ) of much lower

3Note also that r̃(ξ) has denominator W̃ (ξ) = (ξ+10)5, rather than (ξ+10)9 as indicated by Remark 1,
due to a cancellation of factors common to the numerators and denominators of f ′(ξ) and f ′′(ξ).
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Figure 1: Polynomial PH curve r(ξ) (black) showing the normal–plane vectors of its rational
RMF, and one of the associated rational PH curves r̃(ξ) (red) that has the same RMF.

degree are possible, through cancellation of massive factors common to the numerator and
denominator in (13). We now investigate in greater detail how this can occur.

Due to the general nature of the function f(ξ), a comprehensive study of when such
cancellations occur is a non–trivial task, which we defer to a separate study. At present, we
focus on some key observations. First, as noted in Example 1, for a rational function f(ξ) =
c(ξ)/d(ξ) the numerators of f ′(ξ), f ′′(ξ) may have factors in common with d(ξ), resulting
in cancellations between the numerator of (13) and its denominator W̃ (ξ) = d3(ξ)∆(ξ).

Further cancellations can occur if the numerator of (13) has factors in common with
∆(ξ). For example, ∆(ξ) is itself a common factor when f(ξ) = g(ξ)∆3(ξ) for some rational
function g(ξ) (moreover, r̃(ξ) is a polynomial curve if g(ξ) is a polynomial). However, this
condition is not necessary for a cancellation to occur, and one might try to identify explicit
conditions on the coefficients of f(ξ) such that each coordinate component of the numerator
of (13) is divisible by ∆(ξ). By substituting (15) and (16) into (13), we obtain

r̃ =
det[ r′, r′′, r′′′ ](fr′′′ − f ′r′′ + f ′′r′) + (f det[ r′, r′′′, r′′′′ ]− f ′ det[ r′, r′′, r′′′′ ]) r′

(det[ r′, r′′, r′′′ ])2
, (22)

from which it is apparent that ∆ = (det[ r′, r′′, r′′′ ])2 cancels out completely between the
numerator and denominator of r̃(ξ) if f(ξ) = g(ξ) (det[ r′(ξ), r′′(ξ), r′′′(ξ) ])3. This condition
is also not necessary for a cancellation, and is not satisfied in Example 1.

Inspecting expression (22) more closely, it transpires that a cancellation of one instance
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of det[ r′, r′′, r′′′ ] between the numerator and denominator of r̃ occurs when det[ r′, r′′, r′′′ ]
divides the numerator of f det[ r′, r′′′, r′′′′ ]−f ′ det[ r′, r′′, r′′′′ ]. For a rational function f(ξ) =
c(ξ)/d(ξ) this implies that

c d det[ r′, r′′′, r′′′′ ]− (c′d− c d′) det[ r′, r′′, r′′′′ ] = p det[ r′, r′′, r′′′ ] (23)

for some polynomial p(ξ). Now if the denominator d(ξ) is fixed, the condition (23) imposes
a system of linear constraints on the unknown coefficients of c(ξ) and p(ξ). Since the left–
and right–hand sides of (23) depend linearly on c(ξ) and p(ξ), we may assume that p(ξ) is
monic. The constraints are satisfied by both f(ξ) and f̃(ξ) in Example 1, for which

det[ r′, r′′, r′′′ ] = 960000 (2 ξ2 − 19 ξ + 7)(109 ξ4 − 172 ξ3 + 122 ξ2 − 44 ξ + 10),

det[ r′, r′′, r′′′′ ] = 2880000 (436 ξ5 − 4025 ξ4 + 5700 ξ3 − 3610 ξ2 + 1140 ξ − 166),

det[ r′, r′′′, r′′′′ ] = 11520000 (327 ξ4 − 2415 ξ3 + 2573 ξ2 − 1159 ξ + 199).

For the curve r(ξ) in Example 1, the choice for f̃(ξ) actually results in the cancellation
of both instances of det[ r′, r′′, r′′′ ]. In fact, with this curve, other choices for f̃(ξ) were also
found to incur cancellation of both instances. Consider, for example, the choice

f̃(ξ) =
ξ3 (a6ξ

6 + a5ξ
5 + a4ξ

4 + a3ξ
3 + a2ξ

2 + a1ξ + a0)

ξ2 + ξ + 1
. (24)

Here the factor ξ3 ensures that r̃(0) = (0, 0, 0), and a simple polynomial without real roots
is chosen as the denominator. Hence, since the left–hand side of (23) is of degree 15, and
det[ r′, r′′, r′′′ ] is degree 6, p(ξ) must be degree 9 to permit satisfaction of (23). This results
in a system of 16 linear equations in the unknown coefficients a0, . . . , a6 in the numerator
of f̃(ξ) and p0, . . . , p8 of p(ξ), which may be solved exactly in rational arithmetic. Using
the resulting coefficients a0, . . . , a6 in f̃(ξ) and substituting into (13), we obtain the degree
9 rational curve r̃(ξ) defined4 by the homogeneous coordinates

W̃ (ξ) = (ξ2 + ξ + 1)3,

X̃(ξ) = −7.25 ξ9 − 60.31 ξ8 − 200.38 ξ7 − 215.06 ξ6 + 250.85 ξ5

+375.60 ξ4 − 120.20 ξ3 + 122.47 ξ2 + 446.42 ξ,

Ỹ (ξ) = 25.78 ξ9 + 176.68 ξ8 + 430.73 ξ7 + 232.28 ξ6 − 1289.38 ξ5

− 343.45 ξ4 + 1053.10 ξ3 + 535.71 ξ2,

Z̃(ξ) = 11.81 ξ9 + 25.17 ξ8 − 251.99 ξ7 − 577.96 ξ6 − 1051.13 ξ5

+1359.91 ξ4 + 679.19 ξ3 − 714.28 ξ2. (25)

This curve, which has the same rational RMF as the quintic PH curve r(ξ) introduced in
Example 1, is shown in Figure 2. Note that both instances of det[ r′, r′′, r′′′ ] again cancel
between the numerator and denominator of r̃(ξ) to yield the curve (25).

4The coefficients of r̃(ξ) are obtained exactly as rational numbers, but for brevity we present them here
as floating–point values with two decimal digits.
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Figure 2: The quintic RRMF curve r(ξ) employed in Example 1 (black) with its rotation–
minimizing frame, and two rational curves that have the same RMF, as defined by f̃(ξ) as
in Example 1 (red) and the alternative form (24) for f̃(ξ) (green).

5 Interpolation of G1 Hermite data

The construction of quintic RRMF curves interpolatingG1 Hermite data — i.e., initial/final
points pi and pf and adapted frames (ti,ui,vi) and (tf ,uf ,vf) — was addressed in [13].
This problem may be divided into four phases: (1) interpolation of the tangents ti and tf ;
(2) satisfaction of the constraint identifying the RRMF quintics as a subset of the spatial
PH quintics; (3) interpolation of the normal–plane vectors (ui,vi) and (uf ,vf ); and (4)
interpolation of the end–point displacement ∆p = pf − pi. The first three admit simple
closed–form solutions, and the main difficulty arises in phase (4) — which is algebraically
more complicated, and in fact it is known [13] that solutions do not exist for all instances
of the given Hermite data. The approach developed herein allows one to circumvent this
difficulty, by exploiting the linear dependence of the form (13) on the function f(ξ).

To accomplish this, we construct the hodograph (2) in accordance with the first three
phases above, as described in [13]. This hodograph uniquely determines the vector u(ξ)
specified by (11). Without loss of generality we assume pi = (0, 0, 0) and pf = (xf , yf , zf ),
and choose the function f(ξ) in (13) such that r̃(0) = pi and r̃(1) = pf . The simplest f(ξ)
satisfying these conditions is a quintic polynomial, which we write in Bernstein form as

f(ξ) =

5∑

i=0

fi

(
5

i

)

(1− ξ)5−iξi. (26)
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The choice f0 = f1 = f2 = 0 yields f(0) = f ′(0) = f ′′(0) = 0, and hence r̃(0) = (0, 0, 0).
On the other hand, the condition r̃(1) = pf yields the vector equation

u′(1)×u′′(1) f5+u′′(1)×u(1) 5(f5− f4) +u(1)×u′(1) 20(f5− 2 f4+ f3) = ∆(1)pf . (27)

Considered as a linear system for f3, f4, f5 it has a non–singular matrix, and thus a unique
solution for any choice of pf = (xf , yf , zf ), when

[ (u′(1)× u′′(1))× (u′′(1)× u(1)) ] · (u(1)× u′(1)) 6= 0.

This condition can be simplified to

∆(1) = u(1) · (u′(1)× u′′(1)) 6= 0,

i.e., u(1),u′(1),u′′(1) must be linearly independent. However, when ∆(1) = 0, the matrix
is singular and there are infinitely–many solutions for f3, f4, f5.

Remark 5 For the polynomial PH curve r(ξ), the support function f(ξ) is determined by
substituting p = r(ξ) in (12). Using Maple, we observe that the degree of f(ξ) is 9 for a
quintic PH curve. Consequently, the family of rational curves constructed above does not
incorporate r(ξ) as a special instance when the support function (26) of degree 5 is used.
However, by using a polynomial of degree ≥ 9 for f(ξ), it should be possible to include the
quintic PH curve r(ξ) as a special instance of the family of constructed rational curves.

6 Computed examples

We now illustrate the methodology developed above by some computed examples.

Example 2 In Example 3 of [13], it was observed that no RRMF quintic interpolant r(ξ)
exists for the following data:

pi = (0, 0, 0) , ti =
1
2
(1, 0,

√
3) , ui = (0, 1, 0) , vi =

1
2
(−

√
3, 0, 1) ,

pf = (1, 0, 0) , tf = 1
2
(1,−

√
2, 1) , uf = 1

2
(
√
2, 0,−

√
2) , vf = 1

2
(1,

√
2, 1) .

Using the formulation (13), however, one can easily construct interpolants with rational
RMFs. With m = 2 in (3), matching the end frames determines the coefficients A0, A2 as

A0 =
ℓ0
2
(
√
3− j) , A2 =

ℓ2
2
(−

√
2 + i + k) ,

where ℓ0, ℓ2 are non–zero free parameters. Moreover, satisfaction of the condition

A1 iA∗

1 = vect(A2 iA∗

0) (28)
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that characterizes [8] the quintic RRMF curves determines the coefficient A1 as

A1 =
√
a

a i+ a

‖ a i+ a ‖ exp(φ1i) ,

where we set a = vect(A2 iA∗

0), a = ‖a‖, and φ1 is a free parameter. For any non–zero ℓ0, ℓ2
and any φ1, the hodograph (2) constructed from the quadratic quaternion polynomial A(ξ)
with Bernstein coefficients A0,A1,A2 satisfies the RRMF condition (28) and interpolates
the end frames, but not the end points. Now r(0) = pi is easily achieved by the choice of
integration constant, and the main difficulty arises in achieving r(1) = pf .

However, using the polynomial A(ξ) — for any prescribed ℓ0, ℓ2, φ1 — to construct the
hodograph (2) and corresponding binormal vector field (11), interpolating pi and pf is
easily achieved with (13) by selecting the coefficients of the polynomial (26). For example,
taking ℓ0 = ℓ2 = 1 and φ1 = 0, we obtain ∆(1) = 1.13857672 and

u′(1)× u′′(1) = (−165.25446779, 278.02677830,−180.38261288) ,

u′′(1)× u(1) = (25.79232761,− 42.40519904, 27.76134401) ,

u(1)× u′(1) = (− 0.53352055, 0.75451200,− 0.53352055) ,

and hence we obtain the solution

f3 = 0.21670731 , f4 = − 0.67509971 , f5 = 1.4735748 .

In conjunction with the coefficients f0 = f1 = f2 = 0, the quintic polynomial (26) ensures
that curve (13) satisfies the end–point interpolation conditions r̃(0) = pi and r̃(1) = pf .

In the preceding example, arbitrary values were assigned to the free parameters ℓ0, ℓ2, φ1.
The availability of these free parameters arises from relaxing the condition r(1) = pf , and
shifting the burden of interpolating this end point to the function f(ξ) in (13). In practice,
these free parameters can be exploited to optimize shape properties of the interpolant.

In fact, with ℓ0 = ℓ2 = 1 and φ1 = 0, the interpolant r̃(ξ) contains a point at infinity
that corresponds (see Lemma 2) to a point of zero torsion on the quintic PH curve r(ξ).
On keeping ℓ0 = ℓ2 = 1 and choosing φ1 = 4π/5, however, r(ξ) has no points of vanishing
torsion, and the resulting rational curve r̃(ξ) — with the new coefficients f3 = −0.125843,
f4 = 0.143231, f5 = −2.61809 — is guaranteed to be finite, as seen in Figure 3.

It is apparent in Figure 3 that the rational curve r̃(ξ) has a cusp, corresponding to a
parameter value ξc such that r̃′(ξc) = 0. Unlike the points at infinity, the rather complicated
closed–form expressions (13) and (22) for r̃(ξ) make an a priori verification that it is free
of cusps a non–trivial task. We defer a detailed investigation of this issue to a future study.

Remark 6 Although the form (13) greatly simplifies the end–point interpolation problem,
and ensures the existence of interpolants, it should be noted that for any given hodograph
r′(ξ) satisfying the RRMF condition, the rational interpolants are typically of higher degree
and do not (in general) have rational arc lengths.
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Figure 3: The finite rational interpolant in Example 2, using ℓ0 = ℓ2 = 1 and φ1 = 4π/5.

Example 3 Consider the quintic PH curve specified by the quaternion coefficients

A0 = k, A1 = 1− j + k, A2 = 2 + 2 i+ 2 j+ k

in (3), which satisfy the RRMF condition (8). Choosing r(0) = (0, 0, 0) the corresponding
quadratic polynomial

A(ξ) = 2 ξ + 2 ξ2 i + (4 ξ2 − 2 ξ) j+ k

generates the polynomial PH curve

r(ξ) =
(−12 ξ5 + 20 ξ4 − 5 ξ, 16 ξ5 − 10 ξ4 + 10 ξ2,−20 ξ4 + 20 ξ3)

5
,

with parametric speed
σ(ξ) = 20 ξ4 − 16 ξ3 + 8 ξ2 + 1.

The rational RMF on r(ξ) is obtained from the ERF through the normal–plane rotation
(6) with a(ξ) = 2 ξ2+1 and b(ξ) = 4 ξ2−2 ξ. For this curve, the non–unit binormal vector
(11) becomes

u(ξ) =





256 ξ6 − 384 ξ5 + 96 ξ4 − 128 ξ3 + 48 ξ2

192 ξ6 − 288 ξ5 + 192 ξ4 − 48 ξ2 + 24 ξ
160 ξ6 + 144 ξ4 − 192 ξ3 + 24 ξ2 − 4



 ,

and the expression (16) yields

∆(ξ) = [ σ(ξ)h(ξ) ]2, h(ξ) = 96 (2 ξ2 + 4 ξ − 1).

The polynomial PH curve r(ξ) corresponds to the support function

f(ξ) =
16

5
ξ3(20 ξ6 + 36 ξ5 − 84 ξ4 + 84 ξ3 − 15 ξ2 + 15 ξ − 5).
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To satisfy specified end points pi = (0, 0, 0), pf = (1, 1, 1) we replace this with a function
f̃(ξ) of the form (26) with initial coefficients f0 = f1 = f2 = 0 and final coefficients f3, f4, f5
satisfying equation (27), which are determined to be

f3 =
232

5
, f4 = − 668

5
, f5 = 92.

The resulting support function is then

f̃(ξ) = 1224 ξ5 − 1596 ξ4 + 464 ξ3.

On substituting u(ξ) and f̃(ξ) into (13), the numerator and denominator of the resulting
curve r̃(ξ) are seen to be both of degree 12. In this case, no cancellation of factors common
to all of W̃ , X̃, Ỹ , Z̃ occurs.

Example 4 Consider the following data, which are symmetrical relative to the (y, z) plane
(taking into account the inward orientation of the tangent vector at the initial point and
outward direction at the final point):

pi = (13, 14, 15) , ti =
1
3
(1, 2,−2) , ui =

1
3
(−2, 2, 1) , vi =

1
3
(2, 1, 2) ,

pf = (−13, 14, 15) , tf = 1
3
(1,−2, 2) , uf = 1

3
(2, 2, 1) , vf = 1

3
(−2, 1, 2) .

As in Example 2, with m = 2 in (3), matching the end frames yields the coefficients

A0 =
ℓ0√
3
(1 + i + j) , A2 =

ℓ2√
3
(1 + i− j) ,

where ℓ0, ℓ2 are non–zero free parameters. For simplicity, we set ℓ0 = ℓ2 =
√
3 and also

choose the simple value
A1 =

√
3 i

(corresponding to φ1 = 0) so the condition (28) for a rational RMF is satisfied. The RMF
is obtained from the ERF through the normal–plane rotation (6) with a(ξ) = 2 ξ2−2 ξ+1
and b(ξ) = [ (2

√
3−4) ξ2−(2

√
3−4) ξ+

√
3 ]/

√
3. The symmetry of the data automatically

induces symmetry of the hodograph r′(ξ) and the associated RMF. To ensure symmetry of
the rational curve r̃(ξ), a symmetrical function f(ξ) must be employed, satisfying f0 = f5,
f1 = f4 and f2 = f3 in (26). The linear end–point constraints then yield the values

f0 = f5 = −68
√
3, f1 = f4 =

4

5
(−522 + 17

√
3), f2 = f3 =

4

5
(261− 292

√
3).

The resulting rational curve, illustrated in Figure 4, is free of points at infinity and cusps,
and is symmetrical relative to the (y, z) plane. In this case the numerator and denominator
of r̃(ξ) are both of degree 10, after cancellation of a common factor (ξ− 1

2
)2 resulting from

the symmetry of the input data.
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Figure 4: The rational RMF interpolant to the symmetrical data in Example 4.

7 Closure

The simplest non–planar curves that admit rational RMFs comprise subsets of the PH
curves of degree 5 and 7, characterized by algebraic constraints on the coefficients of their
quaternion pre–image polynomials. However, the construction of such RRMF curves so as
to match given end points entails the solution of non–linear equations, incurring questions
about the existence of solutions for all possible data. The methodology presented herein
circumvents this difficulty, by formulating a means to map the frames of RRMF curves on
to rational space curves, whereby the problem of matching end points is linearized.

From a given RRMF curve r(ξ), a rational space curve r̃(ξ) is constructed as the edge
of regression of the envelope of a family of osculating planes with normals in the direction
of u(ξ) = r′(ξ) × r′′(ξ) and distances from the origin specified in terms of a rational
function f(ξ) as f(ξ)/‖u(ξ)‖. A simple closed–form expression for r̃(ξ) in terms of u(ξ)
and f(ξ), and their first and second derivatives, was formulated, and r̃(ξ) inherits exactly
the same rational RMF as r(ξ) at corresponding points. The methodology was illustrated
by computed examples, which also highlight the remarkable simplicity with which the curve
r̃(ξ) can solve the end–point matching problem, compared to the RRMF curve r(ξ).

The focus of this study was to elucidate the basic principles underlying the construction
of the curves r̃(ξ), and to explore their capabilities. Several lines of inquiry deserve further
investigation. From a practical viewpoint, it is desirable to more fully develop algorithms
to exploit these curves in applications. On the theoretical level, a comprehensive study of
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the circumstances that result in low–degree curves r̃(ξ), by cancellation of factors common
to their homogeneous coordinates, will help gain acceptance of them in practical use.
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Zbyněk Š́ır was supported by the grant 20–11473S of the Czech Science Foundation.

References
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