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Abstract

Although the orthogonal projection of a spatial Pythagorean–hodograph (PH) curve on to a plane is not (in

general) a planar PH curve, it is possible to construct spatial PH curves so as to ensure that their orthogonal

projections on to planes of a prescribed orientation are planar PH curves. The construction employs an

analysis of the root structure of the components of the quaternion polynomials that generate spatial PH

curves, and it encompasses both helical and non–helical spatial PH curves. An initial characterization for

orthogonal projections of spatial PH curves on to the coordinate planes provides the basis for a generalization

to projections of arbitrary direction, based on unit quaternion rotation transformations of R3.
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1. Introduction

Planar projections of three–dimensional shapes play a key role in their specification and comprehension,

whether as figures in a book, images on a computer screen, or orthographic views in engineering drawings.

The first systematic study of the geometry of space curves appears in the 1731 treatise Recherche sur les

courbes à double courbure [4] by the French mathematician Alexis Claude Clairault (1713–1765). Clairault’s

approach was to define space curves by their projections on to two of the coordinate planes: the curvatures

of these two planar projections determine the shapes of space curves, and this motivated him to call them

“curves of double curvature” [2]. The polynomial Pythagorean–hodograph (PH) curves are an important

subclass of spatial curves. A polynomial PH curve r(ξ) is characterized by the fact that its parametric speed

(the derivative ds/dξ of arc length s with respect to the curve parameter) is a polynomial in ξ [6], a feature

that endows PH curves with advantageous computational properties.

It may be desirable, in certain applications, to ensure that these properties hold for both a spatial PH

curve r(ξ) and its orthogonal projection p(ξ) on to a prescribed plane — i.e., that p(ξ) is a planar PH curve.

This would, for example, ensure the ratio of arc lengths along r(ξ) and p(ξ) is a rational function of ξ, and

allow the determination of points of equal fractional arc length along the two curves by solving a polynomial

equation. Also, the rational offsets [6] to planar PH curves allow construction of a rationally parameterized

planar domain in tangential/normal coordinates about p(ξ), which may prove useful in designing rational

surfaces containing r(ξ) by specifying a “height function” above the plane, over this domain. A more detailed

analysis of the applications of spatial PH curves with planar PH projections is deferred to a future study.

The constructions of planar and spatial Pythagorean–hodograph (PH) curves are based on models that

employ the complex–number and quaternions algebras, respectively [6]. These models yield constructions

that are invariant with respect to the chosen orientation of the coordinate axes in R2 and R3 and reflect

the fact that, whereas rotations in R2 are commutative, rotations about distinct axes in R3 are (in general)

non–commutative. A further indicator of the disparate nature of planar and spatial PH curve representations

is the fact that an orthogonal projection1 of a spatial PH curve on to a given plane does not, in general, yield

a planar PH curve. However, it is possible to construct spatial PH curves such that their parallel planar

projections in a general direction are guaranteed to be planar PH curves. The intent of the present study is

to formulate a comprehensive characterization of these constructions.

The spatial PH curves encompass, as a special subset, the family of all helical polynomial space curves.

A helical curve is characterized by the fact [20] that its unit tangent t maintains a constant angle ψ (the

helix angle) with respect to a fixed unit vector a (the helix axis): a · t = cosψ. Equivalently, a helical curve

exhibits a constant ratio of curvature and torsion: κ/τ = tanψ. The helix axis a can also be interpreted

1We focus here on orthogonal projections — i.e., parallel projections on to planes orthogonal to the projection direction.
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as the unitization of the Darboux vector d = κb + τ t, which describes the rate of rotation of the Frenet

frame (where t and b are the unit tangent and binormal vectors). The projection of a helical PH curve on

to a plane with normal vector ±a is obviously a planar PH curve. However, there also exist non–helical PH

curves that admit planar PH curves as their projections on to a given plane.

In terms of the quaternion representation, it is shown that the problem of identifying when the projection

of a spatial PH curve on to one of the coordinate planes yields a planar PH curve is equivalent to determining

when the product of the sums–of–squares of two pairs of real polynomials a(ξ), b(ξ) and c(ξ), d(ξ) is equal

to the perfect square of a real polynomial w(ξ) — i.e., [ a2(ξ) + b2(ξ) ] [ c2(ξ) + d2(ξ) ] = w2(ξ). Using unit

quaternions as spatial rotation operators, this result is then generalized to planar projections of spatial PH

curves in general direction.

The remainder of this paper is organized as follows. We commence with a brief review of the complex–

number and quaternion representations of planar and spatial PH curves in Section 2, and identify some key

properties of the helical and “double” PH (DPH) curves. Since the quaternion form of spatial PH curves

incorporates planar PH curves — residing in any plane in R3 — as special instances, Section 3 discusses

the identification of these degenerate instances. Section 4 then develops the characterization of spatial PH

curves that have planar PH curve projections on to one of the coordinate planes, and provides both helical

and non–helical examples of these curves. The generalization for projections on to planes with normals of

general direction is then developed in Section 5, through a quaternion mapping of the standard Cartesian

frame (i, j,k) to a general orthonormal frame (l,m,n). Finally, Section 6 summarizes the key results of this

study, and identifies issues that deserve further investigation.

2. Planar and spatial Pythagorean-hodograph curves

We focus on the hodograph (parametric derivative) r′(ξ) of a curve r(ξ), since integration of the hodograph

only introduces a constant that defines the initial curve point r(0). Henceforth we denote by | · | the absolute

value of a real or complex number, the Euclidean norm of a vector in R2 or in R3, or the norm of a quaternion.

A planar PH curve r(ξ) = (x(ξ), y(ξ)) may be constructed [5] from a complex polynomial w(ξ) =

f(ξ) + i g(ξ) by identifying x′(ξ) and y′(ξ) with the real and imaginary part of the expression

r′(ξ) = w2(ξ) , (1)

and integrating with respect to ξ. The resulting curve satisfies

x′2(ξ) + y′2(ξ) = σ2(ξ) ,

where

x′(ξ) = f2(ξ)− g2(ξ) , y′(ξ) = 2 f(ξ)g(ξ) , σ(ξ) = f2(ξ) + g2(ξ) . (2)
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The polynomial σ(ξ) defines the parametric speed of the curve r(ξ), i.e., the derivative ds/dξ of the curve

arc length s with respect to the parameter ξ.

A spatial PH curve may be constructed [3] from a polynomial

A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ) k , (3)

expressed in the quaternion basis (1, i, j,k) through the product

r′(ξ) = A(ξ) iA∗(ξ) , (4)

where A∗(ξ) = u(ξ) − v(ξ) i − p(ξ) j − q(ξ) k is the quaternion conjugate of A(ξ). Integration yields a PH

space curve r(ξ) = (x(ξ), y(ξ), z(ξ)) satisfying

x′2(ξ) + y′2(ξ) + z′2(ξ) = σ2(ξ) , (5)

where

x′(ξ) = u2(ξ) + v2(ξ)− p2(ξ)− q2(ξ) ,

y′(ξ) = 2 [u(ξ)q(ξ) + v(ξ)p(ξ) ] ,

z′(ξ) = 2 [ v(ξ)q(ξ)− u(ξ)p(ξ) ] ,

σ(ξ) = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ) , (6)

and σ(ξ) is again the parametric speed of r(ξ).

When the complex polynomial w(ξ) in (1) and quaternion polynomial A(ξ) in (4) are of degree m,

integration yields planar and spatial PH curves of degree n = 2m + 1. Note that the planar PH curves are

subsumed as a proper subset of the spatial PH curves, since choosing

u(ξ) =
f(ξ)√

2
, v(ξ) =

f(ξ)√
2
, p(ξ) =

g(ξ)√
2
, q(ξ) =

g(ξ)√
2
,

in (6) yields

x′(ξ) = f2(ξ)− g2(ξ) , y′(ξ) = 2 f(ξ)g(ξ) , z′(ξ) = 0 , σ(ξ) = f2(ξ) + g2(ξ) .

Many algorithms for the construction of planar and spatial PH curves that satisfy prescribed geometrical

constraints have been developed, for example [7, 8, 12, 14, 16, 17, 19, 23].

One class of spatial PH curves that admit planar PH curve projections is the family of polynomial helical

curves, also known as curves of constant slope [20, 24]. The tangent to such a curve r(ξ) = (x(ξ), y(ξ), z(ξ))

makes a constant angle ψ ∈ [ 0, π ] (the helix angle) with a fixed direction a (the helix axis) in space. Choosing

a coordinate system in which a is parallel to the z–axis, we have

dz
ds

=
dz
dξ

dξ
ds

=
z′

σ
= cosψ ,
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and consequently z′(ξ) = cosψ σ(ξ). Hence, the projection p(ξ) = (x(ξ), y(ξ)) of r(ξ) on to the (x, y) plane

satisfies

x′2(ξ) + y′2(ξ) = (1− cos2 ψ)σ2(ξ) ,

and p(ξ) is a planar PH curve with the parametric speed σp(ξ) = sinψ σ(ξ). It is known [15] that all spatial

PH cubics are helical, and that every polynomial helical curve is necessarily a spatial PH curve [13].

Helical curves are also characterized [20, 24] by a constant curvature/torsion ratio, κ(ξ)/τ(ξ) = tanψ.

Since the curvature and torsion are defined by

κ(ξ) =
| r′(ξ)× r′′(ξ) |

σ3(ξ)
, τ(ξ) =

(r′(ξ)× r′′(ξ)) · r′′′(ξ)
| r′(ξ)× r′′(ξ) |2

,

this means that the ratio
| r′(ξ)× r′′(ξ) |3

σ3(ξ) (r′(ξ)× r′′(ξ)) · r′′′(ξ)
must be constant — which implies that | r′(ξ)× r′′(ξ) | must be a polynomial. This is the distinctive feature

of the “double” PH (DPH) curves [1, 10, 11, 22], for which | r′(ξ) | and | r′(ξ)× r′′(ξ) | are both polynomials

in ξ. Now every spatial PH curve satisfies [10] the condition

| r′(ξ)× r′′(ξ) |2 = σ2(ξ) ρ(ξ) ,

where the polynomial ρ(ξ) may be defined in terms of the form (6) by

ρ = 4 [ (up′ − u′p+ vq′ − v′q)2 + (uq′ − u′q − vp′ + v′p)2 ] .

Hence, for a DPH curve, the polynomial ρ(ξ) must be a perfect square.

3. Degeneration to a planar PH curve

In special circumstances, it is possible for a spatial PH curve generated by a quaternion polynomial A(ξ)

to degenerate into a planar curve. The simplest instance is that of the spatial PH cubics r(ξ), generated by

linear polynomials A(ξ) = A0(1− ξ) +A1ξ. According to Proposition 22.1 in [6], r(ξ) is planar if and only

if the coefficients of A(t) satisfy the relation

A1 = A0(α+ β i + γ j + δ k)

with β = 0 and2 (γ, δ) 6= (0, 0). Setting Ar = ur + vri + prj + qrk for r = 0, 1, the plane Π in which r′(ξ)

resides is defined by the (non–unit) normal vector n = (λ, µ, ν) with components

λ = 2 (v0p0 − u0q0) γ + 2 (u0p0 + v0q0) δ ,

µ = (u2
0 − v2

0 + p2
0 − q20) γ − 2 (u0v0 − p0q0) δ ,

ν = 2 (u0v0 + p0q0) γ + (u2
0 − v2

0 − p2
0 + q20) δ .

2When (γ, δ) = (0, 0) the curve degenerates to a straight line.
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The parametric speed of this planar PH curve is

σ(ξ) = |A0|2 ( [ (1− α)2 + γ2 + δ2) ] ξ2 − 2 (1− α) ξ + 1 ) ,

which can be written as σ(ξ) = |A0|2(f2(ξ) + g2(ξ)), where f(ξ) = (1− α) ξ − 1, g(ξ) =
√
γ2 + δ2 ξ. Thus,

by a suitable choice of orthonormal basis vectors in the plane Π, the planar PH curve r(ξ) is consistent with

the form (2).

Analogous results hold for degeneration of spatial PH quintic curves generated by quadratic polynomials

A(ξ) = A0(1− ξ)2 +A12(1− ξ)ξ +A2ξ
2. If we write

Ar = A0(αr + βr i + γr j + δr k) , r = 1, 2 ,

then according to Proposition 22.3 in [6] the spatial PH curve r(ξ) generated by (4) is planar if and only if

β1 = β2 = γ1δ2 − γ2δ1 = 0 with3 (γ1, γ2, δ1, δ2) 6= (0, 0, 0, 0) provided that the hodograph is primitive, i.e.,

gcd(x′, y′, z′) = 1. The methodology can be extended to develop characterizations for the degeneration of

higher–order spatial PH curves, but the resulting conditions on the coefficients of A(t) become more involved.

4. Projection on to the coordinate planes

The helical polynomial curves are not the only spatial PH curves that admit planar PH curve projections.

We begin by considering projections of spatial PH curves on to the Cartesian coordinate planes, and study

projections of general direction in Section 5. From (6), one can verify that

y′2 + z′2 = 4 (u2 + v2)(p2 + q2) , (7)

z′2 + x′2 = [ (u+ q)2 + (v + p)2 ] [ (u− q)2 + (v − p)2 ] , (8)

x′2 + y′2 = [ (u+ p)2 + (v − q)2 ] [ (u− p)2 + (v + q)2 ] . (9)

Thus, for the projection of r(ξ) on to the (y, z), (z, x), or (x, y) planes to be a planar PH curve, the product

of two sums of squares of certain combinations of the polynomials u(ξ), v(ξ), p(ξ), q(ξ) must be the perfect

square of a polynomial. Equations (7)–(9) may be regarded as instances — for real polynomials — of the

Diophantus (or Brahmagupta–Fibonacci) identity, which states that if two positive integers are sums of

squares, then their product is also a sum of squares. The following examples illustrate a number of different

circumstances under which the right–hand side of (7) corresponds to the perfect square of a polynomial.

Example 1. We begin with an example of a non–helical space curve for which the right–hand side of (7) is

a perfect square because u2 + v2 and p2 + q2 are both perfect squares. Consider the quadratic polynomials

u(ξ) = − 3 ξ2 − 6 ξ , v(ξ) = 4 ξ2 − 2 ξ − 2 ,

3When (γ1, γ2, δ1, δ2) = (0, 0, 0, 0) the curve degenerates to a straight line.
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p(ξ) = 2 ξ − 5 , q(ξ) = − 2 ξ2 + 10 ξ − 12 ,

which generate the hodograph

x′(ξ) = 21 ξ4 + 60 ξ3 − 128 ξ2 + 268 ξ − 165 ,

y′(ξ) = 12 ξ4 − 20 ξ3 − 96 ξ2 + 156 ξ + 20 ,

z′(ξ) = − 16 ξ4 + 100 ξ3 − 134 ξ2 − 52 ξ + 48 ,

of a spatial PH quintic curve r(ξ) = (x(ξ), y(ξ), z(ξ)). The parametric speed of this curve is

σ(ξ) = 29 ξ4 − 20 ξ3 + 176 ξ2 − 252 ξ + 173 ,

and it is a true space curve, since (r′(ξ)×r′′(ξ)) ·r′′′(ξ) 6≡ 0. Furthermore, | r′(ξ)×r′′(ξ) | is not a polynomial,

so r(ξ) is not a DPH curve and is therefore not helical. In this case, we have

u2(ξ) + v2(ξ) = (5 ξ2 + 2 ξ + 2)2 , p2(ξ) + q2(ξ) = (2 ξ2 − 10 ξ + 13)2 ,

and (u2 + v2)(p2 + q2) is a perfect square since u2 + v2 and p2 + q2 are both individually perfect squares.

Consequently, by (7), the projection p(ξ) = (y(ξ), z(ξ)) of r(ξ) on to the (y, z) plane is a planar PH curve,

satisfying y′2(ξ)+z′2(ξ) = σ2
p(ξ), with σp(ξ) = 2(5 ξ2+2 ξ+2)(2 ξ2−10 ξ+13). Straightforward computations

reveal that this is not true for the projections of r(ξ) on to the other two coordinate planes.

Example 2. Consider now an example of a helical space curve, for which the right–hand side of (7) is a

perfect square since u2 + v2 and p2 + q2 are proportional to each other. For the quadratic polynomials

u(ξ) = 3 ξ2 + 2 ξ − 1 , v(ξ) = ξ2 − ξ + 3 ,

p(ξ) = 2 ξ2 + 3 ξ − 4 , q(ξ) = 4 ξ2 + ξ + 2 ,

we obtain the hodograph

x′(ξ) = − 10 ξ4 − 10 ξ3 − 5 ξ2 + 10 ξ − 10 ,

y′(ξ) = 28 ξ4 + 24 ξ3 + 6 ξ2 + 32 ξ − 28 ,

z′(ξ) = − 4 ξ4 − 32 ξ3 + 42 ξ2 + 24 ξ + 4 ,

of a spatial PH quintic curve r(ξ) = (x(ξ), y(ξ), z(ξ)). The parametric speed of this curve is

σ(ξ) = 15 (2 ξ4 + 2 ξ3 + ξ2 − 2 ξ + 2) ,

and it is again a true space curve, since (r′(ξ)×r′′(ξ)) ·r′′′(ξ) 6≡ 0. Moreover, | r′(ξ)×r′′(ξ) | is a polynomial,

so r(ξ) is a DPH curve, and it is helical (with axis in the x–direction) since dx/ds = x′/σ = − 1/3. For this

example, we have

u2(ξ) + v2(ξ) = 5 (2 ξ4 + 2 ξ3 + ξ2 − 2 ξ + 2) ,
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p2(ξ) + q2(ξ) = 10 (2 ξ4 + 2 ξ3 + ξ2 − 2 ξ + 2) .

We see that (u2 + v2)(p2 + q2) is a perfect square since u2 + v2 and p2 + q2 are proportional to each other.

Consequently, the projection p(ξ) = (y(ξ), z(ξ)) of r(ξ) on to the (y, z) plane is a planar PH curve, satisfying

y′2(ξ) + z′2(ξ) = σ2
p(ξ) with σp(ξ) = 10

√
2(2 ξ4 + 2 ξ3 + ξ2 − 2 ξ + 2).

Figure 1 illustrates the spatial PH quintic curves constructed in Examples 1 and 2, together with their

planar PH quintic orthogonal projections onto the (y, z) plane.

Figure 1: The spatial PH quintic curves (gray) constructed in Example 1 (left) and Example 2 (right), that possess planar PH

quintic curves (blue) as their projections on to the (y, z) plane. The curves on the left and right are plotted over the parameter

intervals [−0.5, 1 ] and [−1, 1 ] respectively.

Example 3. As indicated by the following example, neither of the conditions on u2 + v2 and p2 + q2 in the

two preceding examples is necessary for the right–hand side of (7) to be a perfect square. Consider the cubic

polynomials

u(ξ) = ξ3 − 5 ξ2 + 8 ξ − 2 , v(ξ) = − ξ2 + 6 ξ − 6 ,

p(ξ) = ξ3 − 5 ξ2 − ξ + 13 , q(ξ) = 5 ξ2 − 18 ξ + 9 ,

with gcd(u(ξ), v(ξ)) = gcd(p(ξ), q(ξ)) = 1, for which we have

u2(ξ) + v2(ξ) = ξ6 − 10 ξ5 + 42 ξ4 − 96 ξ3 + 132 ξ2 − 104 ξ + 40

= (ξ2 − 6 ξ + 10)(ξ2 − 2 ξ + 2)2 ,

p2(ξ) + q2(ξ) = ξ6 − 10 ξ5 + 48 ξ4 − 144 ξ3 + 285 ξ2 − 350 ξ + 250

= (ξ2 − 6 ξ + 10)(ξ2 − 2 ξ + 5)2 .

Now u2(ξ) + v2(ξ) and p2(ξ) + q2(ξ) are not perfect squares, and are also not proportional to each other,

but they satisfy

[u2(ξ) + v2(ξ) ] [ p2(ξ) + q2(ξ) ] ≡ w2(ξ) (10)
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where

w(ξ) = ξ6 − 10 ξ5 + 45 ξ4 − 120 ξ3 + 204 ξ2 − 200 ξ + 100

= (ξ2 − 2 ξ + 2)(ξ2 − 6 ξ + 10)(ξ2 − 2 ξ + 5) . (11)

From (6) the polynomials u(ξ), v(ξ), p(ξ), q(ξ) generate the spatial hodograph

x′(ξ) = − 6 ξ4 + 48 ξ3 − 153 ξ2 + 246 ξ − 210 ,

y′(ξ) = 8 ξ5 − 64 ξ4 + 208 ξ3 − 376 ξ2 + 384 ξ − 192 ,

z′(ξ) = − 2 ξ6 + 20 ξ5 − 74 ξ4 + 144 ξ3 − 168 ξ2 + 112 ξ − 56 ,

σ(ξ) = 2 ξ6 − 20 ξ5 + 90 ξ4 − 240 ξ3 + 417 ξ2 − 454 ξ + 290 . (12)

However, since | r′(ξ)× r′′(ξ) |2 has the factorization

16 (ξ2 − 6 ξ + 10)2(2 ξ4 − 8 ξ3 + 22 ξ2 − 28 ξ + 29)2

× (ξ2 − 2 ξ + 2)(ξ2 − 2 ξ + 5)(4 ξ4 − 32 ξ3 + 109 ξ2 − 162 ξ + 90) ,

it is evidently not a perfect square, and consequently the degree 7 spatial PH curve r(ξ) = (x(ξ), y(ξ), z(ξ))

is not a DPH curve, and is not helical. The projection p(ξ) = (y(ξ), z(ξ)) of r(ξ) on to the (y, z) plane is a

PH curve, satisfying y′2(ξ) + z′2(ξ) = σ2
p(ξ) with parametric speed

σp(ξ) = 2 ξ6 − 20 ξ5 + 90 ξ4 − 240 ξ3 + 408 ξ2 − 400 ξ + 200 .

We now study the circumstances under which the product of two sums of squares of certain combinations

of the polynomials u(ξ), v(ξ), p(ξ), q(ξ) coincides with the perfect square of a polynomial.

Proposition 1. Real polynomials a(ξ), b(ξ), c(ξ), d(ξ) of degree m satisfy

[ a2(ξ) + b2(ξ) ] [ c2(ξ) + d2(ξ) ] = w2(ξ) (13)

for a real polynomial w(ξ) of degree 2m with highest–order coefficient w2m, if and only if they are expressible

in the form

a(ξ) = k0f0(ξ) Re

[
eiϕ0

r∏
i=1

(ξ − ξi)
µi

]
, b(ξ) = σ0k0f0(ξ) Im

[
eiϕ0

r∏
i=1

(ξ − ξi)
µi

]
, (14a)

c(ξ) = k1f1(ξ) Re

[
eiϕ1

r∏
i=1

(ξ − ξi)
νi

]
, d(ξ) = σ1k1f1(ξ) Im

[
eiϕ1

r∏
i=1

(ξ − ξi)
νi

]
, (14b)

where k0 and k1 are non–zero real values, such that

k0 k1 = ±w2m ; (15)
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σ0, σ1 ∈ {−1, 1} are independent signs; f0(ξ) and f1(ξ) are real monic polynomials of degree α and β with real

roots; ϕ0, ϕ1 ∈ [0, π) are the arguments of two unit complex numbers; r is a positive4 integer; and ξ1, . . . , ξr

are complex values with associated integers µ1, . . . , µr ≥ 0 and ν1, . . . , νr ≥ 0 that satisfy

α+ µ1 + · · ·+ µr = β + ν1 + · · ·+ νr = m, (16)

the sum µi + νi being even for i = 1, 2, . . . , r.

Proof : It is straightforward to verify that the polynomials defined by (14) satisfy equation (13). To show

the necessity of conditions (14), we first note that any real root of a2(ξ) + b2(ξ) or c2(ξ) + d2(ξ) must be a

root of the (monic) greatest common divisors f0(ξ) := gcd(a(ξ), b(ξ)) or f1(ξ) := gcd(c(ξ), d(ξ)), respectively.

Thus, writing

a(ξ) = f0(ξ) ã(ξ) , b(ξ) = f0(ξ) b̃(ξ) , c(ξ) = f1(ξ) c̃(ξ) , d(ξ) = f1(ξ) d̃(ξ) , (17)

we have

f2
0 (ξ)f2

1 (ξ) [ ã2(ξ) + b̃2(ξ) ] [ c̃2(ξ) + d̃2(ξ) ] = w2(ξ) .

Consequently, f0(ξ) f1(ξ) must be a factor of w(ξ), so that w(ξ) = f0(ξ) f1(ξ) w̃(ξ) where w̃(ξ) has only

complex conjugate roots and is of even degree 2m−α−β. Thus it can be factorized as w̃(ξ) = w2m z(ξ) z̄(ξ),

where

z(ξ) =
r∏
i=1

(ξ − ξi)
λi , (18)

i.e., z(ξ) has r distinct complex roots ξ1, . . . , ξr with multiplicities λ1, . . . , λr > 0 such that

2 (λ1 + · · ·+ λr) = 2m− α− β .

Then [ ã2(ξ) + b̃2(ξ) ] [ c̃2(ξ) + d̃2(ξ) ] = w2
2n z2(ξ) z̄2(ξ) and from the factorizations

ã2(ξ) + b̃2(ξ) = [ ã(ξ) + i b̃(ξ) ] [ ã(ξ)− i b̃(ξ) ] , c̃2(ξ) + d̃2(ξ) = [ c̃(ξ) + i d̃(ξ) ] [ c̃(ξ)− i d̃(ξ) ] ,

we may write

[ ã(ξ)+ iσ0 b̃(ξ) ] [ c̃(ξ)+ iσ1 d̃(ξ) ] = ±w2n eiϕ z2(ξ) , [ ã(ξ)− iσ0 b̃(ξ) ] [ c̃(ξ)− iσ1 d̃(ξ) ] = ±w2n e−iϕ z̄2(ξ)

for any ϕ ∈ [0, 2π). Now the roots of z2(ξ) may be apportioned to ã(ξ) + iσ0 b̃(ξ) and c̃(ξ) + iσ1 d̃(ξ) with

multiplicities µ1, . . . , µr and ν1, . . . , νr that satisfy

µi + νi = 2λi for i = 1, . . . , r , (19a)

4Except that, in the case r = 0, it is understood that the products in (14a)–(14b) are set equal to 1.
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µ1 + · · ·+ µr = m− α , ν1 + · · ·+ νr = m− β . (19b)

Furthermore, splitting the leading coefficient w2n as in (15) and the angle ϕ as ϕ0 + ϕ1, we obtain

ã(ξ) + iσ0 b̃(ξ) = k0 eiϕ0

r∏
i=1

(ξ − ξi)
µi , c̃(ξ) + iσ1 d̃(ξ) = k1 eiϕ1

r∏
i=1

(ξ − ξi)
νi . (20)

Since k0, k1 can be positive or negative, we can limit the arguments ϕ0, ϕ1 to [0, π). Taking the real and

imaginary parts of (20), and using (17), we obtain the stated forms (14) — subject to conditions (15)–(16)

and (19) — for real polynomials a(ξ), b(ξ), c(ξ), d(ξ) of degree m to satisfy (13) for a real polynomial w(ξ)

of degree 2m.

Remark 1. Concerning equations (19), it is of interest to study the cardinality of sets of the form(µ1, µ2, . . . , µr)
∣∣∣ r∑
j=1

µj = m− α, 0 ≤ µj ≤ 2λj , j = 1, 2, . . . , r

 .

In the particular case λ1 = · · · = λr = λ, the cardinality is equal [18] to

r∑
k=1

(
r

k

)
C(m− α, k, 2λ) ,

where C(m − α, k, 2λ) denotes the number of restricted integer compositions of m − α into k parts, all

bounded by 2λ.

Example 4. Consider an m = 3 case with f0(ξ) = f1(ξ) = 1, and let w(ξ) be as specified in (11). Then

w2m = 1 and

w(ξ) = (ξ − ξ1)(ξ − ξ̄1)(ξ − ξ2)(ξ − ξ̄2)(ξ − ξ3)(ξ − ξ̄3) , ξ1 = 1 + i, ξ2 = 3− i, ξ3 = 1− 2 i ,

which implies that r = 3 and λ1 = λ2 = λ3 = 1. According to (19) and Remark 1 there are 7 different

possibilities for the choices of µ1, µ2, µ3 — namely,

(µ1, µ2, µ3) ∈ { (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2) } . (21)

Then from (19a) we have νi = 2 − µi, i = 1, 2, 3. Consider first the case µ1 = µ2 = µ3 = 1, and hence

ν1 = ν2 = ν3 = 1. From (14) it follows thata(ξ)

b(ξ)

 = k0

1 0

0 σ0

cosϕ0 − sinϕ0

sinϕ0 cosϕ0

ξ3 − 5 ξ2 + 8 ξ − 8

2 ξ2 − 6 ξ + 6

 ,
c(ξ)
d(ξ)

 = k1

1 0

0 σ1

cosϕ1 − sinϕ1

sinϕ1 cosϕ1

ξ3 − 5 ξ2 + 8 ξ − 8

2 ξ2 − 6 ξ + 6


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for any non–zero real numbers k0, k1 with product ±1, any ϕ0, ϕ1 ∈ [0, π), and any σ0, σ1 ∈ {−1, 1}. This

implies that

a2(ξ) + b2(ξ) = k2
0 w(ξ) , c2(ξ) + d2(ξ) = k2

1 w(ξ) .

Since k2
0 k

2
1 = 1, equation (13) is clearly satisfied.

Consider now the case µ1 = 2, µ2 = 1, µ3 = 0 (and ν1 = 0, ν2 = 1, ν3 = 2). From (14) we obtaina(ξ)

b(ξ)

 = k0

1 0

0 σ0

cosϕ0 − sinϕ0

sinϕ0 cosϕ0

ξ3 − 5 ξ2 + 8 ξ − 2

−ξ2 + 6 ξ − 6

 ,
c(ξ)
d(ξ)

 = k1

1 0

0 σ1

cosϕ1 − sinϕ1

sinϕ1 cosϕ1

ξ3 − 5 ξ2 − ξ + 13

5 ξ2 − 18 ξ + 9

 .
(22)

Hence

a2(ξ) + b2(ξ) = k2
0 (ξ − ξ1)2(ξ − ξ̄1)2(ξ − ξ2)(ξ − ξ̄2)

= k2
0 (ξ2 − 2 ξ + 2)2(ξ2 − 6 ξ + 10) ,

c2(ξ) + d2(ξ) = k2
1 (ξ − ξ2)(ξ − ξ̄2)(ξ − ξ3)2(ξ − ξ̄3)2

= k2
1 (ξ2 − 6 ξ + 10)(ξ2 − 2 ξ + 5)2 ,

and equation (13) is satisfied. Note that gcd(a(ξ), b(ξ)) = gcd(c(ξ), d(ξ)) = 1, and that a2(ξ) + b2(ξ) and

c2(ξ) + d2(ξ) are neither perfect squares nor constant multiplies of each other. For all the remaining cases

in (21) the observations are similar to this last case.

Given polynomials a(ξ), b(ξ), c(ξ), d(ξ) that satisfy (13), it is straightforward to see from (7)–(9) that one

can construct spatial PH curves which have planar PH curves as their projections on to the (y, z), (z, x),

(x, y) planes through the choices

(u(ξ), v(ξ), p(ξ), q(ξ)) =
(a(ξ), b(ξ), c(ξ), d(ξ))√

2
, (23)

(u(ξ), v(ξ), p(ξ), q(ξ)) =
(a(ξ) + c(ξ), b(ξ) + d(ξ), b(ξ)− d(ξ), a(ξ)− c(ξ))

2
, (24)

(u(ξ), v(ξ), p(ξ), q(ξ)) =
(a(ξ) + c(ξ), b(ξ) + d(ξ), a(ξ)− c(ξ), d(ξ)− b(ξ))

2
, (25)
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respectively, for the components u(ξ), v(ξ), p(ξ), q(ξ) of A(ξ) in (6). In particular, from (23) it follows that

the hodograph of a spatial PH curve r(ξ) = (x(ξ), y(ξ), z(ξ)) is equal to

x′(ξ) = 1
2 k

2
0f

2
0 (ξ)

r∏
i=1

(
ξ2 − 2 Re(ξi) ξ + |ξi|2

)µi − 1
2 k

2
1f

2
1 (ξ)

r∏
i=1

(
ξ2 − 2 Re(ξi) ξ + |ξi|2

)νi
,

y′(ξ) = σ0 k0 k1f0(ξ)f1(ξ)

 Im
[
ei (ϕ0+ϕ1) z0(ξ) z1(ξ)

]
, σ0 σ1 = 1

Im
[
ei (ϕ0−ϕ1) z0(ξ) z̄1(ξ)

]
, σ0 σ1 = −1

,

z′(ξ) = − k0 k1f0(ξ)f1(ξ)

Re
[
ei (ϕ0+ϕ1) z0(ξ) z1(ξ)

]
, σ0 σ1 = 1

Re
[
ei (ϕ0−ϕ1) z0(ξ) z̄1(ξ)

]
, σ0 σ1 = −1

,

(26)

where

z0(ξ) :=
r∏
i=1

(ξ − ξi)
µi , z1(ξ) :=

r∏
i=1

(ξ − ξi)
νi .

Note that z0(ξ) z1(ξ) = z2(ξ), where z(ξ) is given by (18). The projection p′(ξ) = (y′(ξ), z′(ξ)) of r′(ξ) on

to the (y, z) plane is a hodograph of a PH curve with the parametric speed

σp(ξ) =
√
y′2(ξ) + z′2(ξ) = |k0 k1f0(ξ)f1(ξ)| |z(ξ)|2. (27)

Thus, any real zero of f0(ξ) or f1(ξ) incurs an irregular point on the curve p(ξ). Note also that changing the

sign of both σ0 and σ1 implies only a reflection of p′(ξ) in the (y, z) plane across the z–axis. Moreover, the

hodograph p′(ξ) involves only the product of two constants k0, k1 and the sum or difference of arguments

ϕ0, ϕ1. The complex product in (26) that involves ϕ = ϕ0 +ϕ1 or ϕ = ϕ0−ϕ1 determines an anti–clockwise

rotation of z0(ξ) z1(ξ) (or z0(ξ) z̄1(ξ)) in the complex plane by the angle ϕ, which results in the same rotation

of the hodograph in the (y, z) plane, as is demonstrated in the following example.

Example 5. Employing the polynomials a(ξ), b(ξ), c(ξ), d(ξ) in Example 4, given by (22) with σ0 = σ1 = 1,

and the expressions (23) we obtain the hodograph (x′(ξ), y′(ξ), z′(ξ)) with

x′(ξ) = 1
2

(
ξ2 − 6ξ + 10

) [
k2
0

(
ξ2 − 2ξ + 2

)2 − k2
1

(
ξ2 − 2ξ + 5

)2 ]
,y′(ξ)

z′(ξ)

 = k0 k1

cosϕ − sinϕ

sinϕ cosϕ

 4 ξ5 − 32 ξ4 + 104 ξ3 − 188 ξ2 + 192 ξ − 96

−ξ6 + 10 ξ5 − 37 ξ4 + 72 ξ3 − 84 ξ2 + 56 ξ − 28

 , (28)

where ϕ = ϕ0 +ϕ1. Figure 2 shows the corresponding PH curves, with r(0) = (0, 0, 0), for different choices of

ϕ, k0, k1. On the left we fix ϕ = 0 and choose k0 ∈ {0.5, 0.75, 1, 2, 3, 4, 5} and k1 = 1/k0. The spatial curves

are plotted in shades of blue varying from dark to light, while the projected curve is shown in black and is

the same for all the choices. On the right we fix k0 = k1 = 1 and choose ϕ ∈ {0, π/5, 2π/5, 3π/5, 4π/5, π}.

The spatial PH curves are plotted as dashed curves and their projections as solid curves, with different ϕ
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Figure 2: The spatial PH curves in Example 5 for different choices of k0, k1, ϕ and their projections on to (y, z) plane (see the

text for a detailed explanation of these plots). The curves are plotted over the parameter interval [−0.5, 4 ].

values represented by shades of blue varying from dark to light. The planar projections are rotations of the

instance with ϕ = 0 (the dark blue curve).

Changing the signs of σ0, σ1 in (22) to σ0 = 1 and σ1 = −1, the second and the third component of the

hodograph (28) becomey′(ξ)
z′(ξ)

 = k0 k1

(
ξ2 − 6ξ + 10

)cos (ϕ0 − ϕ1) − sin (ϕ0 − ϕ1)

sin (ϕ0 − ϕ1) cos (ϕ0 − ϕ1)

 −6
(
ξ3 − 3ξ2 + ξ + 1

)
−ξ4 + 4ξ3 + 7ξ2 − 22ξ + 8

 , (29)

while x′(ξ) remains the same. An example of the PH curve obtained from (29) for ϕ0 = ϕ1 = 0 and

k0 = k1 = 1 is shown in Figure 3 (left) together with its planar PH projection. Comparing it with the PH

curves derived from (28) it is clearly evident that we obtain a different curve.

Modifying the polynomials a(ξ), b(ξ), c(ξ), d(ξ) from Example 4 by taking f0(ξ) = ξ − 1
2 , f1(ξ) = ξ + 1

4 ,

we obtain, using (26) with ϕ0 = ϕ1 = 0, k0 = k1 = 1 and σ0 = −σ1 = 1, the PH curve shown as the gray

curve in Figure 3 (right). Its projection on to the (y, z) plane is a PH curve with a parametric speed that is

zero at the irregular points ξ = 1
2 and ξ = − 1

4 (indicated as red dots in Figure 3).

The spatial PH curves obtained from (28) or (29) do not have planar PH projections on to the (z, x) or

(x, y) plane. Such curves can be constructed using expressions (24)–(25) to compute the hodograph. Using
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Figure 3: Left: the spatial PH curve obtained from (29) with σ0 = 1, σ1 = −1, ϕ0 = ϕ1 = 0 and k0 = k1 = 1 together with its

projection on to the (y, z) plane, for ξ ∈ [−0.5, 3.85 ]. Right: the spatial PH curve with non–constant f0(ξ), f1ξ) and its planar

PH projection, with irregular points identified by red dots, for ξ ∈ [−0.5, 1 ].

the polynomials (22) with σ0 = σ1 = 1 we compute from (24) the hodograph (x̃′(ξ), ỹ′(ξ), z̃′(ξ)) with

ỹ′(ξ) = 1
2

(
ξ2 − 6ξ + 10

) [
k2
0

(
ξ2 − 2ξ + 2

)2 − k2
1

(
ξ2 − 2ξ + 5

)2 ]
,x̃′(ξ)

z̃′(ξ)

 = k0 k1

(
ξ2 − 6ξ + 10

)cos (ϕ1 − ϕ0) − sin (ϕ1 − ϕ0)

sin (ϕ1 − ϕ0) cos (ϕ1 − ϕ0)

ξ4 − 4ξ3 − 7ξ2 + 22ξ − 8

6
(
ξ3 − 3ξ2 + ξ + 1

)
 . (30)

Comparing (30) with the hodograph (29), derived from the polynomials (22) with the choice σ0 = 1, σ1 = −1,

we observe that 
x̃′(ξ)

ỹ′(ξ)

z̃′(ξ)

 =


0 0 −1

1 0 0

0 −1 0



x′(ξ)

y′(ξ)

z′(ξ)

 ,
i.e., (30) is just a rotation of the hodograph (29).

As noted in Example 5, we now show that using (24) to compute the hodograph, which preserves the PH

property when projected on to the (z, x) plane, yields a hodograph that is just a particular rotation of the

hodograph obtained from (23). Specifically, setting

Â(ξ) = V U a(ξ) + b(ξ) i + c(ξ) j + d(ξ) k√
2

, V =
−1− j√

2
, U =

i + j√
2

we observe that

r̃′ = Â i Â∗ = (ac− bd) i + 1
2 (a2 + b2 − c2 − d2) j− (bc+ ad) k ,

which is the hodograph obtained from (24) by changing the sign of d(ξ). By Proposition 1, this sign change

corresponds to changing the sign of σ1. Note further that multiplication by the unit quaternion U implies
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a rotation of the (y, z) plane on to the (z, x) plane while multiplication by V just incurs a rotation in the

(z, x) plane. Since such rotations are handled by changing the angles ϕ0, ϕ1 it suffices to consider only the

multiplication by U . This idea is further generalized in Section 5. Similar observations hold true for the

hodograph obtained from (25). More precisely, one can easily verify that (25) generates a hodograph that

is simply a 90◦ clockwise rotation in the (y, z) plane of the hodograph obtained from (24). However, the

parametric speeds of the spatial PH curves corresponding to the hodographs derived from (23)–(25) all have

the same parametric speed, namely

σ(ξ) = 1
2 [ k2

0f
2
0 (ξ) |z0(ξ)|2 + k2

1f
2
1 (ξ) |z1(ξ)|2 ] .

Moreover, the projections of p(ξ) on to the (y, z), (z, x), or (x, y) plane also have the same parametric speed,

given by (27).

The following example illustrates the simplest instance (m = 1) of Proposition 1 — corresponding to the

spatial PH cubics, which are known [15] to be all helical curves (with planar cubics as degenerate cases).

Example 6. For m = 1, we can either have (i) f0(ξ) = ξ − ζ and f1(ξ) = ξ − η for real values ζ 6= η

with the products involving complex values in (14a)–(14b) set equal to 1, or (ii) f0(ξ) = f1(ξ) = 1 with

only a single complex value ξ1 in the products. For both cases, we fix ϕ0 = ϕ1 = 0. Then case (i) yields

a(ξ) = σ0 b(ξ) = k0(ξ − ζ), c(ξ) = σ1 d(ξ) = k1(ξ − η) and

x′(ξ) = k2
0(ξ−ζ)2−k2

1(ξ−η)2 , y′(ξ) = (σ0+σ1) k0 k1 (ξ−ζ)(ξ−η) , z′(ξ) = (σ0 σ1−1) k0 k1 (ξ−ζ)(ξ−η)

from (6) and (23). Since y′(ξ) and z′(ξ) are linearly dependent, r(ξ) degenerates to a planar cubic PH curve.

Setting ξ1 = ζ+i η in case (ii) we obtain a(ξ) = k0(ξ−ζ), b(ξ) = −σ0 k0 η, c(ξ) = k1(ξ−ζ), d(ξ) = −σ1 k1 η

and hence

x′(ξ) = 1
2 (k2

0−k2
1) [ (ξ−ζ)2+η2 ] , y′(ξ) = − (σ0+σ1) k0 k1 (ξ−ζ)η , z′(ξ) = − k0 k1 [ (ξ−ζ)2−σ0 σ1 η

2 ] ,

with the parametric speed σ(ξ) = 1
2 (k2

0 +k2
1) [ (ξ−ζ)2 +η2 ]. Since the unit tangent t(ξ) = r′(ξ)/σ(ξ) satisfies

a · t(ξ) = cosψ with a = i and cosψ = (k2
0 − k2

1)/(k2
0 + k2

1), the curve is evidently a helical cubic, with a PH

projection on to the (y, z) plane. For σ0 σ1 = −1 it reduces to a planar curve.

Remark 2. There are two notable special cases in the satisfaction of equation (13):

(1) a2(ξ) + b2(ξ) and c2(ξ) + d2(ξ) are individually perfect squares;

(2) a2(ξ) + b2(ξ) and c2(ξ) + d2(ξ) are constant multiples of each other.

These special cases encompass all PH cubics (m = 1) and PH quintics (m = 2) — see Examples 1 and

2. However, for PH curves of degree ≥ 7 (m ≥ 3), most of the solutions are such that a2(ξ) + b2(ξ) and

c2(ξ) + d2(ξ) are neither both perfect squares, nor proportional — see Examples 3–5.
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Remark 3. For a PH curve of degree n = 2m + 1, at least one of the polynomials u(ξ), v(ξ), p(ξ), q(ξ) in

(6) must be of degree m. Proposition 1 requires a minor modification when a(ξ), b(ξ), c(ξ), d(ξ) are not all of

degree m, as follows. Suppose that max(deg(a),deg(b)) = d1, max(deg(c),deg(d)) = d2 where either d1 = m,

d2 < m or d1 < m, d2 = m. Then deg((a2 +b2)(c2 +d2)) = 2 (d1 +d2), and consequently deg(w) = d1 +d2 in

(13). The polynomials a(ξ), b(ξ), c(ξ), d(ξ) have the form specified in Proposition 1, except that the relations

(15) and (16) now become

k0 k1 = ±w2(d1+d2) ,

α+ µ1 + · · ·+ µr = d1 , β + ν1 + · · ·+ νr = d2 .

Consider, for example, the case σ0 = 1, ϕ0 = 0, k0 = 1, f0(ξ) = ξ and σ1 = 1, ϕ1 = 0, k1 = 2, f1(ξ) = 1 of

(14a)–(14b), with r = 1, ξ1 = i, and µ1 = ν1 = 1, which yields

a(ξ) = ξ2 , b(ξ) = − ξ , c(ξ) = 2 ξ , d(ξ) = − 2 ,

with d1 = 2 = m and d2 = 1 < m. These polynomials satisfy (13) with w(ξ) = 2 ξ(ξ2 + 1), and defining

u(ξ), v(ξ), p(ξ), q(ξ) in terms of them through (23) yields a spatial PH quintic with a planar PH quintic

projection onto the (y, z) plane.

5. Planar projections of any direction

We now examine the circumstances under which the projection of spatial PH curves on to planes with a

general normal direction in R3 yield planar PH curves. We first consider the relationship between the spatial

hodograph r′(ξ) and its projection p′(ξ) on to a plane with a general normal.

Lemma 1. Let Π be a plane through the origin with a unit normal vector l = λ i + µ j + ν k of general

direction, with λ2 + µ2 + ν2 = 1, and let r′(ξ) be the spatial Pythagorean hodograph (6) generated by the

quaternion polynomial (3). Then the orthogonal projection p′(ξ) of r′(ξ) on to Π is

p′(ξ) = r′(ξ)− (l · r′(ξ)) l , (31)

and in terms of the quaternion form (4), this may be expressed as

p′(ξ) =
1
2

[A(ξ) iA∗(ξ) − Ã(ξ) i Ã∗(ξ) ] ,

where Ã(ξ) = lA(ξ).

Proof : To verify this, note [9] that the quaternion polynomial Ã(ξ) = U A(ξ) obtained by multiplying A(ξ)

with a unit quaternion of the form U = (cos 1
2θ, sin

1
2θ l) generates a hodograph r̃′(ξ) = Ã(ξ) i Ã∗(ξ) that

corresponds to a rotation of r′(ξ) through angle θ about l. In particular, the pure vector unit quaternion

16



U = (0,±l) defines a rotation by an odd integer multiple of π about l. Now let (l,m,n) be an orthonormal

frame such that m and n span the plane Π, and l is orthogonal to it. Then the rotation of r′(ξ) by an

odd multiple of π about l reverses its m,n components and leaves the l component unchanged. Thus, in

the expression 1
2 [ r′(ξ) − r̃′(ξ) ] the m and n components of r′(ξ) are preserved, while the l component is

cancelled out. This defines the projection p′(ξ) of r′(ξ) on to the plane Π.

From (31) we have

σ2(ξ)− [ l · r′(ξ) ]2 = |p′(ξ)|2 , (32)

where σ(ξ) = |A(ξ)|2 is the parametric speed of the spatial PH curve r(ξ). Thus, if p(ξ) is to be a

planar PH curve with parametric speed |p′(ξ)| = σp(ξ) for some polynomial σp(ξ), the three polynomials

σ(ξ), l · r′(ξ), σp(ξ) must (assuming that gcd(σ(ξ), l · r′(ξ), σp(ξ)) = 1) be [21] of the form

σ(ξ) = r2(ξ) + s2(ξ) , l · r′(ξ) = 2 r(ξ)s(ξ) , σp(ξ) = r2(ξ)− s2(ξ)

for relatively prime polynomials r(ξ), s(ξ). Setting w(ξ) = r(ξ) + i s(ξ), these relations imply that p′(ξ) is

a planar Pythagorean hodograph if and only if a complex polynomial w(ξ) exists, such that σ(ξ) = |A(ξ)|2

and r′(ξ) = A(ξ) iA∗(ξ) satisfy

|A(ξ)|2 = |w(ξ)|2 and l · (A(ξ) iA∗(ξ)) = Im(w2(ξ)) , (33)

and we than have σp(ξ) = Re(w2(ξ)). Note also from (32) that σp(ξ) satisfies

[σ(ξ) + l · r′(ξ) ] [σ(ξ)− l · r′(ξ) ] = σ2
p(ξ) .

This reasoning can, in principle, be used to determine constraints on the coefficients of A(ξ) that depend

on the normal vector l to the projection plane. However, we adopt a simpler geometrical approach based on

noting that the standard Cartesian basis (i, j,k) can be mapped to the basis (l,m,n) associated with the

plane Π through a spatial rotation, specified by a unit quaternion.

Proposition 2. Let r′(ξ) be a spatial Pythagorean hodograph generated from a quaternion polynomial A(ξ) =

u(ξ) + v(ξ) i + p(ξ) j + q(ξ) k by expression (4). Then the projection p′(ξ) of r′(ξ) on to the plane Π with

unit normal vector l = λ i + µ j + ν k (with l 6= −i) is a planar Pythagorean hodograph if and only if A(ξ) is

of the form

A(ξ) = U Q(ξ) , (34)

where U is the unit pure vector quaternion defined by

U =
l + i
| l + i |

=
(1 + λ) i + µ j + ν k√

2(1 + λ)
, (35)

and Q(ξ) is defined in terms of the polynomials (14a)–(14b) that satisfy (13) as

Q(ξ) =
a(ξ) + b(ξ) i + c(ξ) j + d(ξ) k√

2
. (36)
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Proof : For l 6= −i we can generate an orthonormal basis (l,m,n) that incorporates l through the spatial

rotation operations defined by

l = U iU∗ , m = U jU∗ , n = U kU∗ , (37)

where U is the unit pure vector quaternion specified by (35). This yields l = λ i + µ j + ν k as the normal to

Π, and the basis vectors spanning Π are given by

m =
(1 + λ)µ i + (µ2 − (1 + λ)) j + µ ν k

1 + λ
,

n =
(1 + λ) ν i + µ ν j + (ν2 − (1 + λ)) k

1 + λ
.

Let r̂′(ξ) = Q(ξ) iQ∗(ξ) be the Pythagorean hodograph generated by the quaternion polynomial (36), and

let A(ξ) = U Q(ξ). Then

r′(ξ) = A(ξ) iA∗(ξ) = U Q(ξ) iQ∗(ξ)U∗ (38)

corresponds [9] to performing on r̂′(ξ) the rotation that maps (i, j,k) on to (l,m,n). For the projection of

r̂′(ξ) on to the (j,k) plane to be a planar Pythagorean hodograph, the components of Q(ξ) must be of the

form (36), in terms of the polynomials defined by (14a)–(14b). Since the rotation specified by U maps r̂′(ξ)

to r′(ξ), and (i, j,k) to (l,m,n), the projections p̂′(ξ) and p′(ξ) on to the (j,k) and (m,n) planes satisfy

|p̂′(ξ)|2 = [ j · r̂′(ξ) ]2 + [ k · r̂′(ξ) ]2 = [ m · r′(ξ) ]2 + [ n · r′(ξ) ]2 = |p′(ξ)|2 ,

and consequently p′(ξ) is a Pythagorean hodograph in the (m,n) plane if and only if p̂′(ξ) is a Pythagorean

hodograph in the (j,k) plane.

It is also possible to express r′(ξ) in terms of (l,m,n) rather than (i, j,k), as follows. Inverting l = U iU∗

gives i = U∗ lU , and upon inserting this into r′(ξ) = A(ξ) iA∗(ξ) with A(ξ) = U Q(ξ) we obtain

r′(ξ) = U Q(ξ)U∗ l U Q∗(ξ)U∗ = Â(ξ) l Â∗(ξ) ,

where

Â(ξ) := U Q(ξ)U∗ .

By expanding this product, we can express the components of Â(ξ) = û(ξ)+ v̂(ξ) l+ p̂(ξ) m+ q̂(ξ) n in terms

of the components of Q(ξ) as

û(ξ) =
a(ξ)√

2
, v̂(ξ) =

b(ξ)√
2
, p̂(ξ) =

c(ξ)√
2
, q̂(ξ) =

d(ξ)√
2
.

The (l,m,n) components of r′(ξ) are then given by

l · r′(ξ) = û2(ξ) + v̂2(ξ)− p̂2(ξ)− q̂2(ξ) ,

m · r′(ξ) = 2 [ û(ξ)q̂(ξ) + v̂(ξ)p̂(ξ) ] ,

n · r′(ξ) = 2 [ v̂(ξ)q̂(ξ)− û(ξ)p̂(ξ) ] .
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Remark 4. From equations (34)–(36), we see that quaternion polynomials A(ξ) = U Q(ξ) = u(ξ) + v(ξ) i+

p(ξ) j + q(ξ) k generating spatial Pythagorean hodographs, whose projections on to the plane with unit

normal vector l = λ i + µ j + ν k are planar Pythagorean hodographs, have components of the form

u(ξ) =
− (1 + λ) b(ξ)− µ c(ξ)− ν d(ξ)

2
√

1 + λ
,

v(ξ) =
(1 + λ) a(ξ) + µd(ξ)− ν c(ξ)

2
√

1 + λ
,

p(ξ) =
− (1 + λ) d(ξ) + µa(ξ) + ν b(ξ)

2
√

1 + λ
,

q(ξ) =
(1 + λ) c(ξ)− µ b(ξ) + ν a(ξ)

2
√

1 + λ
.

Example 7. Consider the plane Π with unit normal vector with (λ, µ, ν) = (2,−2, 1)/3 and the polynomials

a(ξ), b(ξ), c(ξ), d(ξ) specified in Example 4 by (22) with k0 = k1 = 1, ϕ0 = ϕ1 = 0, and σ0 = σ1 = 1. Then

the unit vectors spanning Π are

m =
− 10 i− 11 j− 2 k

15
, n =

5 i− 2 j− 14 k
15

,

and the quaternion polynomial A(ξ) = U Q(ξ) has components

u(ξ) =
2 ξ3 − 10 ξ2 − 14 ξ + 47

2
√

15
, v(ξ) =

4 ξ3 − 30 ξ2 + 77 ξ − 41
2
√

15
,

p(ξ) =
− 2 ξ3 − 16 ξ2 + 80 ξ − 47

2
√

15
, q(ξ) =

6 ξ3 − 32 ξ2 + 15 ξ + 51
2
√

15
.

The components of the hodograph r′(ξ) = A(ξ) iA∗(ξ) and its parametric speed are then determined from

(6) as

x′(ξ) =
− ξ6 + 2 ξ5 + 21 ξ4 − 88 ξ3 + 139 ξ2 − 82 ξ − 46

3
,

y′(ξ) =
2 ξ6 − 64 ξ5 + 456 ξ4 − 1528 ξ3 + 3001 ξ2 − 3454 ξ + 2162

15
,

z′(ξ) =
28 ξ6 − 296 ξ5 + 1134 ξ4 − 2192 ξ3 + 2339 ξ2 − 1106 ξ + 118

30
,

σ(ξ) =
(ξ2 − 6 ξ + 10)(2 ξ4 − 8 ξ3 + 22 ξ2 − 28 ξ + 29)

2
.

Now the components of r′(ξ) in the plane Π spanned by m and n are

m · r′(ξ) = 4 ξ5 − 32 ξ4 + 104 ξ3 − 188 ξ2 + 192 ξ − 96 ,

n · r′(ξ) = − ξ6 + 10 ξ5 − 37 ξ4 + 72 ξ3 − 84 ξ2 + 56 ξ − 28 ,

and since

[ m · r′(ξ) ]2 + [ n · r′(ξ) ]2 = [ (ξ2 − 2 ξ + 5)(ξ2 − 2 ξ + 2)(ξ2 − 6 ξ + 10) ]2 ,

the projection p′(ξ) of r′(ξ) on to Π is a planar Pythagorean hodograph. The spatial PH curve r(ξ) and its

PH projection p(ξ) on to the plane Π are shown in Figure 4.

19



Figure 4: The spatial PH curve r(ξ) for ξ ∈ [−0.5, 4 ] (gray curve) in Example 7 and its PH projection (blue curve) on to the

plane Π.

Remark 5. The spatial PH curves of given degree that admit planar PH curve projections on to a prescribed

plane Π form a proper subset of all spatial PH curves of the same degree. A degree m quaternion polynomial

A(ξ) generates a spatial hodograph r′(ξ) of degree 2m. Since A(ξ) has four quaternion components, r′(ξ)

depends on 4 (m+1) free parameters. On the other hand, if r′(ξ) has a PH projection onto Π, it depends on at

most 2 (m+2) free parameters, since the polynomials (14a)–(14b) are determined by the real constants k0, k1

and ϕ0, ϕ1, the polynomials f0(ξ) and f1(ξ) with real roots, and the complex values ξ1, . . . , ξr. These embody

the maximum number of freedoms when f0(ξ), f1(ξ) have only simple roots with gcd(f0(ξ), f1(ξ)) = 1, and

the complex values are all simple, i.e., µ1 = · · · = µr = ν1 = · · · = νr = 1 in (16), which implies that

α + r = β + r = m (and thus α = β). Since the polynomials (14a)–(14b) then depend on 2α real roots

and r = m − α complex values, and four real constants k0, k1, ϕ0, ϕ1 we deduce that r′(ξ) depends on

2(m+ 2) real parameters. When f0(ξ), f1(ξ) have multiple roots or common roots, or when complex values

ξ1, . . . , ξr with multiplicities greater than 1 are employed, the number of real parameters embodied in the

spatial Pythagorean hodographs r′(ξ) that admit planar PH projections is reduced accordingly.

Remark 6. It is of interest to consider the following related question: for any given spatial PH curve, can we

find some plane on to which its orthogonal projection is a planar PH curve? The answer does not follow from

the preceding analysis, but we can use Remark 5 to count the number of free parameters. Not prescribing a

particular projection plane increases the number of free parameters for the unit quaternion (35) by two (a

plane is identified by its unit normal vector), but in general this is still not sufficient to ensure that a plane

can be found on to which the projection of the spatial PH curve will be a planar PH curve.
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6. Closure

Although the complex–number and quaternion models are well–established approaches to the construction

and analysis of planar and spatial Pythagorean–hodograph (PH) curves, the fact that projections of spatial

PH curves on to planes with general normal directions do not ordinarily yield planar PH curves has not

previously been remarked upon. The present study has developed a comprehensive characterization of the

conditions on the quaternion polynomials generating spatial PH curves, that ensure they have planar PH

curve projections on to any given plane. These conditions identify the spatial PH curves that have PH planar

projections as a proper subset of the complete family of spatial PH curves.

It was shown that, in the generic case, such spatial PH curves incorporate approximately half the number

of free parameters embodied in unrestricted spatial PH curves of given degree, and consequently higher

degrees must be employed to satisfy geometric design constraints — e.g., interpolation of end–point Hermite

data or satisfaction of total arc length constraints [8]. These are non–trivial problems that deserve a separate

in–depth investigation. A further topic of interest concerns other types of lower–dimension projections of

spatial PH curves that generate PH projected curves — for example, central (perspective) projections from

the origin on to planes of any orientation in R3, or on to the unit sphere in R2.
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