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Abstract

In this work, we present a translation of the complete pipeline for variational
shape approximation (VSA) to the setting of point sets. First, we describe
an explicit example for the theoretically known non-convergence of the cur-
rently available VSA approaches. The example motivates us to introduce
an alternate version of VSA based on a switch operation for which we prove
convergence. Second, we discuss how two operations—split and merge—can
be included in a fully automatic pipeline that is in turn independent of the
placement and number of initial seeds. Third and finally, we present two
approaches how to obtain a simplified mesh from the output of the VSA
procedure. This simplification is either based on simple plane intersection or
based on a variational optimization problem. Several qualitative and quan-
titative results prove the relevance of our approach.

Keywords: Variational Shape Approximation, Point Set Segmentation,
Simplification
2010 MSC: 68U05, 68U07, 65D18

1. Introduction

Point sets arise naturally in almost all kinds of three-dimensional acquisition
processes, like 3D laser-scanning. As early as 1985, they have been recognized
as fundamental shape representations in computer graphics by Levoy and
Whitted (1985). Ever since, they have found manifold applications e.g. in face
recognition, traffic accident analysis, archaeology, and several other fields.
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However, in many applications, large parts of the point set carry redun-
dant information. For example, a flat area of a surface can be sampled
sparsely without—compared to an area of high curvature—loosing informa-
tion. In several applications, it is not even necessary to consider all details
carried by the point set. For instance, in architecture—for a first draft—the
rough outline of a building suffices and there is no need to send more de-
tailed geometries. In general, when transmitting geometries e.g. to give an
overview of a certain portfolio, the general outlines of the geometries suffices
and sending only these saves on bandwidths during transmission. In this
sense, algorithms are necessary that reduce a complex geometry to several
basic shapes that still retain the most important features of the input. To-
wards this end, Cohen-Steiner et al. (2004) proposed their Variational Shape
Approximation (VSA) for meshes.

The VSA procedure segments a mesh into a given number of flat proxy
regions, see Section 3. Finally, a simplified surface is obtained with only one
element for each region, see Section 5. A translation of the VSA method to
the setting of point sets was done by Lee and Bo (2016) with the explicit
goal of feature curve extraction. While VSA is able to provide an easy
to implement simplification of any geometry, it also has several downsides.
First, it is dependent on the number of proxies which has to be chosen a priori.
Second, in the previous publications, the quality of the result depends heavily
on the manual placement of the starting seeds for the proxies (Cohen-Steiner
et al. (2004); Lee and Bo (2016); Yan et al. (2006)). Towards this end, two
manual operations were proposed, which allow for splitting proxy regions of
high error and merging neighboring ones with a combined low error (Cohen-
Steiner et al., 2004, Sec. 3.5). In the context of meshes, these operations have
been automatized (Yan et al., 2006, Sec. 3.1). Third and finally, the previous
publications were not able to construct a VSA algorithm with guaranteed
convergence. This article closes these gaps. Our main contributions are:

• Providing an example of a growing error during the run of the VSA
algorithm which applies to meshes and point sets alike.

• Presentation of a modified VSA procedure including the switch opera-
tion and proof of its guaranteed convergence.

• Inclusion of the two operations, split and merge, as automatic parts in
the point set processing pipeline, making the initial choice of a fixed
proxy number and the manual selection of seeds unnecessary.
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• Extension of variational tangent plane intersection to the setting of
point sets and inclusion of the procedure in the VSA pipeline for sim-
plification.

This paper is an extension of a chapter in a PhD thesis (Skrodzki, 2019,
Chapter 5). Some results of the paper have been presented as a poster at
the International Geometry Summit 2019 in Vancouver, Canada and have
been published in the corresponding poster proceedings, see Skrodzki et al.
(2019).

2. Related Work

The VSA procedure was introduced by Cohen-Steiner et al. (2004) as a
method for concise, faithful approximation of complex three-dimensional
meshes. It does so by fitting a set of planar proxies to the input mesh.
We will provide a detailed discussion of the procedure in Section 3. As the
resulting elements are oriented corresponding to all associated faces of the
original mesh, the effects of simplification are less drastic as in the classical
approach of Garland and Heckbert (1997). A next step towards even better
approximations consisted of the inclusion of more than just planar shapes. In
the work of Wu and Kobbelt (2005), also e.g. cylinders and spheres are used
as proxies to even better approximate the input shape. This was generalized
even further by Yan et al. (2006) who utilized general quadrics as proxies to
be fitted to the input. However, all these methods are implemented in the
setting of surface meshes.

A translation of the VSA procedure to the setting of point sets was per-
formed in an article by Lee and Bo (2016). The authors studied the problem
of computing smooth feature curves from CAD type point cloud models.
Their reconstructed curves arise from the intersections of developable strip
pairs which approximate the regions along both sides of the features. The
generation of the developable surfaces is in turn based on VSA. While the
presented results are convincing, it remains unclear whether the approach of
fitting developable surfaces works outside of the CAD realm. Furthermore,
the work does not provide details on how to obtain the used linear planar
approximations or how to construct a watertight mesh from them. These
aspects motivate the present research.

Our proposed approach incorporates two different areas of point set pro-
cessing. On the one hand, we aim at segmenting the input into several flat—
i.e. planar—parts. Thus, we will discuss related segmentation approaches
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in Section 2.1. On the other hand, we want to construct a simplified mesh
on the basis of the found flat surfaces patches. Therefore, we will present
corresponding work on mesh generation and simplification in Section 2.2.

2.1. Segmentation

Segmentation of point clouds is the process of classifying the input into multi-
ple homogeneous regions, where points in the same region will have the same
properties. In real-world applications—like intelligent vehicles, autonomous
mapping, and navigation—the problem is challenging because of high redun-
dancy, uneven sampling density, and lack of explicit structure in the input
data. Methods for point set segmentation can roughly be classified as fol-
lows: edge-based, region-based (seeded/bottom-up or unseeded/top-down),
attribute-based, model-based, graph-based, or machine-learning-based, see
Nguyen and Le (2013), Grilli et al. (2017). Following this terminology, the
VSA procedure is a seeded, region-based method, which is characterized by
starting the segmentation process from seed points and letting regions grow
by adding neighbors if they satisfy certain conditions—like normal similarity.
We refer to the survey of Nguyen and Le (2013) for a discussion of several cor-
responding methods. In this work, the authors draw the following conclusion
on seeded region-based methods:

[They] are highly dependent on selected seed points. Inaccurate
choosing seed points will affect the segmentation process and can
cause under or over segmentation.

The survey paper of Grilli et al. (2017) draws a similar conclusion for the
corresponding set of discussed methods. Hence, in contrast to the procedures
covered in the mentioned surveys, we put an emphasis on the independence
of both the number and placement of seed points. See Section 4.3 for a
corresponding discussion.

Point cloud segmentation can be considered either from a semantic or
from a geometrical perspective. The former aims at separating a model into
its parts: A chair should for instance be segmented into four legs, a seating
surface, and a backrest. The geometric approach is to segment the model into
different primitives as well as possible. A recent survey paper of Xie et al.
(2019) provides a comprehensive list of methods following both approaches.
In the terminology used in this paper, the VSA approach creates a “plane
point cloud segmentation”. While we cannot discuss all works mentioned, we
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will consider two popular approaches in the following and refer to the survey
of Xie et al. (2019) for a thorough discussion of other related work.

Note that fitting different planar segments to a model can be considered
as a natural approach in order to render the model with a reduced set of pla-
nar patches. Naturally, those models are captured well that are comprised of
mostly planar surface parts. The presence of spherical or cylindrical shapes
will cause for larger distortions when approximating only with planar parts.
Thus, a next step—after planar fitting—is the usage of other geometric prim-
itives, like spheres, cylinders, cones, or tori. Each of these primitives then
require their own fitting. As the VSA approach only fits planes, we briefly
discuss different fitting concepts for this primitive. Note at this point that
the method of Wu and Kobbelt (2005) utilizes the exact same procedure for
fitting of planes as the original VSA paper by Cohen-Steiner et al. (2004).

To fit a planar patch, the approach of Schnabel et al. (2007) considers
three points pi, pj, p` ∈ P from an input point set P and computes a normal
of the plane spanned by these points. This normal is then compared to the
respective normals at pi, pj, and p`. A fitting plane is introduced if all three
normal variations stay below a user-given angle. Clearly, the results of this
approach heavily depends on the choice of the three points.

In contrast, the approach of Attene and Patanè (2010) places a plane at
the weighted barycenter b of a considered subset {pi} ⊂ P of the input point
set P . A weighted covariance matrix is used to determine a normal n and the
fitting error is computed as a weighted least-squares formulation. However,
this computation neglects the normal information at the points pi.

Another choice for the segmentation of point clouds is the algorithm
of Rabbani et al. (2006). It is popular because of its easily accessible im-
plementation in the widely used Point Cloud Library (PCL) by Rusu and
Cousins (2011). This method can be seen as a reduced version of the VSA ap-
proach. Regions are also grown from seeds according to normal information.
However, the growing process is only executed once and not repeated from
a different set of seeds, like in VSA (see Section 3). Thus, the result is even
more dependent on the initial seeding than in other, comparable techniques.

For the give reasons, the discussed methods have their respective down-
sides. Contrasting the presented algorithms, in our translation of the VSA
approach, we include the entire normal information of the input point set.
Furthermore, we have a setup of the pipeline that ensures independence of
the initial seed points, which eliminates the major disadvantage of seed-based
region growing methods.
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2.2. Meshing and Simplification
As stated in Section 1, the ultimate goal of our VSA procedure for point sets
is to create a simplified mesh from a set of planar proxy regions. That is, a set
of mesh vertices has to be created from the intersection of the proxy planes.
Then, these vertices have to be connected to represent face elements for the
proxies respectively. While three pairwise non-parallel planes intersect in a
unique point, this is not necessarily the case for more than three planes in R3.
In the context of planar panelization of freeform surfaces, Zimmer et al.
(2012) confirm this statement, asserting that tangent plane intersection is
numerically not stable enough to obtain reliable results. The authors proceed
to present a variational approach and a corresponding minimization problem
in order to obtain a planar representation of a given mesh structure. This
method improves the approach of Cutler and Whiting (2007) for constrained
planar remeshing of architectural geometries, which is itself based on VSA.
Therefore, we turn to the work of Zimmer et al. (2012) to make the calculation
of a simplified mesh from the input point set as robust as possible. See
Section 5 for a discussion of the technical details of the optimization and
also for our translation to the setting of point sets.

Aside from VSA, there are other approaches to obtain a simplified mesh
from an input point set. For instance, a possibility is to first mesh the
input point set and then simplify the created mesh. An overview of methods
for meshing of point sets is presented in the survey of Berger et al. (2017).
Several methods are available for the subsequent simplification of the mesh.
These mostly collapse edges in the mesh to reduce its complexity. By using
quadric error metrics, it can be assured that the collapses remove elements
that carry the least amount of feature information, see Garland and Heckbert
(1997). This simple approach can be improved by adjusting the position of
the vertex resulting from an edge collapse according to the local curvature
information, see Hua et al. (2015); Yao et al. (2015). However, as these
methods perform their operations in a greedy manner, they do not provide
reliable results when performing a drastic number of simplifications. Also,
these approaches require a costly meshing operation on the unfiltered point
set, which can introduce topological failures, like a surface of wrong genus or
flipped triangles.

Another possibility to obtain a simplified mesh from an input point set
is to first simplify the point set and to then create a mesh from this. A
brief introduction and (error) analysis of different point set simplification
algorithms can be found in the work of Pauly et al. (2002). Important at-
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tributes in real-world applications are the performance and quality of the
rendering process. This requires a specific focus on features represented by
the point sets. By utilizing a bilateral filtering, both Euclidean distances
and normal information can be taken into account throughout a simplifica-
tion process on a point set to best preserve both the large-scale geometry and
small-scale features, in Sosorbaram et al. (2010). While these methods are
feature-preserving, they are not robust in the presence of outliers or noise.
Also, the construction of the mesh cannot use the full information of the
input point set anymore, as the majority of points will have been removed
during the simplification step.

Because of the downsides of both the approaches, we aim at taking all
points of the input into account when creating planar proxies. From these,
we then create a mesh by completely creating new vertices and connections
on them without going through a costly meshing operation on the original
input, see Section 5.

3. The Method

In this section, we will present the Variational Shape Approximation (VSA)
as introduced by Cohen-Steiner et al. (2004) and as used by Yan et al. (2006)
for surfaces and surface meshes. Also, we present a translation of the proce-
dure to the setting of point sets, similar to the work of Lee and Bo (2016).

3.1. The VSA Procedure for Surfaces and Surface Meshes

The VSA procedure of Cohen-Steiner et al. (2004) acts on a surface S ⊆ R3.

The goal is to partition S into m disjoint regions Ri ⊆ S,
⋃̇
Ri = S, where

each region is associated a linear proxy (Ci, Ni) with a center Ci ∈ R3 and a
unit-length normal Ni ∈ R3, i ∈ {1, . . . ,m}. The authors propose two differ-
ent metrics to find the optimal shape proxies, with the first metric based on
the L2 measure

L2(Ri, Ci, Ni) =

∫
x∈Ri

‖x− πi(x)‖2
2 dx, (1)

where πi(·) denotes the orthogonal projection of the argument on the plane
with normal Ni centered at Ci. Thus, the integral (1) measures the squared
error between points in the region Ri and its linear approximation given
by (Ci, Ni).
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A second metric, denoted by L2,1 is based on the L2 measure when eval-
uated on the normal field. It is given by

L2,1(Ri, Ni) =

∫
x∈Ri

‖n(x)−Ni‖2
2 dx, (2)

where n(x) denotes the normal of the surface at point x ∈ S. As Cohen-
Steiner et al. (2004) conclude that the L2,1 metric is more effective, we will
reduce the following discussion to this formulation.

In the discrete setting, the surface S is given by a finite set of T ∈ N
(triangular) elements tj, j ∈ [T ] and the centers Ci are found by randomly
choosing a triangle tj as center Ci. Therefore, the second smooth formula-
tion (2) can be discretized to

L2,1(Ri, Ni) =
∑
tj∈Ri

‖n(tj)−Ni‖2
2 · |tj|, (3)

with n(tj) the normal and |tj| the area of the element tj respectively.
The actual minimization of expression (3) with respect to the segmenta-

tion of S into regions Ri and with respect to the proxies (Ci, Ni) is then per-
formed iteratively. For this, a variation of Lloyd’s fixed point iteration given
by Lloyd (1982) is used. The first step is to pick a user-given numberm of cen-
ter elements C1, . . . , Cm randomly from the set of triangles {tj | j ∈ [T ]}. The
normals Ni are set to the normals of corresponding center triangles Ci and
the regions are initialized as Ri = {ti}. The neighbors of the chosen center
triangles are collected in a priority queue Q sorted increasingly with growing
L2,1-distance between neighboring triangle and center triangle: ‖n(tj)−Ni‖2

2.
Then, the following three steps are performed iteratively until convergence:

1. Flood : As long as the queue Q is not empty, pop the first element tj
from Q. Ignore it, if it has already been assigned to a region. If it
is not assigned yet, assign it to the region Ri that pushed it into the
queue and push all neighboring elements of tj into Q, noting that they
have been pushed by Ri. Without loss of generality, we assume S to
be connected. If that is not the case, the algorithm can simply be run
on each connected component of S. For a connected surface S, after
the queue Q has been emptied, all elements {tj | j ∈ [T ]} have been
assigned to some region respectively.
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2. Proxy Update: The proxy normals Ni are updated according to

Ni =

∑
tj∈Ri

|tj|n(tj)∥∥∥∑tj∈Ri
|tj|n(tj)

∥∥∥
2

,

where it is ensured that the updated Ni are unit-length normals. Note
that as the surface will be segmented into a large enough number of
locally flat patches, the denominator of this expression will never be
zero in practice.

3. Seed : For each region Ri, find some element t′ ∈ Ri such that

‖n(t′)−Ni‖2
2 ≤ ‖n(tj)−Ni‖2

2

for all tj ∈ Ri. This ensures that the flooding in the next iteration is
started from regions that best reflect the current proxy normals.

Finally, the iteration is stopped, when no region changes from one step to the
next. From the converged regions Ri and assigned proxies (Ci, Ni), a simpli-
fied mesh with corresponding m surface elements is constructed. Respective
results are shown in Cohen-Steiner et al. (2004).

3.2. The VSA Procedure on Point Sets

We will now proceed to present a translation of the VSA procedure to the
setting of point sets. A corresponding reformulation can be found in Lee
and Bo (2016), while we include weights to obtain a more general setup.
Compared to the VSA on meshes, several details have to be adjusted for
the method to work on point sets. At first, consider the partition problem as
stated in Section 3.1. In the context of point sets, not elements, but the points
themselves have to be assigned to the proxies. That is, the given point set
P = {p1, . . . , pℵ} will be partitioned into disjoint subsets

⋃̇m

i=1Pi = P , m ∈ N.
Therefore, in the following expressions, the centers Ci denote points from the
point set P , while the normals Ni at the respective center point are those
obtained from a normal field imposed on the point set. The normals of the
points pj ∈ P will be denoted by nj respectively.

Consider the energy as defined in Equation (3). For proxies obtained
from point sets, the area term |tj| cannot be used. Thus, we replace it by
a weighting term ωj ∈ R≥0 which is to approximate the area represented by
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the point pj ∈ P . We obtain the following energy of a single proxy and the
resulting energy formulation on the set of all proxies

L2,1(Pi, Ni) =
∑
pj∈Pi

ωj ‖nj −Ni‖2
2 , (4)

E({(Pi, Ni) | i = 1, . . . ,m}) =
m∑
i=1

L2,1(Pi, Ni). (5)

An approximation of the area term can be obtained by

ωj =
∑
`∈N (j)

‖p` − pj‖2
2 , (6)

where N (j) ⊂ P denotes the neighborhood of pj in P . Including weights
reflecting the area are of interest because of varying densities. Therefore,
another possible weighting scheme could be the incorporation of directional
density measures proposed in Skrodzki et al. (2018). This could be coupled in
a bilateral manner together with the Euclidean distances mentioned before.
In contrast, weight determination via normal deviations should not be used,
as the energy is defined upon these, i.e. weighting these terms in the same
fashion seems counterproductive.

The initial seeding as outlined above can still be done in the point cloud
setting, but instead of triangles, now, m ∈ N points pj ∈ P are chosen for the
initial position of the center points Ci. Also, those points from P are pushed
to the priority queue Q that are neighbors, but not identical, to the chosen
center points Ci. For this neighborhood relation, any neighborhood concept
such as combinatorial k-nearest neighborhoods or geometric neighborhoods of
radius r can be used. Denote the neighborhood of pi byN (i) ⊂ P . Again, the
points inQ are sorted increasingly with L2 distance between their own normal
and the normal of the proxy that pushed them into the queue: ‖nj −Ni‖2

2.
The following three iteratively applied steps remain almost unchanged:

1. Flood : As long as the queue Q is not empty, pop the first element p
from Q. Ignore it, if it has already been assigned to a subset Pi. If
it is not assigned yet, assign it to the subset Pi that pushed it into
the list and push all neighboring points pj ∈ N (i) into Q, noting that
they have been pushed by Pi. As we assume S to be connected via
the imposed neighborhood relation (see above), after the queue Q has
been emptied, all elements of P have been assigned to some subset Pi.
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2. Proxy Update: The proxy normals Ni are updated according to

Ni =

∑
pj∈Pi

ωjnj∥∥∥∑pj∈Pi
ωjnj

∥∥∥
2

,

where we once again obtain unit-length normals and will not encounter
a denominator equal to zero (see above).

3. Seed : For all subsets Pi, find some p` ∈ Pi, ` ∈ [ℵ], such that

‖n` −Ni‖2
2 ≤ ‖nj −Ni‖2

2

for all pj ∈ Pi. Again, this ensures that the next flooding step starts
from regions that best reflect the current proxy normals.

Finally, once the subsets Pi do not change anymore over two iterations,
the process is stopped. From the converged subsets Pi and assigned prox-
ies (Ci, Ni), a simplified mesh with corresponding m surface elements is con-
structed. Respective results are shown in Lee and Bo (2016), while our
corresponding approach will be discussed in Section 5.

4. Improved VSA Pipeline

Having described the VSA procedure for both meshes and point sets in the
previous chapter, we now turn to our contributions for this pipeline. First,
we will establish by an example that convergence of neither the meshed nor
the point set version is guaranteed. Following up on this, we propose an
alternative formulation of VSA with guaranteed convergence. Furthermore,
we turn to a different issue of the VSA procedure. Namely, it is highly
depended on both the number of initial seeds and their placement at the
beginning of the procedure. We circumvent this dependency by including
two more operations in the point set pipeline that have already been used
manually Cohen-Steiner et al. (2004) and automatically Yan et al. (2006) in
the context of meshes.

4.1. Example for Failure of Convergence of the VSA Procedure

Concerning the convergence of their algorithm, Cohen-Steiner et al. (2004)
state:

11



n
po

in
ts

n points
1 point

angle 135◦

1√
2

(−1
1

) (
0
1

)
N

(−1
0

)

(a) Setup for growing error functional.
(b) Segmentation after

first flood.
(c) Segmentation after

second flood.

Figure 1: Example for a growth in the error measure after a flood and proxy update.

[. . .] Lloyd’s algorithm always converges in a finite number of
steps, since each step reduces the energy E: the partitioning stage
minimizes E for a fixed set of centers ci, while the fitting stage
minimizes E for a fixed partition.

While this statement holds for the original algorithm of Lloyd as presented
in Lloyd (1982), it does not hold for neither the VSA procedure on meshes
as presented in Cohen-Steiner et al. (2004); Yan et al. (2006) nor for the
translation to point sets as given by Lee and Bo (2016). This is already
recognized in the paragraph Convergence of Section 3.5 in Cohen-Steiner
et al. (2004). We will demonstrate this with the following concrete example,
which is to the best of our knowledge the first explicit example presented.

Consider the two-dimensional setup shown in Figure 1a. It is given by n
points connected on a line with normal 1√

2

(−1
1

)
next to a line of n points with

normal
(

0
1

)
. At the right end of the second line, there is a single point with

normal
(−1

0

)
and another single point with normal N given by the equation

N =
1∥∥n · (0

1

)
+
(−1

0

)
+N

∥∥
2

·
(
n ·
(

0

1

)
+

(
−1

0

)
+N

)
,

which solves to N = 1√
n2+1

(−1
n

)
. Now, two proxies will act on this example,

with their initial seeds shown in yellow and blue in Figure 1a. They each
start on one of the two lines of n points respectively. The result after a
flood is shown in Figure 1b, where each line is completely covered by the
proxy starting on it and the two single points are associated to the proxy
with normal

(
0
1

)
. After updating the proxy normals, the yellow proxy has

normal 1√
2

(−1
1

)
while the blue proxy has normal N given by the equation

above. Thus, the yellow proxy starts from an arbitrary point on its line
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while the blue proxy starts from the rightmost point. The error after this
first flood and proxy update is given by

E1 = n ·
∥∥∥∥(0

1

)
−N

∥∥∥∥2

2

+

∥∥∥∥(−1

0

)
−N

∥∥∥∥2

2

= −2(
√
n2 + 1− n− 1),

where only the blue proxy contributes to the error, because the normals cor-
responding to the yellow proxy coincide with their proxy normal and cancel
out in energy E1. Starting from the new seed points, a second flood results
in the situation shown in Figure 1c. Here, almost all points except for the
rightmost one are associated to the yellow proxy with former normal 1√

2

(−1
1

)
.

Its new normal after a proxy update is

N ′ =
1∥∥∥ n√

2
·
(−1

1

)
+ n ·

(
0
1

)
+
(−1

0

)∥∥∥ ·
(
n√
2
·
(
−1

1

)
+ n ·

(
0

1

)
+

(
−1

0

))
,

which amounts to an error after the second flood and proxy update given by

E2 = n ·
∥∥∥∥ 1√

2

(
−1

1

)
−N ′

∥∥∥∥2

2

+ n ·
∥∥∥∥(0

1

)
−N ′

∥∥∥∥2

2

+

∥∥∥∥(−1

0

)
−N ′

∥∥∥∥2

2

.

Note that the error term for the blue proxy cancels out, as the one representa-
tive corresponds to the normal of the proxy it belongs to. Choosing n = 100
points on each of the two lines, we obtain E1 ≈ 1.9900, but E2 ≈ 31.6782.
Furthermore, the corresponding error value after the flood is also growing.
Thus, convergence cannot be proven by an always shrinking error functional.

Note that this example is described as a curve in 2D, where neighbor-
hood selection is generally more involved than for surfaces in 3D. However,
the example can easily be extended to a surface in 3D space, see Figure 2.
There, we also close the loop and thereby cause the original VSA algorithm
to run infinitely long. For the given example, the crucial step as depicted
in Figure 1c can be resolved via a manual (Cohen-Steiner et al. (2004)) or
automatic (Yan et al. (2006)) split of the large proxy. Thus, this example
only applies to the VSA procedure as described above.

4.2. VSA with guaranteed Convergence

The example presented above highlights the main deficiency of the VSA
procedure as used in Cohen-Steiner et al. (2004); Yan et al. (2006); Lee and
Bo (2016). Namely, if an outlier causes a proxy normal to be distorted,
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Figure 2: A regular 10-gon, built from the shape shown floating on top, which is a three-
dimensional extension of the setup shown in Figure 1a.

the new proxy seed can end up to be a border point that does not actually
reflect the normal behavior of the majority of points in the proxy. In other
words, the change of seeds before flooding is a problematic step. Thus, in the
following, we aim at altering the VSA procedure in a way such that no new
seeds need to be found, but proxies can still move and alter. In particular,
proxies should be able to take over the original seed points of other proxies if
necessary. These changes should finally lead to an alternative VSA procedure
with guaranteed convergence. In order to achieve this goal, we propose to
alter the steps of the algorithm as follows.

First, we perform an initial seeding and one flood step and proxy update
as explained in Sections 3.1 and 3.2 above. Instead of the seeding step in the
following iterations, we perform a different procedure:

4. Switch: Consider the neighborhoods N (i) ⊂ P for all points pi ∈ P .
Assume that pi is assigned to subset P`. If any point pj ∈ N (i)
is assigned to another subset Ph, compute the change of the error
measure (5) resulting from reassigning pi from P` to Ph. Compare
it to the current best known reassignment. After iterating through all
points p ∈ P , reassign the point such that the error measure is reduced
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maximally.

This new switch step replaces the seed step and the flood step described in
Sections 3.1 and 3.2 above. That is, it is only iterated together with the
proxy update. The iteration is continued until no further switch operations
can be performed. For this alternate procedure, we can prove the following
statement.

Theorem 1 (Error reduction by switch and proxy update). Given a point set
P = {p1, . . . , pℵ} with a neighborhood structure, such that the neighborhood
graph on P is connected and normals n1, . . . , nℵ on P . Then, each proxy
update step and each switch step as defined above leads to proxies (Pi, Ci, Ni)
with a smaller error measure in Equation (5).

Proof. Concerning the proxy update step, consider

∇E({(Pi, Ni) | i ∈ [m]}) = ∇
m∑
i=1

L2,1(Pi, Ni)

=
m∑
i=1

∑
pj∈Pi

∇ωj ‖nj −Ni‖2
2

=
m∑
i=1

∑
pj∈Pi

2ωj(nj −Ni).

Setting Ni =
∑

p`∈Pi
ω`n`∑

p`∈Pi
ω`

, we obtain

∑
pj∈Pi

2ωj(nj −Ni) =
∑
pj∈Pi

2ωjnj −
∑
pj∈Pi

2ωj

(∑
p`∈Pi

ω`n`∑
p`∈Pi

ω`

)

=
∑
pj∈Pi

2ωjnj −

(∑
p`∈Pi

2ω`n`∑
p`∈Pi

ω`

)
·
∑
pj∈Pi

ωj

=
∑
pj∈Pi

2ωjnj −
∑
p`∈Pi

2ω`n` = 0.

Thus, at the chosen updated proxy normal, the energy reaches a (local)
minimum. As the energy is convex as sum of norms, which are convex,
the found minimum is indeed its global minimum for the current choice of
segmentation.
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Concerning the switch step, only those points are reassigned which reduce
the value of error measure (5). Thus, trivially, after a switch operation the
error is smaller.

Finally, we note that there are only finitely many ways to partition the ℵ
points of the point set P into m subsets. This fact, together with Theorem 1
proves the convergence of our modified VSA procedure.

Consider the application of this alternative VSA version to the setup in
Figure 1a. After a first flood, which would still result in the proxies shown in
Figure 1b, the only possible switch could be performed at the border between
the blue and the yellow region. However, a switch would already lead to an
increase of the energy functional. Thus, the proxies remain as they are after
the first flood and the example converges immediately.

By replacing seed and flood with the switch operation, we can ensure
convergence of the algorithm. While this result is theoretically pleasing, it
is not necessarily of practical value. Finding an ideal pair of points for a
switch operation requires to iterate at least over all points on the border of
proxy regions. Depending on the number of proxies and on the shape of the
geometry, one such switch can reach the same time complexity as a flood
operation while only altering a single point’s proxy assignment. Thus, in
practice, utilizing the switch operation causes a significantly longer runtime
as trade-off to the guaranteed convergence.

Furthermore, iterated application of the switch operation can tear a proxy
apart, see Figure 3. A converged state of the algorithm might therefore
include proxy regions that are not connected. In order to have a sensible
result, a final step has to be included that re-interprets connected regions as
proxies and that might increase the number of proxies doing so. However, a
disconnectedness only arises if another proxy better reflects the local shape.
Thus, a corresponding higher number of connected proxy regions is desirable
in order to faithfully approximate the input geometry.

The presented switch operation provides one possible way to obtain guar-
anteed convergence. It remains as open question whether another operation
or alteration of the VSA procedure provides the same result while coming
with a lower runtime.

4.3. User controlled Level of Detail

The requirements of proper seed placement and prescribed seed number nat-
urally demand for a variable proxy-treatment in terms of splits and merges.
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(a) A geometry after initial selection of seeds as
indicated and flooding.

(b) The same geometry after several switch
operations. The blue proxy split the other proxy in

two components.

Figure 3: A proxy being torn apart by another proxy under the repeated application of
the switch operation.

Both concepts were introduced in Cohen-Steiner et al. (2004) as means for
manual adjustments by the user. For meshes, these two operations are incor-
porated into the pipeline described in Yan et al. (2006). In the following, we
propose a translation to point sets. With both operations, we aim at adapt-
ability of the constructed flat pieces towards user input. That is, the user
should be able to control the level of detail obtained from the flat regions.
However, in contrast to Cohen-Steiner et al. (2004), this control should be
realized via a single input parameter instead of a time-consuming manual
interaction with the modeling process. For this, we use a user-given parame-
ter η ∈ R≥0 which controls the maximum deviation of a subset Pi from its flat
approximation. It can be thought of as controlling the maximum bending of
a segment. This parameter is used in the following two steps:

(a) Split : Given a subset Pi ⊂ P such that L2,1(Pi, Ni) > η. We use weighted
principal component analysis by Harris et al. (2011) to compute the
most spread direction of Pi. The set Pi is then split at the center of
this direction into two new sets Pi = P 1

i ∪̇P 2
i . The new normals are

chosen as N1
i =

∑
pj∈P 1

i

ωjnj∑
pj∈P1

i
ωj

and N2
i respectively. The new cen-

ters C1
i and C2

i are then placed at those points of P 1
i and P 2

i that have
least varying normals from N1

i and N2
i respectively.

Note that the reasoning of Theorem 1 holds for this case, too. Thus, the
procedure outlined above, with an additional split step does continue
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to converge.

(b) Merge: Consider a pair Pi, Pj of neighboring subset with their respec-
tive normals Ni, Nj. If the subset P ′ = Pi ∪ Pj with normal

N ′ =

∥∥∥∥ |Pi| ·Ni + |Pj|Nj

|Pi|+ |Pj|

∥∥∥∥−1 |Pi| ·Ni + |Pj|Nj

|Pi|+ |Pj|

achieves an Energy (5) strictly less than η, the two subsets are replaced
by their union P ′, with normal N ′ and a chosen center C ′ ∈ P ′ with its
normal least deviating from N ′.
Note that we could allow only those pairs of neighboring regions to
merge such that

L2,1(Pi, Ni) + L2,1(Pj, Nj) ≥ L2,1(P ′, N ′).

Then, the energy would not increase and termination of the algorithm
would be guaranteed by Theorem 1. However, this would result in
neighboring regions not observing the user-given η threshold. There-
fore, we accept an increase of the global energy in favor of a better
region layout1.

Both operations alter the number m of proxies. Thereby, a significant disad-
vantage of the algorithm of Lloyd (1982) is eliminated as the user does not
have to choose m a priori. It is replaced by the user’s choice of η, providing a
semantic guarantee on the regions being built by the algorithm. The user can
prescribe a value of η based on the curvature and number of points within a
proxy. See Appendix A for a more detailed interpretation of η.

The possible presence of noise in the point set P gives yet another rea-
son to refute Energy (1). For points distributed around the xy-plane, with
normals (0, 0, 1)T and just slight deviation from the plane, this energy would
create larger values for a growing number of points, while the Energy (5)
does not suffer from this. Hence, with the chosen energy, noise on the point
positions is handled more robustly.

1Note that the equation for N ′ in this description of the merge procedure deviates from
the equation given in the published version of the article in Computer Aided Geometric
Design 2020, Vol. 80. The formulation given here is more general and works in particular
if Pi and Pj are of different sizes. Furthermore, in the published version, the inequality
on L2,1 was given in the wrong direction, which is corrected here.
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Figure 4: The whole pipeline contains an initial random seed selection and an initial
flooding. From there, a proxy update, one or more optional splits and/or merges, and
a switch are iterated until no further switches can be applied. Afterwards, we deduce a
simplified model according to the proxies, which can also be considered as a simplified
surface reconstruction from the initial point set.

In the merge process outlined above, we asked for two neighboring regions.
However, we have not defined any relation on the regions yet. In the meshed
case discussed in Section 3.1, two regions are neighbors if and only if they
share an edge in the mesh. In the context of point sets, we cannot rely on
this, thus we have used the following approach. For every proxy and each of
its points, we query k of the point’s nearest neighbors and use the distance to
the farthest of them for a geometric neighborhood determination. From all
the neighbors gathered that way, we ask for their proxy assignment. If the
current center point is assigned to a different proxy than its neighbors, we
consider the two proxies to be neighbors. This finishes the whole pipeline,
including the additional two steps merge and split. See Figure 4 for an
illustration of the complete pipeline.

5. Simplification

We will now investigate the creation of a simplified mesh based on the
segmentation generated before. Both works of Cohen-Steiner et al. (2004)
and Lee and Bo (2016) present simplified meshed geometries with m faces,
one representing each proxy. The work of Yan et al. (2006) also presents
simplified meshes, utilizing their proxy quadrics. However, the approaches
of Cohen-Steiner et al. (2004) and Yan et al. (2006) are not suitable for our
context as they work on meshes. The authors of Lee and Bo (2016) do not
elaborate on the computation of their meshes. They only state that

(. . .) a polygonal mesh is easily generated by computing intersec-
tions of proxy planes of neighboring clusters of data points.
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In the following, we will see that only simple cases allow for this approach
while the general case is more involved. First, we will discuss the creation of
vertices for the simplified mesh (Section 5.1). Subsequently, we will connect
these vertices to faces in order to obtain the complete mesh (Section 5.2).
In both section we also address corresponding challenges as well as possible
solutions.

5.1. Vertices for a Simplified Mesh

The intuitive way to determine simplified mesh vertices is the intersection
of neighboring proxies, as used by Lee and Bo (2016). In the following, we
will use the notion of neighborhood for proxies as introduced at the end of
Section 4.3.

Intersecting Planes. A first naive solution for the creation of vertices for the
simplified mesh is to consider the intersection of neighboring proxies and
the construction of vertices in these intersection points. In the general case,
where q > 3 proxy planes meet, we cannot simply consider the intersection
as it will be mostly empty.

We call such a situation obtained via the proxy-neighborhood relation
an q-tuple. In detail, let I be the index set labeling the proxies given by
subset Pi ⊆ P , proxy center Ci, and proxy normal Ni. Further, consider
all neighborhood relations (i, j) ∈ I × I between proxies. A q-tuple is a
subset {i1, . . . , iq} of I such that the proxies ij and i` are neighbors for
all ij, i` ∈ {i1, . . . , iq} where ij 6= i`. Enumerate all such q-tuples Ij by an
index set J in a way, s.t. if there are j, j′ ∈ J with Ij ( Ij′ , then the larger
set Ij′ is kept and j is not stored in J . These tuples hold inclusion maxi-
mal candidates for intersection points with proxy indices contributing to the
intersection.

Now, for the case of q > 3, we select for each tuple three indices at random,
intersect them, and make the resulting vertex known to all proxy members of
the tuple. As this might cause degenerate faces in the face creation stage—as
the vertex does not lie within all of the proxies it is associated to—,we use a
triangulation of all created faces (see Section 5.2) to obtain triangles, which
are planar.

Intersecting Point Optimization. A second, more involved solution for the
creation of simplified mesh vertices is based on optimization. The intersection
of more than three planes is numerically unstable as discussed above. In the
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work of Zimmer et al. (2012), the authors turn to a variational approach, start
from a triangle mesh, and aim at computing the intersection points xj of the
vertex tangent planes of all triangles. Thus, exactly three tangent planes—
corresponding to each of the three vertices vi of a triangle—contribute to an
intersection point. Denoting the normal at vi by ni, they solve the following
minimization problem

minimize:
∑
tj

∑
vi∈tj

‖xj − vi‖2
2


subject to: nTi (vi − xj) = 0 ∀tj, ∀vi ∈ tj

‖ni‖2
2 = 1 ∀vi

(7)

where the normals are variables in the minimization. Note that the original
normals at the vertices are not taken into account at all during the mini-
mization. The requirement of unit-length normals is necessary, however, as
otherwise ni = 0 would trivially satisfy all conditions.

We generalize this approach in the following way to our setup. First of
all, we use the concept of and notation for q-tuples introduced in the previous
paragraph. Then, we consider the following energy

F ({x1, . . . , xj}) =
∑
j∈J

∑
i∈Ij

‖xj − Ci‖2
2

+
∑
i∈I

w̃i ‖Ni − ñi‖2
2 , (8)

with sought-for intersection points xj for each maximal tuple Ij, known
proxy-centers Ci, weighting terms w̃i ∈ R≥0, unknown normal deviations ñi,
and known proxy-normals Ni for all proxies i ∈ I. Ultimately, we want to
solve

minimize: F ({x1, . . . , xj})
subject to: ñTi (xj − Ci) = 0 ∀j ∈ J ∀i ∈ Ij

‖ñi‖2
2 = 1 ∀i ∈ I.

(9)

This generalizes the problem of Zimmer et al. (2012) as stated in Equation (7)
in several ways. First, we allow for more than three, namely for an arbitrary
number of planes to intersect. This arises already at a simple geometry like
the octahedron, which has valence 4 vertices, see Figure 5a for an illustration.
Second, we do allow the normals ñi to deviate from the proxy normals Ni,
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(a) Intersection of more than
three proxies

(b) top: star-convex; bottom:
barycenter

(c) Reconstructing a non-convex
proxy

Figure 5: (a) Illustration of point optimization with deviation allowance (represented by ñ)
of n1, . . . , n4 to find the optimal mesh vertex xj satisfying the constraints 〈Ci−xj , ñi〉 = 0

and ‖ñi‖22 = 1 for i = 1, . . . , 4. The Ci are the normal-corresponding proxy-centers and
ni the original proxy normals. (b) Star-convex proxy (front part of the fandisk, Figure 9).
Top shows an ordering of the vertices around a star-convex center point, bottom shows
the corresponding ordering around the barycenter.
(c) Bottom: Segmentation of the Torus with 24 final proxies. Middle: Non-convex proxy
representing the upper part of the torus after projection of the points onto their proxy
plane. Top: Resulting mesh face after connecting the vertices.

but a large deviation is punished, where the severity can be steered by the
weights w̃i.

In contrast to the first naive solution, this approach guarantees all vertices
of the mesh to lie within the proxies that they are derived from. That is, if the
optimization problem (9) yields a feasible point, after correcting the proxy
normals from ni to ñi all vertices associated to a planar proxy lie completely
within the corrected proxy plane.

5.2. Faces for a Simplified Mesh

After creating the mesh vertices, we need to connect them in order to generate
face for the mesh. The general idea is to represent every proxy region with a
single star-convex face. All vertices associated to a proxy are sorted around
the barycenter of the proxy w.r.t. an arbitrary reference direction. This yields
correct results, when the barycenter of the proxy is also a star-convex center
point, see Figure 5b. If we sort the vertices with a non-star-convex center,
they are connected in wrong order and the resulting faces will degenerate.
This approach obviously fails, if a proxy represents a non-convex part of the
geometry, see Figure 5c.
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6. Experimental Results

The following experimental section is divided into two parts. First, we evalu-
ate parameter choices regarding the segmentation and provide a quantitative
comparison of the segmentation results. In the second part, we discuss three
aspects of the simplification algorithm on clean and noisy models.

In all our experiments, we processed models with quite uniform samplings.
Hence, for simplicity, we utilized equal weights ωj = 1 in Equation (4). We
proceed similarly with the weight assignment in the optimization problem
formulated in Equation (8) and set w̃ = 1. We use neighborhoods to both
propagate a proxy during the flood step and establish neighborhood relations
between the different proxies. For the first purpose, we use a combinatorial
k-nearest neighbors approach. When determining the proxy neighborhoods,
we turn to a combination of the combinatorial and geometric approach based
on the same k (see end of Section 4.3). In all our experiments, we use k = 8.
Deviations from the default parameters are indicated.

6.1. Segmentation

For a large scale experiment, we chose 600 models from the repository used in
the work Hu et al. (2018). For all these models, we used the mesh information
to generate an oriented vertex normal field. Furthermore, we translated the
models and scaled them uniformly to fit into the unit cube. Finally, we
performed our experiments on the point cloud given by the mesh vertices,
disregarding the connectivity information and the triangular faces.

We compared four different approaches. The first one was the segmenta-
tion algorithm of Rabbani et al. (2006) as implemented in the Point Cloud
Library of Rusu and Cousins (2011). As parameters, we turned to the ones
described in the original paper, see Rabbani et al. (2006). We will refer to
this experiment by PCL. Second, with these results at hand, we took the fi-
nal numbers of proxies given by PCL for each geometry. This number served
as number of proxies to be sought by the variational shape approximation
algorithm of Lee and Bo (2016). Here, no splits or merges are applied, thus
we refer to this experiment by ¬s/m. Third, we took the total L2,1-error
(Equation (5)) of each geometry, as produced by the PCL experiment, and
divided it by its final number of proxies. This division provides an initial
guess for a local, geometry-dependent value η. In this third experiment, we
allowed splits as well as merges. Also, we started with an initial seed number
of m = ℵ, i.e. each point was a seed at the start. Because of the η-threshold
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and merge-processes, the number of proxies reduced drastically over the run
of the experiment. We will refer to this as local η s/m. Fourth and finally,
without any priors, we set η = 25 and allowed splits and merges. Further-
more, we once more started with every point as a seed. The choice of η is
motivated from previous experiments. We will refer to this fourth experi-
ment as global η s/m. The terminology local or global indicates whether η is
chosen with respect to the geometry or globally for all geometries. Observe
that the experiments ¬s/m and local η s/m are dependent on the results of
PCL, while only global η s/m is independent.

We are interested in gaining insight into the relationship between the ob-
tained proxy-number m and the quality of the induced flat proxy-regions.
Besides the L2,1-measure of Equation 5, we focus on the mean squared er-
ror (MSE) caused by point-to-proxy-plane distances to evaluate the region
quality. The MSE is given as

MSE({(Pi, Ni) | i = 1, . . . ,m}) =
1

ℵ
∑
pj∈Pi

‖pj − π(pj)‖2
2 , (10)

where π(pj) denotes the orthogonal projection of pj onto its related proxy
plane, given by normal Ni and base point Ci.

From the 600 chosen models, we obtained 499 that offered segmentation
results in all four experiments. For 27 models, PCL was unable to provide
a valid segmentation, because it assigned a zero proxy-normal to at least
one region (for instance a region holding only two antipodal normals). These
models were excluded for the subsequent experiments. The variational shape
segmentation of Lee and Bo (2016) did not report a complete segmentation
on additional 72 models. Here, some points are not assigned to any prox-
ies, because they cannot be reached from the proxy centers during a flood
when traversing the nearest neighbor graph. Increasing the parameter k al-
leviates this problem. Similar failures occurred on one additional model in
experiments local η s/m and global η s/m respectively. Even though these
experiments started with seed numbers equal to the geometries’ points, they
reduced the number of regions via merge operations. Due to proxy updates
and new seed selection, it is possible that seeds travel away from sparsely
sampled areas, where they do not reach all formerly assigned points in the
neighborhood graph during the next flood. This reduced the number of mod-
els by a total of 101 failures to 499 feasible models. All reported experimental
values are taken over this set of 499 models.
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PCL ¬s/m local η s/m global η s/m

min MSE 2.75E-09 7.31E-07 6.95E-11 2.11E-06
max MSE 1.12E-01 2.98E-02 4.15E-02 1.04E-02
avg MSE 1.59E-02 2.88E-04 6.40E-04 4.50E-04
sd MSE 2.12E-02 1.90E-03 2.47E-03 8.15E-04

min m 1.00 1.00 2.00 1.00
max m 1,103.00 1,103.00 393.00 135.00
avg m 174.17 174.17 55.05 33.20
sd m 163.10 163.10 58.41 20.69

Table 1: Statistical evaluation of error MSE and proxy number m taken over all 499
geometries. We give the minimum, maximum, mean, and standard deviation.

For the following analysis, we turn to Table 1. There, we give statistics on
both the MSE as obtained from experiments on our model set. Regarding the
average MSE over all experiments, we see that all three experiments—¬s/m,
local η s/m, and global η s/m—outperform PCL by two orders of magni-
tude. A direct comparison between the MSE obtained for the models reveals
that local η s/m and global η s/m outperform ¬s/m in roughly 8.5% of all
experiments. Note that the minimal MSE error obtained over all geometries
is up to five orders of magnitude smaller for local η s/m when compared with
the other experimental setups.

Aside from the MSE results, Table 1 also reports statistics on the number
of proxies obtained by the different experiments over all geometries. Recall
that we are not only interested in small error values, but also in representa-
tions of the geometry that reduce its complexity, i.e. that have a low num-
ber of proxies. Towards this end, it is remarkable that local η s/m and
global η s/m attain MSE values comparable to those of ¬s/m while only
using 31.6% and 19.1% of the proxies on average, respectively. The close
error results are especially of interest for global η s/m, as this runs without
any dependency or information provided by PCL, as a global parameter is
applied to all geometries equally. Hence, the assignment of points to proxies
is on one hand optimized in terms of the MSE errors measure, while provid-
ing significantly fewer proxies on the other hand. Note that the lowest (and
therefore optimal) MSE of 0 is given for a segmentation in which every point
is represented by its own proxy.

We proceed to further investigate the proxies obtained by the different
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Figure 6: Histogram over all proxy-sizes up to 131 among all 499 geometries for all four
experiments. The upper bound of 131 is given by the sum of the mean (11.74) and
corresponding standard deviation (120.27) regarding cluster sizes obtained from PCL.
Note the logarithmic scale on the y-axis.

experiments. In Figure 6, we show a histogram over the attained proxy-
sizes taken over all geometries in the experiment. Note that the y-axis has
a logarithmic scale. We show all proxy sizes up to 131, where this bound is
given by the sum of the mean (11.74) and corresponding standard deviation
(120.27) regarding proxy sizes obtained from PCL. We can see that both
PCL and ¬s/m create a significantly larger number of small proxies when
compared with the segmentation results of local η s/m and global η s/m.
In fact the average proxy sizes are 11.74 (PCL,¬s/m), 37.15 (local η s/m),
and 64.00 (global η s/m). As segmentation—in our setup—should create few
regions that still reflect the geometry attributes, extremely small regions as
exposed by PCL and ¬s/m are undesirable. The availability of splits and
merges in local η s/m and global η s/m results in a bell-curve-like behavior
in Figure 6, as both curves first increase and show a small descent with minor
oscillations after their peaks. Hence, in the critical area of small sized proxies,
the availability of splits and merges not only reduces their required number,
but also balances their sizes, causing for more uniformly sized proxies.

To summarize the quantitative analysis of the segmentation part, we con-
clude:
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• The proposed method outperforms the segmentation approach of Rab-
bani et al. (2006) as well as variational shape approximation without
splits and merges, as used by Lee and Bo (2016) in regard of MSE.

• Without any knowledge of seed numbers or error values, a globally set η,
availability of splits as well as merges, and treatment of all points as
initial seeds provides segmentation results that have MSE comparable
to Rabbani et al. (2006); Lee and Bo (2016) but a significantly reduced
number of proxies.

• The availability of splits and merges not only optimizes for small proxy
numbers, but also causes more uniform region sizes.

6.2. Simplification

In the following, we present different experiments regarding the simplifica-
tion as obtained from the proxy segmentation. Each experiment addresses
different aspects of the simplification pipeline. First, we consider how the
parameter η influences the obtained simplification (Section 6.2.1). Next, we
turn to the Fandisk model, to discuss difficulties arising due to face gener-
ation (Section 6.2.2). The last experiment deals with a noisy geometry and
robustness of our algorithm (Section 6.2.3).

Throughout our experiments, in order to solve the minimization prob-
lem (9), we turn to the build-in solver of Matlab. Note that the minimiza-
tion problem has a non-linear target function with non-linear constraints
and can thus not be solved by any LP or even ILP solver. Hence, we fol-
low the example from the Matlab manual Mathworks and Matlab, which is
supported by all versions newer than R2019b. The solver asks for starting
points from which to run the optimization. We initialize the normals ñi
by the proxy normals Ni. As first guesses for any intersection point xj, we
chose the barycenter of the centers Ci of those proxies that contribute to this
intersection.

6.2.1. Threshold η-dependency on the Sphere Model

Our first simplification model is a sphere sampled with ℵ = 5, 122 points. We
chose this model as it also appears in Cohen-Steiner et al. (2004); Lee and
Bo (2016). By running our algorithm with 12 initial centers without split
and merge we obtain a segmentation into 12 planar faces, shown together
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(a) (b) (c)

Figure 7: A visual comparison of the output of (a) Cohen-Steiner et al. (2004) showing a
segmentation of the half-sphere into six proxies, (b) Lee and Bo (2016) with a segmentation
of the sphere into 12 proxies, and (c) the results of our algorithm applied to the sphere
deducing 12 proxies.

η = 500
m = 6

η = 200
m = 9

η = 100
m = 16

η = 50
m = 18

η = 25
m = 24

Figure 8: The segmentation and simplification for different η values. The first row shows
the segmented point sets, the second and third rows the meshes deduced via optimization
and plane intersection, respectively.
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with the simplification done by optimization in Figure 7 coupled with results
of Cohen-Steiner et al. (2004); Lee and Bo (2016).

In Figure 8, we show segmentation and simplification results w.r.t. differ-
ent values of η taken from {500, 200, 100, 50, 25}. The utilized geometry is
the sphere used above. The simplification points are calculated via both ap-
proaches introduced in Section 5, i.e. via intersection of the proxy planes and
via the optimization problem given in Equation (9). All results are obtained
from the same set of six randomly selected seed points. For the optimization
case η = 500 we increased the weight w̃i = 3, as otherwise the simplification
points would have produced a smaller version of the cube. Hence, in this
case we forced the optimization putting more emphasis on less proxy normal
deviation. Figure 8 also shows the amount of final proxies in correspondence
to the chosen value of η. It is not surprising that with a decreasing number
of η, the number of proxies increases as this decreases the error measure (5)
in order to meet the prescribed threshold. Note further that the resulting
meshes contain vertices where more than three proxies meet, see the fourth
and fifth column in Figure 8. While it is not problematic in this case, it does
cause problems for a different model, see Section 6.2.3.

6.2.2. Face Reconstruction on the Fandisk Model

We proceed to discuss a more involved geometry, namely the Fandisk model
(CAD) with ℵ = 38, 840 vertices, shown in Figure 9. Here, we started the
segmentation with 36 manually selected seeds, η = 75, and without using
splits or merges. We consequently obtained m = 36 proxy regions, shown in
Figure 9a.

Reconstructing this model is challenging to our algorithm in two aspects.
First, our simplification procedure requires star-convex faces, see Section 5.2.
However, the orange front plate of the fandisk model is not star-convex with
respect to its barycenter (Figure 5b, bottom) and thus a first automatic re-
construction is slightly faulty (Figure 9b). These errors are easily identified
and fixed by assigning a correct order to the contributing face vertices. See
Section 7 for a discussion how to circumvent the requirement of star-convex
proxies. The second challenging aspect is caused by the sensitivity of neigh-
borhood notions for different densities in the point set. For example, the
light-purple region fits between the blue and purple and hence, they see each
other (Figure 9c, right marked spot). However, their planes are almost par-
allel, and so their intersection appears as an outlier. This could be avoided,
if we forbid intersection points built by almost parallel planes or if we for-
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(a) Initial Segmentation (b) Faulty Vertex Order
in Faces

(c) Faulty Proxy
Intersection Points

(d) Corrected
Simplification

Figure 9: Segmentation and simplification (plane intersection) of the Fandisk model.

bid those intersections that lie too far away from either one of the proxies.
The behavior of a misplaced intersection point is also the case for the one
produced by the light green, light purple and purple proxies (Figure 9b left
marked spot), whereas in consequence a gap results between the light purple
and blue area, which should not be there, according to the segmentation.
As before, we manually removed faulty intersection points and reset face
incidences to obtain a clean mesh for visual representation (Figure 9d).

Note that these challenges are unique to the setting of point sets. In the
context of meshed geometries, the intersection vertices can simply be ordered
along the boundary of their respective proxy region, yielding a feasible face.
Also, neighborhood relations in the mesh setting can be computed via shared
edges and do not require an additional neighborhood parameter k. Hence,
the works of Cohen-Steiner et al. (2004); Yan et al. (2006) did not have to
tackle these issues, while the work of Lee and Bo (2016) does not contain
any description of how they solved these problems.

6.2.3. Robustness against Noise on the Dodecahedron Model

As our final experiment, we consider the simplification of a dodecahedron
equipped with Gaussian noise in normal direction with an amplitude of 25%
of the average neighbor distance (taken as averaged sum over all points and
their 12 nearest neighbors.). This geometry is not easily translated into a
clean mesh and therefore, the methods of Cohen-Steiner et al. (2004); Yan
et al. (2006) cannot be applied here straightforward. The model consists
of ℵ = 962 and we started with 12 randomly chosen seeds and a threshold
of η = 50. Here, in contrast to the other experiments, we use a neighborhood
size of k = 12, because of the involved noise components. The otherwise used
value of k = 8 caused points to not be associated to any proxies. Further-
more, we allowed for splits and merges. The algorithm converged after 8
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Figure 10: Noisy Dodecahedron, its segmentation and simplifications (planar intersection
and optimization).

iterations with m = 11 final proxies, see Figure 10. Observe that the faces
reflecting the top proxy in the third image are not planar, which is a possible
occurrence outlined in the intersection of planes when finding the simplified
mesh vertices. In contrast, the optimization provides planar patches (right-
most image).

The segmentation reflects the different parts of the geometry correctly.
This probably results from the normal differences caused by the noise still
being smaller than the normal differences between the different faces of the
dodecahedron. Hence, if the noise level and its influence in normal deviation
still lies beyond the normal deviation of neighboring geometry regions, its
segmentation will reflect the geometric structure well. However, this still
depends on initial seed placements and therefore also an performing splits
and merges.

With a segmentation reflecting the correct structure of the geometry, the
simplification should not cause any additional issues, as it is the result of
proxy plane intersections. Only the neighborhood relation between proxies
might be more involved, as point locations now deviate more because of
additional noise components.

7. Conclusion and Further Research

We have shown in this paper that variational shape approximation is an
effective approach to obtain a simplified mesh not only from meshed input,
but also from geometries sampled by point sets. The presented example for
non-convergence of the VSA method as used in Cohen-Steiner et al. (2004);
Yan et al. (2006); Lee and Bo (2016) was successfully circumvented by the
introduction of a new switch operation for which we proved convergence.
Furthermore, by two more operations in the pipeline, namely split and merge,
we eliminate the dependency of both the number and placement of initial seed
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points. Finally, we give a detailed description on how to obtain a simplified
mesh from the segmented point set by building on the method of tangent
plane intersection. Several directions are left for further research.

First, on a theoretical level, we have shown that the introduction of the
switch operation results in guaranteed convergence. However, it remains
unclear whether other alterations of the pipeline exist that came with the
same result and do not affect the runtime of the algorithm as heavily as the
switch operation does.

Second, concerning the parameters, we currently do not provide any the-
oretical reasons for the choice of weights ωj in Equation (4) or weights w̃j
in Equation (8). A better understanding of these weights, aside from the
experimental values used in the paper, is desirable. Similarly, the sum of
normal differences η is not directly related to the curvature of a proxy, as it
depends on the number of points contributing to the sum. Here, a threshold
should be found that is independent of the number of points.

Third, our simplification process can currently not handle planar patches
which are not star convex. An idea is to include border-detection algorithms
for point sets to find both outer and possible inner borders—resulting from
holes—of the points associated to the proxy. Given these, the mesh vertices
can be easily sorted and a planar face can be obtained while not covering the
holes.

Fourth and finally, we have presented an experiment on a noisy point
set. We assume that the treatment of meshes equipped with noise should be
equally possible and yield even better results because of the explicit connec-
tivity. To investigate this behavior is also left as future work.
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Appendix A. Interpretation of parameter η

In Section 4.3, we introduced the user-chosen parameter η. It relates to
the energy L2,1 as presented in Equation (4). From the definition of L2,1, it
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is clear that two factors contribute to the value L2,1(Pi, Ni) a given proxy Pi
can achieve. These are:

• The number of points pj assigned to the proxy and

• the Euclidean distance of the proxy normal Ni to the respective point
normals nj.

That is, a proxy can achieve a low energy by either exhibiting low deviation
in its normals or by containing a low number of points. In particular the
latter aspect highly depends on the number of points and the point densities
in the considered model. Therefore, no general values of η can be presented
in this paper, but the user has to choose an appropriate value for the given
setup. In the following, we present a simple heuristic how to make an (initial)
choice for η.

Any point on a smooth surface can be approximated via a quadric, i.e.
a (hyperbolic) paraboloid Dai and Newman (1998). As we handle mostly
(locally) convex objects, we consider an elliptic paraboloid as a simple model
for a curved surface, parameterized as

P = (u, v,
u2

a2
+
v2

b2
),

then it has mean curvature

H(u, v) =
a2 + b2 + 4u2

a2
+ 4v2

b2

a2b2

√(
1 + 4u2

a4
+ 4v2

b4

)3
. (A.1)

A normal to P at (u, v) is given as

Pu × Pv =

 1
0

2u/a2

×
 0

1
2v/b2

 =

 −2u/a2

−2v/b2

1

 .

Hence, after normalization, the point parameterized at (u, v) contributes the
following value to L2,1, when assuming that the points are distributed uni-
formly on the paraboloid and therefore the proxy normal is justNi = (0, 0, 1)T :∥∥∥∥∥∥ 1√

4u2/a4 + 4v2/b4 + 1

 −2u/a2

−2v/b2

1

−
 0

0
1

∥∥∥∥∥∥
2

=2− 2√
4u2/a4 + 4v2/b4 + 1

.
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Placing a number ℵi of points regularly on the domain [−1, 1]× [−1, 1], i.e.

choosing u = j/νi, v = `/νi for j, ` = 1, . . . , νi and νi := d
√
ℵi−1
2
e, we can com-

pute the total value of L2,1 for these points, depending on the curvature
prescribed by (a, b) as

L2,1(Pi, Ni) = 2(2νi + 1)2 −
νi∑

j=−νi

νi∑
`=−νi

1√(
j

νia2

)2

+
(

`
νib2

)2

+ 1
4

. (A.2)

Now Equation (A.2) provides a heuristic to compute an (initial) value
of η: A user of the algorithm first chooses a desired curvature, to be covered
by the proxies. From this choice and a distribution on the two main curvature
directions, via Equation (A.1), the parameters (a, b) can be computed. As
the user also knows the models to which the algorithm will be applied and
therefore the resolution, i.e. the number of points to be included, a second
choice is the number of points ℵi that is roughly to be covered by a single
proxy. From these two choices, using Equation (A.2), a first estimate for η
can be computed. If the output of the algorithm is not satisfactory, the user
is of course free to tune the parameter towards the desired result.

References
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