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Abstract

Using more than 1000 thin section photos of ancient (Phanerozoic) carbonates from different marine environments

(pelagic to shallow-water) a new numerical methodology, based on digitized images of thin sections, is proposed here.

In accordance with the Dunham classification, it allows the user to automatically identify carbonate textures unaffected

by post-depositional modifications (recrystallization, dolomitization, meteoric dissolution and so on). The methodology

uses, as input, 256 grey-tone digital image and by image processing gives, as output, a set of 23 values of numerical

features measured on the whole image including the ‘‘white areas’’ (calcite cement). A multi-layer perceptron neural

network takes as input this features and gives, as output, the estimated class. We used 532 images of thin sections to

train the neural network, whereas to test the methodology we used 268 images taken from the same photo collection

and 215 images from San Lorenzello carbonate sequence (Matese Mountains, southern Italy), Early Cretaceous in age.

This technique has shown 93.3% and 93.5% of accuracy to classify automatically textures of carbonate rocks using

digitized images on the 268 and 215 test sets, respectively. Therefore, the proposed methodology is a further promising

application to the geosciences allowing carbonate textures of many thin sections to be identified in a rapid and accurate

way.

A MATLAB-based computer code has been developed for the processing and display of images.
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1. Introduction

The texture classification is the first step to identify the

lithofacies of the sedimentary rocks to recognize their

original depositional environment. A texture is individ-

uated by visual estimation in the field with a hand lens of

ffi10� as well as in thin section. In sedimentology the

most widely used and simplest texture classification of

carbonate rocks is that of Dunham (1962), because it is

only based on sediment fabric. Limestones are divided

into three main textural groups (Tucker and Wright,

1990): mud-supported (mudstones and wackestones),

grain-supported (packstones and grainstones) and bio-

logically bounded together during deposition (bound-

stones); the last category is not considered in this paper.

Mudstones and wackestones contain less and more than

10% grains, respectively. Mud is still present in

packstones which are grain-supported while is totally

lacking in grainstones. The Dunham classification

provides a clue to the environmental energy during

deposition. For example, a mudstone reflects low-energy

conditions on the contrary of a grainstone.

Note that the term texture in image processing is

generally used to describe the repetition of basic

elements (texel) for the characterization of given

object-surfaces. In this paper, instead, by texture we

refer to the space-organization of the main constituents

of a sedimentary rock: grains, matrix (depositional

components) and cement (post-depositional precipitate

in the pore space), as customary in sedimentology and

sedimentary petrology.

A recent application of neural networks uses composite

well-data to provide petrophysical information (Chang et

al., 2002). Further neural networks applications to

geosciences can be found in Tagliaferri et al. (2003).

Hereafter, we propose a new methodology to identify

automatically textures of Phanerozoic marine carbonate

rocks in thin section by image processing and neural

networks. This is a pilot study which allows the

proposed model to be tested on all types of carbonates.

In perspective, this technique represents a potentially

interesting approach for petroleum geologists to rapidly

analyze many thin sections.
2. Methodology

In order to classify the texture of a carbonate rock

from a thin section, it is necessary to distinguish skeletal

(organism-derived) and non-skeletal (mostly biochem-

ical precipitates) grains, as well as matrix and sparry

calcite cement. Grains are largely biogenic fragments

(marine invertebrates and algae) or whole fossils. The

main problem is that the unit of information in a

digitized image is the pixel and each pixel has properties

of position and grey value; however, by itself, the
knowledge of the position and value of a particular pixel

does not generally convey any geological information

related to the recognition of a texture. To avoid this

problem an alternative set of features is needed.

The image processing techniques allow to extract

from an image a set of numerical features, expressed as

coded characteristics of the selected object, and used to

differentiate one class of objects from another.

The neural networks classify a thin section texture

after training on a specific data set by taking into

account all extracted features, or a part of them. Each

output of the neural network is the probability to

classify an input section belonging to a specific Dunham

class. We assign the input section to the class associated

with the highest value to the output.

The main steps of this methodology (Fig. 1), applied

to each image of thin section, are
a.
 image acquisition;
b.
 image filtering;
c.
 feature extraction;
d.
 feature normalization;
e.
 input dimension reduction;
f.
 neural network.
The image processing is related to techniques at points

(a)–(c). Gonzalez (2004) and Shapiro and Haralick

(1993) describe the mathematical details related to them.

In the following sections we explain the details of these

techniques.

This methodology is implemented in MatLabs (The

MathWorks Inc.) code and toolbox: Image Processing,

Netlab (Nabney, 2002). The codes have been written as

part of a package, which can be used and extended for

future applications. The software performs the classifi-

cation on a digitized image in few seconds, using a

desktop computer based on Intels Pentium IV and

Windows XPs operating system.

2.1. Image acquisition

Image acquisition describes the process of converting

a picture into its numerical representation, which is

suitable for further image processing steps. The acquisi-

tion process is physically accomplished by a digitizer.

With digital image we refer to a two-dimensional

matrix M; each Mði; jÞ is a pixel at row i and column j

that contains the grey tone related to real image.

This methodology requires bitmap images with 8-bit

256 linear grey tones (0 corresponds to black colour and

255 to the white one) with dimensions of 700� 500

pixels acquired by a digital camera with 150 dots per

inch. The magnification was about 20–25� to optimize

the acquisition of smaller and larger (skeletal and non-

skeletal) grains.
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Fig. 1. Main phases of proposed methodology.
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To get a homogeneous data base, all images were

acquired in grey scale because only a little portion was

originally in colour. Moreover, this methodology con-

templates only the shape of white areas due to cement

and of grey areas ascribed to matrix and grains.

Before the acquisition, brightness and contrast of all

images have been adjusted, for a better stand out of the

grains from the matrix or cement background.

2.2. Image filtering

Due to high quality of images, the median filter and a

neighbourhood of 3� 3 pixels are sufficient to remove

small distortions without reducing the sharpness of the

image.
2.3. Feature extraction

This step is composed of a sequence of operations on

image matrix, in order to measure the features of the

objects. These values are given as input to the neural

network.

We have performed several tests on different types of

features. The final set is composed of the following 23

features:
1.
 percentage of the most frequent grey tones;
2.
 number of edge pixels in the grey areas;
3.
 number of edge pixels between the grey and the

white areas;
4.
 number of white areas;
5.
 number of pixels of white areas;
6.
 number of white areas composed of more than 150

pixels;
7.
 number of pixels within the white areas composed of

more than 150 pixels;

7 features (1)–(7) were extracted from the whole

image and the remaining 16 features were extrac-

ted from each of the 4 selected largest white areas

(4 features (8)–(11) per area):
8.
 number of pixels of the white area;
9.
 length in pixel of the white area;
10.
 number of small convex deficiencies;
11.
 number of large convex deficiencies.
Each of the above features is described in the follow-

ing sections.

2.3.1. Percentage of the most frequent grey tone

An image histogram is a chart that shows the

frequency of the grey tones. This plot is composed of

20 equally spaced bins, each representing a range of grey

tone. It is necessary to sum the number of pixels of the

bins chosen around the bin that corresponds to the most

frequent grey tone. The value of this feature is the ratio

between this sum and the sum of the pixels in all the

bins. An image of a grainstone (Fig. 2) has a large and

broader histogram (Fig. 3) because it is composed of

many pixels distributed on many grey tones. Instead,

an image of a mudstone has a narrower and higher

histogram, because a mudstone, being very fine grained,

is represented by many pixels distributed on few grey

tones.

2.3.2. Number of edge pixels in the grey areas

To find edges in the whole image, the Canny operator

looks for places where the intensity changes rapidly. The

resulting image is a black/white image in which a black

pixel corresponds to an edge pixel in the original image.

We chose this operator because it is more likely to detect

weak edges. The low and high thresholds are 0.25 and
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Fig. 2. Example of grainstone texture with intergranular sparry

calcite cement.

Fig. 3. Larger and broader image histogram related to thin

section of Fig. 2. In lower part, colour map of 256 8-bit grey

tones is shown.

Fig. 4. Resulting image of Canny operator related to thin

section of Fig. 2. Each black pixel corresponds to an edge

between grey areas or between white and grey areas.

Fig. 5. Perimeter pixels related to thin section shown in Fig. 2.

Each black pixel corresponds to perimeter between grey and

white areas resulting from original image.
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1.00. The value of the feature is the number of black

pixels. The resulting image of a grainstone has many

black pixels (Fig. 4) because, being a grain-supported

texture, it is composed of numerous skeletal and non-

skeletal grains that create a large number of edges. On

the contrary, a mudstone has few black pixels because it

is composed of large homogeneous, very fine grained,

hardened mud.
2.3.3. Number of edge pixels between the grey and the

white areas

A pixel is considered as a perimeter pixel if it satis-

fies both the following criteria: it is a white pixel in the

starting image and shows one or more grey pixels in its

8� 8 neighbourhood. The value of the feature is the

number of perimeter pixels. The white areas are due to

crystals of sparry calcite cement, filling the inter-
intragranular and moldic porosity. A grainstone has

many perimeter pixels due to many white areas (Fig. 5),

while a mudstone shows few white areas and is

characterized by few perimeter pixels.
2.3.4. Number of white areas

The grey tone image is converted into a black and

white image changing the grey pixels of the original

image into black pixels. A labelling algorithm locates

and counts the white areas. The value of the feature is

the number of white areas. A grainstone has many more

white areas than a mudstone.
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2.3.5. Number of pixels of white areas

The value of this feature is the number of pixels that

compose the white areas used to extract the previous

feature.
2.3.6. Number of white areas composed of more than 150

pixels

The previous black and white image and the

image resulting from the labelling are considered.

The number of pixels pertaining to each white area

is estimated, the feature value is the number of the

white areas with more than 150 pixels (Fig. 6). This

threshold has been estimated experimentally on

thin sections without pronounced post-depositional

features (dolomite crystals, fractures filled by sparry

calcite).
2.3.7. Number of pixels within the white areas composed

of more than 150 pixels

The value of this feature is the number of pixels of the

white areas already used to calculate the previous

feature. Mudstone and wackestone do not reveal large

white areas.
2.3.8. Number of pixels of the white areas

The results of the previous labelling algorithm are

considered here. The white areas are ordered according

to their number of pixels. The 4 greatest white areas are

chosen by estimating the number of pixels for each of

them. In this way, 4 features are obtained. A wide

variety of grainstones has been used to count the

number of white areas in order to determine the above

threshold.
Fig. 6. Four white areas with over 150 pixels related to thin

section of Fig. 2.
2.3.9. Length in pixel of the white area

The feature value for each of the previous 4 greatest

white areas is the number of columns used to represent

the area in the image matrix.

2.3.10. Number of small and large convex deficiencies

For each of the previous 4 white areas, the convex hull

(Gonzalez, 2004; Liu-Yu and Thonnat, 1997) and the

corresponding convex deficiencies are computed. A

labelling algorithm locates and counts the convex

deficiencies. The value of the features (j) and (k)

corresponds to the number of convex deficiencies

composed by less than 100 pixels and to the convex

deficiencies composed of more than 1000 pixels,

respectively. The values 100 and 1000 were determined

by analysis of a wide variety of white areas in images of

grainstone and packstone.

A white area due to intergranular calcite cement has a

large convex hull, a low number of small convex

deficiencies and a high number of large convex

deficiencies (Fig. 7A–C). On the contrary, a white area

due to intragranular calcite cement has a small convex

hull, a high number of small convex deficiencies and a

low number of large convex deficiencies (Fig. 7D–F).

2.4. Feature normalization

To prevent singular features from dominating the

others and to obtain comparable value ranges, a linear

transformation provides for all the features to have

values in the range [�1.0, 1.0].

2.5. Input dimension reduction

Often, the components of the input vector are highly

correlated (redundant). So it is useful to reduce the

dimension of the input vectors, in order to simplify the

structure of the classifier and to obtain a faster training.

The principal component analysis (PCA) is a linear

input dimension reduction technique that computes the

largest eigenvectors of the covariance matrix of the

feature set (Bishop, 1998). PCA selects the most

expressive features related to eigenvectors with the

largest eigenvalues, so PCA approximates the feature

set space by a linear subspace.

Analyzing the eigenvalues in decreasing order, 15

from the 23 extracted features, are selected as inputs.

2.6. Neural networks

Neural networks are models for expressing know-

ledge using a connectionist paradigm inspired by the

mechanisms at work in human brain. The process-

ing element is the neuron, by analogy with the neuron

of the brain. The network is composed of many neurons
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Fig. 7. (A) White areas due to intergranular calcite cement, (B)

convex hull, (C) large convex deficiencies, (D) White area due to

the intragranular calcite cement (microfossil chamber), (E)

convex hull, (F) small convex deficiencies.
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linked by a set of weighted connections. The know-

ledge is represented by value of the weights on

connections.

To obtain the output of the neural network it is

necessary to assign a value to each input neuron and to

compute the corresponding equation for each neuron;

the set of output values of the network is composed of

the values of the output layer neurons.

Their use is recommended when:
�
 there is no algorithm or model to solve the problem;
�
 there are more data input/output operations than

computations;
�
 many examples for supervised training are available.
Fig. 8. MLP network used and composed of neurons: 15

input, 8 hidden, 4 output corresponding to 4 classes of

Dunham classification.
All these requirements are fulfilled by the problem

discussed here, thus making neural networks an ideal
tool. The classification problem is the assignment of an

object characterized by a set of features to one

predefined class; it is a sort of mapping from a fea-

ture space to a class space, using a non-linear mapp-

ing function. A neural network can represent an

arbitrary function mapping among spaces of several

dimensions.

In order to design the neural network that achi-

eves good mapping and training, according to Bishop

(1998) who describes the mathematical details rela-

ted to supervised neural networks, we need to

choose:
1.
 neural network model;
2.
 activation function for each neuron;
3.
 error and minimization functions;
4.
 training algorithm.
2.6.1. Neural network model

We use the multi-layer perceptron neural network

(MLP) because the number of output classes is fixed. An

MLP is a three-layer feed-forward network. The

neurons are grouped in input, output and hidden (i.e.

those units which are neither input nor output) layers.

Each neuron of a given layer is connected to all the

neurons of the next one (Fig. 8).

According to PCA, the input layer has 15 neurons

while the output layer has 4 neurons corresponding to

each Dunham class; the hidden layer has 8 neurons.

Other parameters configuration show less than 91.0% of

correct classification.

2.6.2. Activation function for each neuron

The hidden neurons use the tanh activation function.

In our MLP each output value lies in the range [0.0, 1.0]

and the global sum is 1, in order to consider these values

as probability of good classification. This can be

achieved by using for each output neuron the softmax

activation function.
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2.6.3. Error and minimization functions

The MLP use cross-entropy error function and the

quasi-Newton minimization error function.
Fig. 9. Evaluation of training set and validation set errors as

training progresses. Training and validation error are shown

by solid and dotted lines, respectively. Minimum error for

validation set is shown by black circle on dotted line. Epoch is

indicated on horizontal axis.

Fig. 10. Example of grainstone from test set, erroneously

classified as packstone.
2.6.4. Training algorithm

In the case of MLP, a supervised training must be

used in which the network learns from a training set

consisting of features input and the desired class

outputs. The training procedure was the back-propaga-

tion method: we give to the input neurons the first

pattern and the network gives its output. If this is not

equal to the desired output pattern, then the procedure

computes the difference (mean square error) between

these two values and changes the weights in order to

minimize them. These operations are repeated for each

input pattern until the error is minimized.

In this work the weight matrix is composed of

small random values. The training set was composed

of 400 grey-tone images, 100 for each Dunham class

from marine carbonates of different ages, localities

and environments. These digitized images are taken

from a set of photo collections excluding, for these

experiments, more complex examples in which are

documented early to late diagenetic (bioturba-

tion, karstification, dolomitization, recrystallization

and so on) processes.

We used the early stopping method to learn the

mathematical model that describes statistically the fea-

ture set (generalization property). In this way the MLP

can correctly classify other images not used in the

training step. The MLP is tested with the validation set

every 10 epochs (an epoch is a training cycle from the

whole feature set). The validation set was composed of

132 images, 32 for each texture class. The training error

monotonically decreases as training progresses, while

the validation set error only decreases up to a certain

point, after which it increases (Fig. 9). The training is

stopped at the minimum of the validation error: the

validation error is 0.31 and the related training error

is 0.17.
2.6.5. Analysis of the test set results

The test set is composed of images not used in the

training and validation set, in order to estimate the final

classification performance of the MLP. The first test set

was composed of 268 images from personal photo

collections, 67 for each Dunham class.

MLP classified 250 images correctly (93.3%) and 18

images erroneously (6.7%). For what concerns the

wackestones, 4 were uncorrectly classified as packstone

because they showed recrystallization to microsparry

calcite and/or bioturbation. Only 1 wackestone with

very small microfossils was read as mudstone because

the pre-selected magnification was insufficient to identify

them by means of the feature extraction. Among the
grainstones, 1 image was erroneously classified as

packstones, due to the presence of micritized grains

often associated with intraclasts showing a mud-

supported texture (Fig. 10).

The confusion matrix (Table 1) allows to summar-

ize the classification results: the columns represent the

true classes and the rows the assigned classes. In case of

erroneous classification, the class chosen by the MLP is

contiguous to the correct one (Fig. 11). It may be seen

that it never occurs that an image of a grainstone is

classified as wackestone or mudstone.

Considering only mud-supported (mudstone and

wackestone) and grain-supported (packstone and grain-

stone) textural classes, the percentages of accuracy

become 97.0% and 93.3%, respectively.



ARTICLE IN PRESS

Table 1

Confusion matrix of test set from collections

Assigned True class

M W P G

M 65 1 0 0

W 2 62 9 0

P 0 4 57 1

G 0 0 1 66

M ¼ mudstone, W ¼ wackestone, P ¼ packstone and

G ¼ grainstone.

Fig. 11. For each misclassified image in test set, points show

correct class and crosses indicate corresponding neural network

output.

Fig. 12. Percentage of classification for each value of rejection

threshold in range [0.0, 1.0]. Percentage of correct classifications

is shown by dash–dot line whereas percentage of wrong

classifications is shown by dotted line and percentage of

uncertain classifications is shown by solid line.
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The results shown in Table 1 have been obtained using

a classification strategy based on the choice of the class

suggested by the highest output. It is worth noting that

when the 4 output values of the MLP are very similar

among them, so that the highest value is very far from 1,

the MLP classifies the image with high probability of

uncertainty. In this case only with a support of the

sedimentologist it is possible to exactly classify the above

images that are selected on the basis of the following

threshold decision rule: if the highest output value is less

than (or equal to) the rejection threshold, then the

corresponding image has to be classified by the

sedimentologist; in other case the MLP classification

may be accepted.

It is important to choose an optimal value for the

rejection threshold. Clearly, more images are rejected

and fewer errors are made if the value of the rejection

threshold is increasing. Using the output values provided

by the MLP for the test set, each highest output value is

compared with a rejection value in the range [0.0, 1.0].
From Fig. 12 it appears that the value 0.6 is the

rejection threshold to make an acceptable percentage of

the images classified as well, wrong or uncertain. The

threshold discriminates 8 uncertain images (3.0%), 16

images wrongly classified (6.0%) and 244 images well

classified (91.0%).

Another criterion used to discriminate among un-

certain classifications is to calculate the difference

between the first and second highest values. A difference

less than 0.2 shows that the MLP is undecided between

the two classes corresponding to these two values. In this

case, only 7 images are discriminated to be classified by

direct inspection (2.6%)
3. San Lorenzello case study

3.1. Description

The section tested in this paper is well exposed along a

road cut on the southern hill-side of Monte Monaco di

Gioia, (Matese Mountains) about 80 km from Naples

(Italy). The San Lorenzello section, about 86 m thick, is

made of shallow-water carbonate rocks of the Early

Cretaceous age. It was measured and sampled at

centimetre scale for sedimentological and cyclostrati-

graphic studies (D’Argenio et al., 1997; Ferreri et al.,

2001, 2004).

Textures and sedimentary structures were sequentially

collected in the field; then they were integrated with a

careful analysis of about 250 thin sections. These

carbonates consist of alternating grain- and mud-

supported lagoonal to peritidal sediments with benthic

foraminifera, and/or green algae, and/or molluscan

shells (Fig. 13).
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Fig. 13. San Lorenzello shallow-water carbonate deposits. Example of textures acquired by digital camera: (A) mudstone with

oligotypic fauna represented by ostracods and rare small benthic forams; (B) wackestone with molluscan shells, green algae and benthic

forams; (C) fine packstone with benthic forams, peloids and rare small intraclasts; (D) grainstone with bioclasts (green algae, benthic

forams, molluscs), intraclasts, micritized grains and peloids.

Table 2

Confusion matrix of San Lorenzello case study

Assigned True class

M W P G

M 22 0 0 0

W 0 98 10 0

P 0 2 57 2

G 0 0 0 24

For key letters see caption of Table 1.

R. Marmo et al. / Computers & Geosciences 31 (2005) 649–659 657
This test set of 215 thin sections includes: 22 mud-

stones (10.2% of the set), 100 wackestones (46.5%), 67

packstones (31.1%) and 26 grainstones (12.2%). In the

above 4 Dunham classes all the transitional textures (as

mudstone–wackestone, wackestone–packstone and

packstone–grainstone) have been included, based on

their prevailing (X70%) estimated texture. About 35

thin sections were excluded from the test set because the

original texture resulted, obliterated by superimposed

diagenesis (dolomitization and/or karst) that has not

been considered in the present work. We could correlate

to each other the results obtained using two different

methodological approaches: manual and automatic.

3.2. Results and discussion

The second test set has been identified by the

proposed automatic methodology. It has been possible
to predict with 93.5% accuracy the type of texture, this

means that 201 of the 215 images have been exactly

determined by MLP.

Table 2 shows the confusion matrix. All the digitized

images with values of texture less than 0.6 have been
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checked in order to understand the peculiar result. In

fact, many sedimentological parameters can complicate

the original depositional signal, at the moment not

acquired by our technique. Microsparite and/or dolo-

mite crystals have been recognized in the matrix of some

wackestones; these diagenetic characteristics attribute

higher values to the packstone fraction, if we compare

these examples of wackestones with those without these

diagenetic modifications. For instance, a small number

of well-defined crystals that derive from post-deposi-

tional dolomitization of mudstones has been identified

by feature extraction as grains, increasing the values of

the grain-supported fraction.

On the other hand, micritization, small size and

densely packed grains in some packstones are other

complex characteristics that our neural network, at

present, is unable to individuate. As a consequence, fine

packstones appear to have higher mud-supported

fraction and may be viewed as wackestones. In fact, 10

images identified as wackestones, are instead pack-

stones, because minor thickness variation in the thin

sections may influence brightness and contrast of the

images. Moreover, intraclasts and peloids, very frequent

in these packstones, may be recognized as ‘‘mud’’. As a

consequence, contrast between grains (especially pe-

loids) and sedimentary matrix not always results clearly

and even if the contrast is increased, the different grey

level values may not be individuated during the features

extraction. Grains must have a well-defined internal

structure and a clear boundary, so that grey level values

have tones in contrast with those of the matrix. Only

under these conditions may all packstones be exactly

determined by the neural network.

Mud-supported textures have been more exactly

identified (98.4% accuracy) than grain-supported tex-

tures (89.2% accuracy) and only 12 images resulted

misclassified.

As discussed above, the accuracy of the texture

identification depends on the difference between the

two highest numerical values. A difference less than 0.2

means that the technique recognizes, on the whole, a

mixture of the two textures. Seven images have revealed

a difference less than 0.2. In nature, there are examples

of transitional textures as packstone–wackestone or

wackestone–mudstone and so on, qualitatively revealed

by the human eye.
4. Conclusions

In this paper we have proposed a new numerical

approach based on image processing and multi-layer

perceptron neural network that allowed us to classify

carbonate rocks by grey level images digitized from thin

sections, using the Dunham textural classification. This

technique predicts the type of texture from the digitized
images of thin sections with 93.3% and 93.5% accuracy

on two test sets of 268 and 215 images, respectively. This

percentage is satisfactory for this preliminary applica-

tion of the proposed methodology. In the future, larger

training and test sets on different carbonate rocks of

origin and age could provide further improvements.

Techniques for image processing must be chosen

carefully and adapted to the optical characteristics

of each specific collection of thin sections. Moreover,

at present, there is no standard system for image

processing of thin sections, because there are some

difficulties that may be circumvented by using higher

resolution and/or magnification during the image

acquisition.

At present, our preliminary results are encouraging

and indicate that a good choice of features and a specific

neural network can make, in a rapid and accurate way, a

good automatic textural classification. Moreover, in the

future it appears possible to expand the number of

textural classes, also considering the transitional ones as

well as thin sections showing sin- and post-depositional

diagenetic modifications (microsparitization, karstifica-

tion, dolomitization and so on), so that the tested

methodology could be carried out on all types of

carbonate rocks. To conclude, the present results

indicate another useful application of neural networks

to the geosciences.
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