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Abstract
A well–known feature of the Pythagorean–hodograph (PH) curves

is the multiplicity of solutions arising from their construction through
the interpolation of Hermite data. In general, there are four distinct
planar quintic PH curves that match first–order Hermite data, and a
two–parameter family of spatial quintic PH curves compatible with
such data. Under certain special circumstances, however, the number
of distinct solutions is reduced. The present study characterizes these
singular cases, and analyzes the properties of the resulting quintic PH
curves. Specifically, in the planar case it is shown that there may be
only three (but not less) distinct Hermite interpolants, of which one is
a “double” solution. In the spatial case, a constant difference between
the two free parameters reduces the dimension of the solution set from
two to one, resulting in a family of quintic PH space curves of different
shape but identical arc lengths. The values of the free parameters that
result in formal specialization of the (quaternion) spatial problem to
the (complex) planar problem are also identified, demonstrating that
the planar PH quintics, including their degenerate cases, are subsumed
as a proper subset of the spatial PH quintics.
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1 Introduction

Pythagorean–hodograph (PH) curves are characterized by the fact that their
hodograph (derivative) components satisfy a Pythagorean condition — i.e.,
for a given function space, the sum of their squares coincides with the perfect
square of a member of that space. The earliest and simplest instances [12] are
the polynomial PH curves, and they have subsequently been generalized to
rational PH curves [13, 18] and algebraic–trigonometric PH curves [19, 20].
The treatise [3] gives a comprehensive analysis of PH curves, and a survey
of new developments since its appearance may be found in [9].

The distinctive nature of PH curves permits exact computation of various
properties of interest in precision motion control, spatial kinematics, robotics,
and related fields — such as arc lengths, offset (parallel) loci to planar curves,
and rotation–minimizing frames defined on space curves. However, because
of the non–linear nature of their formulations, PH curves are not compatible
with the traditional control–point methodology1 for construction and shape
manipulation. Consequently, the use of first–order Hermite interpolants (that
match prescribed end points and derivatives) has become the standard means
of constructing planar and spatial polynomial PH curves. The simplest PH
curves capable of solving the general first–order Hermite interpolation are
the quintics, in the case of both planar [11] and spatial [7] data.

The construction of PH curves is greatly facilitated by the adoption of a
suitable algebraic framework. For planar PH curves, this is based on complex
variables [4], and in the spatial case the quaternion algebra may be invoked [2]
to ensure rotation–invariance of the formulation. In both cases, a multiplicity
of quintic PH curve solutions to the first–order Hermite interpolation arises.
For planar data there are, in general, four distinct interpolants, and for spatial
data there is typically a two–parameter family of interpolants. Consequently,
it is necessary to develop methods to identify the “best” curve among these
many solutions in both the planar and spatial cases [1, 7, 8, 11, 14, 17].

However it has not been previously recognized that, under certain special
circumstances, the cardinality of the set of planar or spatial quintic PH curve
interpolants to prescribed first–order Hermite data is reduced relative to the
general case. The focus of the present study is to identify and characterize
these degenerate cases, in order to establish a more comprehensive theory of
Hermite interpolation by planar and spatial quintic PH curves.

1The “rectifying control polygon” [15] provides a partial remedy to this problem.
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The plan for the remainder of this paper is as follows. Section 2 offers a
detailed analysis of the conditions under which the planar PH quintic Hermite
interpolation problem admits fewer than four distinct solutions, in terms of
both the pre–image polynomial coefficients and constraints on the curve end
derivatives, and a number of special configurations of the end derivatives are
characterized in full. Section 3 then considers spatial Hermite interpolants,
based upon the quaternion representation, which incurs two free parameters.
A fixed difference between these parameters is the main factor influencing the
cardinality of the solution space. Moreover, specific values of the parameters
yield a proper specialization to the planar Hermite interpolants including the
degenerate cases. Finally, Section 4 summarizes the key results of this study.

2 Planar Hermite interpolants

In the complex–variable model [4], the Cartesian components of a plane curve
are identified with the real and imaginary parts of a complex–valued function
r(ξ) = x(ξ) + i y(ξ) of a real parameter ξ. A planar PH curve r(ξ) may then
be generated from a complex pre–image polynomial w(ξ) = u(ξ) + i v(ξ) by
integrating the expression r′(ξ) = w2(ξ), such that x′(ξ) = u2(ξ)− v2(ξ) and
y′(ξ) = 2u(ξ)v(ξ). The parametric speed of r(ξ) — i.e., the derivative ds/dξ
of arc length s with respect to the parameter ξ — is defined by the polynomial
σ(ξ) = |r′(ξ)| = |w(ξ)|2 = u2(ξ)+v2(ξ). Consequently, the indefinite integral
of σ(ξ), namely the arc length function s(ξ), is also a polynomial.

To construct a planar PH quintic r(ξ), ξ ∈ [ 0, 1 ] we employ a quadratic
complex pre–image polynomial, specified in Bernstein form as

w(ξ) = w0(1− ξ)2 + w12(1− ξ)ξ + w2ξ
2 , (1)

and integrate r′(ξ) = w2(ξ). There are, in general, four distinct planar PH
quintics that have specified end points r(0), r(1) and derivatives r′(0), r′(1).
For simplicity we consider data specified in canonical form2 as r(0) = p0 = 0,
r(1) = p1 = 1, r′(0) = d0 = d0 exp(i θ0), r′(1) = d1 = d1 exp(i θ1) where
θ0, θ1 ∈ (−π,+π ] and we assume that d0, d1 > 0.

2Any given Hermite data may be mapped to canonical form by subtracting p0 from p0

and p1, and then dividing p1, d0, d1 by p1.
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2.1 Characterization of the pre-image polynomial

We consider here the conditions on the coefficients of (1) that correspond to
fewer than four distinct interpolants, and in Section 2.2 we formulate them
in terms of the derivatives d0, d1. To match these derivatives, we must have

w2
0 = d0 and w2

2 = d1 , (2)

and hence

w0 = s0

√
d0 exp(i 1

2
θ0) , w2 = s1

√
d1 exp(i 1

2
θ1) , (3)

with s0 = ±1 and s1 = ±1. Also, interpolation of the end points implies that∫ 1

0

r′(ξ) dξ =
1

5

[
w2

0 + w0w1 +
2w2

1 + w0w2

3
+ w1w2 + w2

2

]
= 1 ,

or equivalently

2 w2
1 + 3 (w0 + w2)w1 + 3 w2

0 + 3 w2
2 + w0w2 = 15 . (4)

Now since equation (4) has (in general) two distinct solutions for w1, and the
expressions (3) for w0 and w2 each incorporate a sign ambiguity, it might be
thought that in general there are eight distinct interpolants to the prescribed
Hermite data. However, if (w0,w1,w2) is a solution of equations (2) and (4),
then (−w0,−w1,−w2) is also a solution, that generates the same curve r(ξ).
Hence, there are (in general) four distinct Hermite interpolants: all four may
be generated by fixing either s0 or s1 and varying the other.

Proposition 1. The planar PH quintic Hermite interpolation problem has
only three distinct solutions if and only if w0 and w2 satisfy

3 (w2
0 + w2

2)− 2 w0w2 − 24 = 0 , (5)

and it is not possible to have less than three distinct solutions.

Proof : When the discriminant of the quadratic equation (4) in w1 vanishes,
it has a double root. On simplification, this yields the condition (5). Equation
(5) may be satisfied when s0 and s1 are either of like or unlike sign, but not
both. If it is satisfied with (s0, s1) = (1, 1) and (−1,−1), these signs yield
the same curve, but (s0, s1) = (1,−1) and (−1, 1) yield two distinct curves.
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Conversely, if it is satisfied with (s0, s1) = (1,−1) and (−1, 1), these signs
yield the same curve, but (1, 1) and (−1,−1) yield two distinct curves. In
both instances, we obtain three distinct interpolants (one of which may be
considered a “double” solution).

Remark 1. If condition (5) is satisfied, equation (4) has only one (double)
root, namely w1 = − 3

4
(w0 + w2).

With sinψ =
√

1/3 and cosψ =
√

2/3, the solutions to equation (5) can
be parameterized in terms of two real variables α and β as

w0 = 3 sin(α + ψ + i β) = 3 [ sin(α + ψ) cosh β + i cos(α + ψ) sinh β ] ,

w2 = 3 sin(α− ψ + i β) = 3 [ sin(α− ψ) cosh β + i cos(α− ψ) sinh β ] .

These expressions characterize w0 and w2 as lying on two families of curves,
parameterized by the periodic variable α ∈ [ 0, 2 π) and varying in shape with
the non–periodic family parameter β ∈ (−∞,+∞). The curves traced by w0

and w2 as α varies with β fixed are identical, since we can re–parameterize
them by the new variables α0 := α + ψ, α2 := α − ψ. However, the w0, w2

values that satisfy (5) are identified by distinct points on these curves.

0

5

−6

−4

−2

2

4

6

0

−6 −4 −2 2 4 60

−10

−5

10

0 5−10 −5 10

(a) (b)

Figure 1: (a) the family of curves in the complex plane traced by w0, w2

over the domain α ∈ [ 0, 2π) for β varying between 0 and 2 in increments of
1
6
; (b) correspondence of sampled values w0 and w2 satisfying (5) for β = 1.
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Figure 1 shows examples, for 0 ≤ β ≤ 2, of the loci traced by w0 and w2.
These curves are ellipses with centers at the origin, and diameters 3 cosh β
and 3 sinh β along the real and imaginary axes. The curves for negative and
positive β values are mirror images of each other about the real axis, and
they degenerate to the (doubly–traced) real interval [−3,+3 ] when β = 0.
Figure 1 also illustrates the correspondence of values w0 and w2 satisfying (5)
in the case β = 1, identified by the angular displacement ∆α = 2ψ ≈ 70.5◦.

2.2 Constraints on end derivatives

On substituting from (3), the condition (5) for only three distinct interpolants
may be expressed in terms of the derivatives d0 and d1 as

3 (d0 + d1)± 2
√

d0d1 = 24 , (6)

or equivalently

3 [ d0 exp(i θ0) + d1 exp(i θ1) ] ± 2
√
d0d1 exp(i 1

2
(θ0 + θ1)) = 24 .

Setting θm = 1
2
(θ0+θ1) and δθ = 1

2
(θ1−θ0), so that θ0 = θm−δθ, θ1 = θm+δθ,

upon conjugation and multiplication by exp(i θm) this becomes

3 d0 exp(i δθ) + 3 d1 exp(−i δθ) ± 2
√
d0d1 = 24 exp(i θm) . (7)

As previously noted, the condition (7) may be satisfied with either the +
sign or the − sign, but not both. The real and imaginary parts

3 (d0 + d1) cos δθ ± 2
√
d0d1 = 24 cos θm , (8a)

3 (d0 − d1) sin δθ = 24 sin θm , (8b)

of equation (7) define two real constraints on the four real values d0, d1, θ0, θ1.

2.2.1 Special cases

Before considering the general case, we consider three special circumstances:
(i) derivatives of equal magnitude; (ii) derivatives of identical orientation;
and (iii) one derivative is “flat” — i.e., θ0 = 0 or θ1 = 0 (but not both). We
begin with the analysis of case (i).

Proposition 2. When d0 = d1 = d, there are only three distinct interpolants
if and only if θ0 = − θ1 = θ with cos θ > −1/3 and d = 12/(3 cos θ ± 1),
where the value d = 12/(3 cos θ − 1) is valid only when cos θ > 1/3.
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Proof : When d0 = d1 = d condition (8b) is equivalent to sin θm = 0, i.e.,
θm = 0 or π. If θm = π, then θ0 = θ1 = π and δθ = 0, so (8a) reduces to
6d± 2d = − 24, which has no valid positive solution for d. If θm = 0 we have
θ0 = − θ1, i.e., d0 = d1. Then with θ = θ0 = − θ1 = − δθ, condition (8b) is
automatically satisfied, and condition (8a) becomes

3 d cos θ ± d = 12 , (9)

and hence d = (3 cos θ ± 1)/12. The restrictions on cos θ follow from the
requirement that d > 0.

According to Proposition 2, two of the four PH quintic interpolants are
coincident when the end derivatives are of equal magnitude, are symmetric
about r(1)−r(0), and the (unsigned) angle θ between them and r(1)−r(0) is
not too large. Specifically, if θ < arccos(1

3
) ≈ 70.5◦ this occurs for two distinct

derivative magnitudes d, whereas if arccos(1
3
) ≤ θ < arccos(−1

3
) ≈ 109.5◦ it

occurs for only one value of d. Conversely, it follows from (9) that for any
common magnitude d ≥ 3 of the end derivatives, there are only three distinct
interpolants when θ = arccos(4/d−1/3). For d ≥ 6, there is a second critical
angle, θ = arccos(4/d+ 1/3), that admits only three distinct interpolants.

Example 1. For θm = 0 and δθ = arccos(1
2
), the condition (9) is satisfied

with the plus sign — corresponding to unlike signs s0, s1 in (3) — by d = 4.8.
With θ0 = −δθ and θ1 = δθ, we then have

w0 = s0 d exp(−i1
2
δθ) , w2 = s1 d exp(i1

2
δθ) , w1 = −3

4
(w0 + w2) .

Since w(ξ) and −w(ξ) specify the same hodograph r′(ξ), the values (s0, s1) =
(−1, 1) and (1,−1) generate the same curve. Two more distinct interpolants
with equal end derivative magnitudes d = 4.8 exist, for which the condi-
tion (5) is not satisfied, so equation (4) has two distinct solutions w1. The
curves generated by the standard PH quintic Hermite interpolation scheme
are shown in Figure 2. Note that like signs s0, s1 yield d = 24.0 in (9), which
specifies a different Hermite interpolation problem. Figure 3 shows further
examples with d0 = d1 that admit only three distinct solutions.

Remark 2. As a special instance of the construction for end derivatives of
equal magnitude, the case of interpolants to G1 Hermite data with a specified
arc length S has been addressed in [5]. It was shown that in general there are
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Figure 2: The three distinct PH quintic Hermite interpolants in Example 1
and their Bézier control polygons, including a “double” solution (green). The
good interpolant free of tight loops (red) is one of the two “simple” solutions.

(a) (b) (c)

Figure 3: Examples of PH quintic Hermite interpolants for end derivatives of
equal magnitude: (a) d0 = d1 = 4, θ0 = −θ1 = arccos(2/3); (b) d0 = d1 = 12,
θ0 = −θ1 = arccos(2/3); (c) d0 = d1 = 12, θ0 = −θ1 = π/2. In all of these
examples, the green curve corresponds to the “double” solution.

two distinct solutions (of which one has attractive shape properties and the
other exhibits undesirable looping behavior). Consistent with Proposition 2,
these interpolants must satisfy sin θm = 0. Moreover, it was found that only
one distinct solution exists when δθ satisfies cos δθ = (S ± 3)/(3S ± 1).

We now consider the case (ii): parallel end derivative orientations.

Proposition 3. When θ0 = θ1 = θ, there are only three distinct Hermite
interpolants if and only if θ = 0 and d0, d1 satisfy the condition

9 (d2
0 + d2

1) + 14 d0d1 − 144 (d0 + d1) + 576 = 0 . (10)
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This equation defines an ellipse in the (d0, d1) plane with center at (9/2, 9/2)
and semi–axes 6 and 3/

√
2, rotated by angle −π/4. The ellipse is tangent to

its bounding box [ 0, 9 ]× [ 0, 9 ] at (0, 8), (8, 0), (1, 9), (9, 1) — see Figure 4.

3

7

0

1

2

6

4

9

5

0 1 2 6 8 94

8

753
d0

d1

Figure 4: The set of derivative magnitudes (d0, d1) for which there are just
three distinct PH quintic Hermite interpolants with θ0 = θ1 = 0.

Proof : When θ0 = θ1 = θ, we have θm = θ and δθ = 0, and (8b) simplifies
to sin θ = 0, i.e., θ = 0 or π. If θ = 0, then (8a) is equivalent to

3 (d0 + d1)− 24 = ±2
√
d0d1 , (11)

and we obtain (10) on squaring both sides. If θ = π, equation (8a) can be
reduced to

9 (d0 − d1)
2 + 32 d0d1 + 144 (d0 + d1) + 576 = 0 ,

which clearly has no solution with d0, d1 > 0 — in fact, this equation defines
an ellipse similar to that defined by (10), but with center (−9/2,−9/2) and
bounding box [−9, 0]× [−9, 0].

Figure 5 shows a few examples for the situation described in Proposition 3.
It follows from the apparent symmetry of the interpolants about the line
r(1) − r(0), which is induced by the angles θ0 = θ1 = 0, that the “double”
solution must trace out the line segment between r(0) and r(1).

Remark 3. The “upper arc” of the ellipse in Figure 4 from (0, 8) to (8, 0)
corresponds to solutions (d0, d1) of (11) with the + sign on the right, while
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(a) (b) (c)

Figure 5: Examples of quintic PH Hermite interpolants for end derivatives
with equal angles: (a) θ0 = θ1 = 0, d0 = 1, d1 = 9; (b) θ0 = θ1 = 0,
d0 = 25/3, d1 = 3; (c) θ0 = θ1 = 0, d0 = 25/3, d1 = 1/27. In all examples,
the green curve is the one corresponding to the “double” solution.

the “lower arc” corresponds to solutions (d0, d1) with the − sign on the right.
The latter case occurs when the discriminant of equation (4) vanishes with
unlike signs s0, s1 in (3). Consequently, the discriminant of (4) with like signs
s0, s1 is positive, so w1 is a real value as well as w0,w2 (since θ0 = θ1 = 0),
for all three PH quintics. Hence, we obtain three distinct curves tracing the
line segment r(0) to r(1) in this case. For (d0, d1) on the upper ellipse arc,
the discriminant of (4) vanishes if s0, s1 are of like sign, giving the straight
line r(0) to r(1) as a “double” curve; or it is negative if s0, s1 are of unlike
signs, yielding two non-trivial but symmetric curves as shown in Figure 5.

We observe from Figure 4 and the previous remark that if 0 < d0 ≤ 8 or
d0 = 9, there exists exactly one d1 such that for θ0 = θ1 = 0 three distinct
interpolants exist, but this is true for only two distinct d1 values if 8 < d0 < 9.
Moreover, for 0 < d0 < 8 a unique value of d1 exists, such that there are three
distinct solutions with the same shape, namely the straight line from r(0) to
r(1). By symmetry, analogous results hold for d0 when d1 is given.

Finally, we treat case (iii): one derivative is “flat” but the other is not.

Proposition 4. When θ0 6= 0 = θ1, there are only three distinct interpolants
if and only if cos θ0 > −7/9 and d0 = 16/(7 + 9 cos θ0), d1 = d0 + 8.

Proof : If θ1 = 0, then θm = −δθ = 1
2
θ0 and (8b) is equivalent to d1 = d0 +8.

Substituting this into (8a), we get

6 d0 cos θm = ± 2
√
d0(d0 + 8) ,
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and after squaring both sides and dividing by 4 d0 we have

9 d0 cos2 θm = d0 + 8 . (12)

Recalling that cos2 θm = 1
2

(1 + cos θ0), this is equivalent to

d0 =
16

7 + 9 cos θ0

,

and d0 is positive if and only if cos θ0 > −7/9.

(a) (b) (c)

Figure 6: Examples of quintic PH Hermite interpolants for the case when one
end derivative is flat but the other is not: (a) θ0 = π/4, θ1 = 0, d0 = 8(28−
18
√

2)/17, d1 = 8(45−18
√

2)/17; (b) θ0 = π/2, θ1 = 0, d0 = 16/7, d1 = 72/7;
(c) θ0 = 0, θ1 = 3π/4, d0 = 8(45 + 18

√
2)/17, d1 = 8(28 + 18

√
2)/17. In all

cases, the green curve is the one corresponding to the “double” solution.

By symmetry, Proposition 4 also holds if we swap the roles of θ0, θ1 and of
d0, d1. Thus, if one end derivative points in the same direction as r(1)− r(0)
and the (unsigned) angle θ between the other end derivative and r(1)− r(0)
satisfies θ < cos(−7/9) ≈ 141.1◦, there exist unique magnitudes for each of
the two end derivatives, such that there are only three distinct quintic PH
Hermite interpolants, as shown in Figure 6.

2.2.2 The general case

Setting δd = 1
2
(d1 − d0) and dm = 1

2
(d0 + d1) > | δd |, so that d0 = dm − δd

and d1 = dm + δd, we may write (8a) and (8b) as

3 dm cos δθ − 12 cos θm = ±
√
d 2

m − δd 2 , (13a)

δd sin δθ + 4 sin θm = 0 . (13b)

10



dm

δd

2 6 84 1210

10

−10

0

5

−5

dm

δd

2 6 84 10

10

−10

0

5

−5

dm

δd

2 6 84 1210

10

−10

0

5

−5

12

(a) (b) (c)

Figure 7: Examples of the line (blue) defined by (14) and the conic (red)
given by (15): (a) θm = π/6, δθ = −π/4 (ellipse); (b) θm = arccos(1/6), δθ =
arccos(1/3) (parabola); (c) θm = −3π/8, δθ = 2π/5 (hyperbola). The area
D+ = {(dm, δd) : dm > |δd|} corresponding to valid magnitudes d0, d1 > 0 is
shown in grey. Note that the conic sections touch the boundary of D+.

As the case δθ = 0 has already been treated in Proposition 3, we can assume
without loss of generality that cos δθ < 1 and sin δθ 6= 0, since δθ ∈ (−π, π),
and re–write (13b) as

δd = − 4 sin θm

sin δθ
. (14)

We further note that (13a), after squaring both sides, is equivalent to

(9 cos2 δθ − 1) d2
m + δd 2 − 72 cos θm cos δθ dm + 144 cos2 θm = 0 . (15)

For any fixed θm and δθ (i.e., for any given θ0 and θ1) this quadratic equation
in dm and δd defines a conic section in the (dm, δd) plane: see Figures 7 and 8.
Specifically, this conic section is

an ellipse,

a parabola,

a hyperbola,

 when cos2 δθ


>

=

<

 1

9
, (16)

and it is non-degenerate if and only if | θm | 6= 1
2
π. Consequently, there are

only three distinct Hermite interpolants if and only if the line parallel to the
dm axis defined by (14) intersects the conic section in (15), and there can be
up to two intersections.
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dm

δd

5 10

10

−10

0

5

−5

(a) (b) (c)

−10 −5
dm

δd

5 10

10

−10

0

5

−5

−10 −5
dm

δd

5 10

10

−10

0

5

−5

−10 −5

Figure 8: Further examples of the line (14) and the conic (15): (a) θm =
π − arctan

(
3
√

15/4
)
, δθ = π/3 (ellipse); (b) θm = 2π/3, δθ = − arccos(1/3)

(parabola); (c) θm = 3π/5, δθ = 4π/9 (hyperbola).

Before analyzing these cases in detail, we make a few general observations
regarding the quadratic polynomial Q(dm, δd) on the left hand side of (15).
First, since it is an even function of δd, the conic section defined by its zero
set is symmetric about the dm axis. Second, it is non–negative along the
lines δd = ±dm since it has the factorization

Q(dm,±dm) = 9 (cos δθ dm − 4 cos θm)2, (17)

and it vanishes along these lines, if and only if either (i) cos δθ = cos θm = 0
(which implies that θ0 = 0 or θ1 = 0, and this case has been discussed in
Proposition 4), or cos δθ 6= 0 and

dm =
4 cos θm

cos δθ
=: d∗. (18)

In the latter case, the conic section is tangent to the lines δd = ±dm at the
points (dm, δd) = (d∗,±d∗), because the gradient at these points where Q
vanishes simplifies to

∇Q(d∗,±d∗) = 2d∗(−1,±1). (19)

We begin by investigating the case of the ellipse in (16).

Proposition 5. When 1/9 < cos2 δθ < 1, the Hermite interpolation problem
has three distinct solutions if and only if we have cos θm cos δθ > 0,

| tan θm | ≤
3 | sin δθ |√
9 cos2 δθ − 1

, (20)
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δd is given by (14), and dm is either solution of the quadratic equation (15),
which has just one solution if (20) holds with equality. Moreover, if | θm | =
| δθ |, the smaller value of dm does not identify a valid configuration.

Proof : If cos2 δθ > 1/9, the center of the ellipse defined by (15) lies on the
positive dm axis if and only if cos θm cos δθ > 0, which implies that d∗ in (18)
is positive. By (17) and (19), the ellipse is contained within the open sector
D+ = {(dm, δd) : dm > | δd |} in this case, except for the two points (d∗,±d∗)
that lie on the boundary ∂D+ of D+. Since the length of the δd semi–axis is

12 | cos θm |√
9 cos2 δθ − 1

,

the line (14) intersects the ellipse if and only if condition (20) holds, with
only one intersection in the case of equality.

It remains to exclude the instance in which the line intersects the ellipse
at (d∗,±d∗), as this corresponds to an invalid configuration with d0 = 0 or
d1 = 0. This happens if and only if δd in (14) is equal to d∗ or −d∗, i.e.,

sin θm

sin δθ
= ± cos θm

cos δθ
,

which in turn is equivalent to sin(θm ± δθ) = 0. Since θm ± δθ = ±π implies
cos θm cos δθ ≤ 0, we conclude that this special case occurs if θm± δθ = 0, or
equivalently if |θm| = |δθ|.
Note that the case |θm| = 1

2
π, which leads to a degenerate ellipse — i.e., the

single point at (0, 0) — and hence does not identify a valid configuration,
is ruled out by condition (20). Furthermore, in the special case θm = −δθ
(for which θ1 = 0 and δd = d∗), we have dm = d∗ = 4, and the second valid
configuration of magnitudes d0, d1 is the one given in Proposition 4, and
likewise for the case θm = δθ (for which θ0 = 0 and δd = d∗). The invalid
configuration d0 = 0, d1 = 8 is ruled out in the proof of Proposition 4 when
we divide by d0 > 0 to arrive at (12).

We now turn our attention to the case of the parabola in (16).

Proposition 6. When cos2 δθ = 1/9, the Hermite interpolation problem has
three distinct solutions if and only if cos θm cos δθ > 0, |θm| 6= |δθ|, δd is
given by (14), and

dm =

(
3

4
tan2 θm + 6

)
| cos θm | . (21)
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Proof : When cos2 δθ = 1/9, the parabola in (15) lies in the open half–
plane H = {(dm, δd) : dm > 0} if and only if cos θm cos δθ > 0. As in the
proof of Proposition 5, this implies that d∗ in (18) is positive and that the
parabola is contained in D+, except for the two points (d∗,±d∗) ∈ ∂D+. In
this case, since the parabola is symmetric about the dm axis, there is exactly
one intersection of the line (14) with it. Noting that

δd 2 =
16 sin2 θm

sin2 δθ
=

16 sin2 θm

1− cos2 δθ
= 18 sin2 θm ,

it follows from (15) that the dm coordinate of this intersection point is

dm =
δd 2 + 144 cos2 θm

72 cos θm cos δθ
=

18 sin2 θm + 144 cos2 θm

24 | cos θm |
,

which simplifies to (21). As in the proof of Proposition 5, it follows that the
special case of an intersection on the boundary of D+, which does not give a
valid configuration, happens if and only if |θm| = |δθ|.

It remains to analyze the case of the hyperbola in (16).

Proposition 7. When cos2 δθ < 1/9, the Hermite interpolation problem has
three distinct solutions if and only if either cos θm cos δθ < 0 or |θm| 6= |δθ|,
δd is given by (14), and dm is the larger of the two solutions of the quadratic
equation (15), which is guaranteed to be greater than | δd |.

Proof : If cos2 δθ < 1/9, the center of the hyperbola defined by (15) is located
on the dm axis at the point(

36 cos θm cos δθ

9 cos2 δθ − 1
, 0

)
.

If cos θm cos δθ < 0, then d∗ in (18) is negative and, by (17) and (19), one
branch of the hyperbola touches the boundary of the open sector D− =
{(dm, δd) : −dm > | δd |}. As the center of the hyperbola lies on the positive
dm axis in this case, the other branch of the hyperbola is contained in D+

and has a unique intersection with the line in (14), corresponding to valid
magnitudes d0, d1 > 0.

If cos θm cos δθ > 0, then d∗ in (18) is positive, one branch of the hyperbola
touches D+ at the two points (d∗,±d∗) ∈ ∂D+, and the other lies in D−.

14



(c) (b) (e)

(a) (d)

Figure 9: Example quintic PH curves for the cases in Figures 7 and 8: (a)
ellipse, first intersection; (b) ellipse, second intersection; (c) parabola; (d)
hyperbola in Figure 7; (e) hyperbola in Figure 8. The θ0, θ1 and d0, d1 val-
ues for these examples are listed in Table 1. In each case, the green curve
corresponds to the “double” solution.

Thus, there is a unique intersection of the line (14) and the hyperbola in D+,
except if |θm| = |δθ|, when this intersection occurs at the touching points.

The previous line of argument extends to the case cos δθ = 0, cos θm 6= 0,
when the hyperbola is a rectangular hyperbola with center at (0, 0) and to
the case cos δθ 6= 0, cos θm = 0, when the hyperbola degenerates into a pair of
lines intersecting at (0, 0). In the remaining case cos δθ = cos θm = 0, which
is equivalent to |θm| = |δθ| = 1

2
π, the line in (14) intersects the degenerate

rectangular hyperbola on the boundary of D+ at (4, 4) or (4,−4).

If δθ = − 1
2
π, which implies that cos δθ = 0 so d0 and d1 point in opposite

directions, we can further deduce that the PH quintic Hermite interpolation
problem has only three distinct solutions if and only if

d0 = 4
√

1 + 8 cos2 θm + 4 sin θm , d1 = 4
√

1 + 8 cos2 θm − 4 sin θm .

For θm = 0 this reduces to d0 = d1 = 12, and we obtain the example in
Figure 3 (c). As θm → ± 1

2
π and d0,d1 become parallel to r(1)− r(0), one of

d0, d1 approaches 0, an invalid configuration. Similar results hold for δθ = 1
2
π.

If θm = 1
2
π, so that cos θm = 0 and d0,d1 are symmetric about the normal

to the line from r(0) to r(1), then if they are sufficiently close to this line —
since we require cos2 δθ = sin2 θ0 = sin2 θ1 < 1/9 — the critical end derivative
magnitudes for just three PH quintic Hermite interpolants are

d0 =
4

|sin δθ|
√

1− 9 cos2 δθ
+

4

sin δθ
, d1 =

4

|sin δθ|
√

1− 9 cos2 δθ
− 4

sin δθ
.
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θ0 θ1 d0 d1

(a) 5π/12 −π/12 2(9
√

6− 4
√

5− 7
√

2)/7 2(9
√

6− 4
√

5 + 7
√

2)/7
(b) 5π/12 −π/12 2(9

√
6 + 4

√
5− 7

√
2)/7 2(9

√
6 + 4

√
5 + 7

√
2)/7

(c) ∼ 0.1724 ∼ 2.634 43/8 +
√

70/2, 43/8−
√

70/2
(d) −31π/40 π/40 ∼ 0.1018 ∼ 7.873
(e) 7π/45 47π/45 ∼ 13.32 ∼ 5.599

Table 1: θ0, θ1 and d0, d1 values for the examples in Figure 9.

1 2
34

−π − 3π
4 − π2 − π4 0 π

4
π
2

3π
4 π

θ0

θ1

−π

− 3π
4

− π2

− π4

0

π
4

π
2

3π
4

π

Figure 10: Graph of the dependence on (θ0, θ1) of the number of derivative
magnitude pairs (d0, d1) that admit just three distinct PH quintic Hermite
interpolants. There may be just one pair (blue), two pairs (red), or multiple
pairs (purple). For most angles (green), there are four distinct interpolants
for all positive (d0, d1) values. The numbered green points have coordinates
1 : (0, 2ϕ), 2 : (π/2− ϕ, π/2 + ϕ), 3 : (π − 2ϕ, π), 4 : (2ϕ− π, π), where ϕ =
arccos(1/3). The coordinates of the other green points follow by symmetry.

Consistent with previous observations, one of these magnitudes converges to
0 as δθ → ± 1

2
π. Similar conclusions hold for the case θm = − 1

2
π. Examples

illustrating these different cases are shown in Figure 9.
Figure 10 summarizes the above results graphically in the (θ0, θ1) domain.
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The red regions correspond to the ellipse case (Proposition 5), with the curved
boundaries marking the situation when the line (14) is tangent to the ellipse.
The hyperbola case (Proposition 7) is indicated in blue, and the boundary
between red and blue regions represents the parabola case in Proposition 6.
The colored dashed lines (θ0 = 0 and θ1 = 0) indicate the special case
|θm| = |δθ|, when one of the magnitudes that lead to the loss of a PH quintic
interpolant is zero and hence to an invalid configuration, and the solutions
along the blue part of these dashed lines are given by Proposition 4. The
behavior along the black dashed line (θm = 0) is described in Proposition 2,
and Proposition 3 captures the situation along the dotted black line (δθ = 0),
including the purple origin of the plot, which indicates the multitude of
possible lengths that yield a degenerate interpolation problem (see Figure 4).

3 Spatial Hermite interpolants

To ensure rotation invariance of spatial PH curves (i.e., an algebraic structure
independent of the coordinate axes [6]), we use the quaternion representation
[2]. Recall that a quaternionQ = (q,q) comprises a scalar part q and a vector
part q. The pure scalar and pure vector quaternions (q, 0) and (0,q) may be
written as q and q, and the norm and conjugate of Q are |Q| =

√
q2 + |q|2

and Q∗ = (q,−q). The sum of two quaternions A = (a, a) and B = (b,b) is
A+ B = (a+ b, a + b), and the product can be expressed as

AB = (a b− a · b, ab + b a + a× b) .

Note that | AB | = | A | | B | and (AB)∗ = B∗A∗. A unit quaternion U with
| U | = 1 can be written as (cos 1

2
ψ, sin 1

2
ψ u) for some angle ψ and unit vector

u, and for any vector f the transformation f → U f U∗ yields a rotation of f
by angle ψ about an axis in the direction specified by u.

In the quaternion model, the hodograph of a quintic spatial PH curve is
generated from a quadratic quaternion polynomial

A(ξ) = A0(1− ξ)2 + A12(1− ξ)ξ + A2ξ
2 (22)

with coefficients Ar = ur + vri + prj + qrk, r = 0, 1, 2 through the product

r′(ξ) = A(ξ) iA∗(ξ) . (23)
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We assume canonical Hermite data, with r(0) = (0, 0, 0) and r(1) = (1, 0, 0)
and end derivatives d0,d1. Matching the derivatives yields the equations

A0 iA∗0 = d0 and A2 iA∗2 = d1 (24)

for A0 and A2. With exp(φ i) := (cosφ, sinφ i), the solutions [8] are

A0 =
√
d0 n0 exp(φ0 i) , A2 =

√
d1 n1 exp(φ2 i) , (25)

where φ0, φ2 are free parameters, d0 = |d0|, d1 = |d1|, δ0 = d0/d0, δ1 =
d1/d1, and n0, n1 are the unit bisectors of i and δ0, δ1. Moreover, the end
point interpolation condition yields [8] the equation

(3A0 + 4A1 + 3A2) i (3A0 + 4A1 + 3A2)
∗ = d , (26)

d := 120 i − 15 (d0 + d1) + 5 (A0 iA∗2 +A2 iA∗0) . (27)

With d = |d| and δ = d/d, equation (26) has solutions of the form

A1 =

√
d n exp(φ1 i)− 3(A0 +A2)

4
, n :=

i + δ

| i + δ |
. (28)

Since the interpolants depend only on the differences of the angular variables
φ0, φ1, φ2 we may henceforth set φ1 = 0 without loss of generality [7]. Thus,
in general, there is a two–parameter family of spatial PH quintic interpolants.

3.1 The case φ2 − φ0 = constant

A one–dimensional specialization of the two–dimensional space of spatial PH
quintic Hermite interpolants arises from the imposition of a relation between
φ0 and φ2. We consider now the simplest case, φ2 − φ0 = constant.

Proposition 8. The condition φ2 − φ0 = δφ identifies, for each fixed δφ, a
one–parameter family of spatial PH quintic interpolants to given first–order
Hermite data that have identical arc lengths.

Proof : The total arc length of a spatial PH quintic Hermite interpolant can
be expressed [3, Lemma 28.1] as

S =
1

120

[
| 3A0 + 4A1 + 3A2 |2 + 15 (d0 + d1)− 5 (A0A∗2 +A2A∗0)

]
.
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From (26) and (27), we can replace | 3A0 + 4A1 + 3A2 |2 in this expression
by | 120 i− 15 (d0 + d1) + 5 (A0 iA∗2 +A2 iA∗0) |, and on using (25) we obtain

A0A∗2 +A2A∗0 = 2
√
d0d1 [ cos δφ n0 · n1 + sin δφ i · (n0 × n1) ] ,

A0 iA∗2 +A2 iA∗0 = 2
√
d0d1 [ cos δφ { (i · n0) n1 + (i · n1) n0 − (n0 · n1) i }

− sin δφ n0 × n1 ] .

Thus, the total arc length depends only on the difference δφ = φ2 − φ0.

The dependence of S on δφ has a single minimum and maximum [8], which
identify helical curves characterized [16] by a constant curvature/torsion ratio
and a unit tangent t that makes a fixed angle ψ (the helix angle) with a fixed
unit vector a (the helix axis) — i.e., a · t = cosψ. This condition implies [10]
that any helical curve with a polynomial parameterization is a PH curve.

3.2 Specialization to the planar case

Equations (24) and (26) are the spatial analogs of equations (2) and (4) for
the planar case. For spatial PH curves, the condition for any given canonical–
form data (with p1 − p0 = i) to be consistent with a planar curve is

i · (d0 × d1) = 0 . (29)

When this is satisfied, a planar solution will reside in the plane through the
x–axis containing the derivative vectors d0 and d1. Let ϑ0, ϑ1 ∈ [ 0, π ] and
ψ0, ψ1 ∈ [ 0, 2π) be the polar and azimuthal angles of d0 and d1 relative to
the x–axis. Then ψ0, ψ1 may differ only by an integer multiple of π, and if ψ
is either of these angles, the unit quaternion U := cos 1

2
ψ − sin 1

2
ψ i defines a

rotation through angle −ψ about i through the mappings

d0 → U d0 U∗ , d1 → U d1 U∗ , (30)

so the transformed derivatives lie in the (x, y) plane. Thus we may henceforth
assume, without loss of generality, that d0, d1 have no z component.

Remark 4. Since (23) generates a pure vector, the basis for the Euclidean
plane in the spatial model is (i, j) rather than (1, i) in the planar model.
Thus, to establish a correspondence between these models, we must identify
i and j components in the former with the 1 and i components in the latter.
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Proposition 9. If the Hermite data satisfies the planarity condition (29) and
the transformation (30) is applied, the spatial Hermite interpolation problem
specified by the quaternion equations (24) and (26) specializes to the planar
Hermite interpolation specified by the complex equations (2) and (4) when the
angular parameters φ0 and φ2 in (25) are both integer multiples of π.

Proof : Setting d0 = d0(λ0i+µ0j), d1 = d1(λ1i+µ1j) and φ0 = mπ, φ2 = nπ
for integers m,n we have A0 = s0

√
d0 n0, A2 = s1

√
d1 n1 from (25), where

n0 =
(1 + λ0) i + µ0 j√

2 (1 + λ0)
, n1 =

(1 + λ1) i + µ1 j√
2 (1 + λ1)

,

and s0 = ±1 and s1 = ±1 for m and n even or odd. On identifying (i, j)
with (1, i) these expressions for A0,A2 agree with the formulae (3) for w0,w2

with (cos θ0, sin θ0) = (λ0, µ0) and (cos θ1, sin θ1) = (λ1, µ1).
Now with w2

0 = d0 and w2
2 = d1, equation (4) can be formulated in a

manner analogous to equations (26)–(27) as

(3 w0 + 4 w1 + 3 w2)
2 = d , d := 120 − 15 (d0 + d1) + 10 w0w2 . (31)

The 1, i components of the expression for 10 w0w2 in (31) evaluate to

5 s0s1

√
d0d1

(1 + λ0)(1 + λ1)− µ0µ1√
(1 + λ0)(1 + λ1)

, 5 s0s1

√
d0d1

(1 + λ0)µ1 + µ0(1 + λ1)√
(1 + λ0)(1 + λ1)

,

and evaluating the term 5 (A0 iA∗2 +A2 iA∗0) in (27) gives exactly the same
expressions for its i, j components, so the vectors d in (27) and (31) agree.

Having established the correspondence of A0,A2,d and w0,w2,d in the
spatial and planar cases, we now consider

A1 =

√
d n − 3(A0 +A2)

4
and w1 =

√
d− 3 (w0 + w2)

4
.

As before, we use φ1 = 0 inA1 and a unique complex root of d in w1. We need
only consider

√
dn and

√
d in the above expressions. With d = d (λ i + µ j)

and d = d (λ+ µ i) in the former and latter cases, we obtain the equivalence

A1 =
√
d

(1 + λ) i + µ j√
2 (1 + λ)

and w1 =
√
d

(1 + λ) + µ i√
2 (1 + λ)

.

By Proposition 9, all the degenerate cases in the planar problem de-
scribed in Section 2 are subsumed as special cases of the spatial Hermite
interpolation problem when φ0 and φ2 are integer multiples of π. Otherwise,
the solutions of the spatial Hermite interpolation problem are, in general,
non–planar curves — even when the planarity condition (29) is satisfied.
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4 Closure

Because of their non–linear nature, Pythagorean–hodograph (PH) curves are
not amenable to characterization or construction based on standard control–
polygon schemes — except [12] in the elementary case of planar PH cubics.
Consequently, the interpolation of discrete data (end points and derivatives)
is the standard approach to constructing PH curves. This entails the solution
of systems of quadratic equations, expressed in terms of the complex number
and quaternion algebras for planar and spatial PH curves, and a multiplicity
of formal solutions that match prescribed Hermite data.

The present study identifies and characterizes singular instances of these
Hermite interpolation problems, which incur reductions in the cardinality of
the solution space. For the planar PH quintics, certain configurations of the
end derivatives result in the degeneration of the generic four distinct Hermite
interpolants to just three (two “simple” and one “double”) distinct solutions.
The computed examples suggest that the “double” solution is never the good
interpolant (free of tight loops), and it would be of interest to see if this can
be rigorously verified. For the spatial PH quintics, the Hermite interpolation
problem generally yields a two–parameter family of solutions, and enforcing
a fixed difference between the parameters generates a one–parameter family
of distinct space curves with identical arc lengths. Finally, for Hermite data
compatible with a planar curve, certain fixed values of the two parameters
in the spatial PH curve solution establish a formal correspondence between
the planar and spatial Hermite interpolants, indicating that the degenerate
instances of the former are subsumed by the latter.
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[13] R. T. Farouki and Z. Š́ır (2011), Rational Pythagorean–hodograph
space curves Comput. Aided Geom. Design 28, 75—88.

22



[14] C. Y. Han, H. P. Moon, and S–H. Kwon (2020), A new selection
scheme for spatial Pythagorean hodograph quintic Hermite
interpolants, Comput. Aided Geom. Design 78, Article 101827.

[15] S. H. Kim and H. P. Moon (2017), Rectifying control polygon for
planar Pythagorean hodograph curves, Comput. Aided Geom. Design
54, 1–14.

[16] E. Kreyszig (1959), Differential Geometry, University of Toronto Press.

[17] H. P. Moon, R. T. Farouki, and H. I. Choi (2001), Construction and
shape analysis of PH quintic Hermite interpolants, Comput. Aided
Geom. Design 18, 93–115.

[18] H. Pottmann (1995), Rational curves and surfaces with rational offsets,
Comput. Aided Geom. Design 12, 175–192.

[19] L. Romani and F. Montagner (2018), Algebraic–trigonometric
Pythagorean–hodograph space curves, Adv. Comp. Math. 45, 75–98.

[20] L. Romani, L. Saini, and G. Albrecht (2014), Algebraic–trigonometric
Pythagorean–hodograph curves and their use for Hermite
interpolation. Adv. Comp. Math. 40, 977–1010.

23




