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modelling mantle convection and lithospheric deformation$

Craig O’Neilla,�, Louis Moresib, Dietmar Müllera, Rich Albertc, Frédéric Dufourd
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We have extended the two-dimensional geodynamics finite-element code ‘‘Ellipsis’’ to three-dimensions. Ellipsis uses a
hybrid particle in a cell scheme, which combines a fixed mesh of computational points and a dense arrangement of mobile

material points. The fixed Eulerian mesh allows very fast computation, performed in Ellipsis via a multigrid iteration
method, while the Lagrangian particle reference frame allows the tracking of material interfaces and history-dependent
properties such as strain history for strain-softening materials. The method is exceptionally useful in very large
deformation analyses, where purely Lagrangian approaches would be severely hampered by the need for remeshing to
minimize element distortion. The Gnu Public Licensed Ellipsis3D code lends itself to combined 2D/3D model prototyping,
and has proven to be an excellent geodynamics teaching tool for modelling, covering mantle convection, lithospheric
extension and plume–lithosphere interaction.
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1. Introduction

The finite-element method has been a popular

approach for problems involving mantle convection

and lithospheric deformation, due to its robustness

and the existence of many efficient and reliable

solvers. For study of lithospheric deformation,

where deformation is viscoelastic/plastic with his-

tory-dependent rheology, Lagrangian finite-element

formulations (in which the mesh is embedded in and

deforms with the material) are ideal because they

allow simple tracking of history variables (e.g.,

damage parameters). However, for problems on the

mantle scale, where deformation is extremely large,

Lagrangian finite-element methods are limited by

severe mesh distortions. While this can be overcome

by re-meshing, the computational expense of

recalculating the mesh can be high, and history

variables need to be interpolated to points in the

new elements. Eulerian finite-element methods, in

which the mesh is fixed in space and the material

flows relative to the mesh, are the preferred
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alternative when modelling thermal convection.

However, significant numerical diffusion (Lenardic,

1993; Van Keken et al., 1997) of interfaces limits the

usefulness of this method in modelling several

materials at once, and difficulties arise in tracking

material-dependent properties, such as strain weak-

ening or depletion (Tackley, 1998). Moresi et al.

(2003) introduced a particle-in-cell finite-element

code (Ellipsis) to overcome these difficulties. Ellipsis

is based on the Eulerian finite-element method.

However, instead of basing the integration points

on a standard Gaussian quadrature scheme, the

integration points are chosen to coincide with

material points which are advected through the

mesh. This enables the use of standard, proven,

structured grid solvers, such as the multigrid

method. It also enables the modelling of numerous,

interacting materials, without the concern of nu-

merical diffusion. History-dependent properties,

such as strain, strain rate, or depletion due to melt

extraction, are considered particle properties, not

properties of the mesh, which alleviates problems

with the standard Eulerian formulation.

In this paper, we extend this methodology into

three dimensions with Ellipsis3D. The code is able

to handle viscoelastic–plastic rheologies with strain

weakening and depletion, with complicated, evol-

ving boundary conditions. We briefly present the

mathematical and numerical formulation of Ellip-

sis3D, together with an introduction to the code.

We also present the results of numerical bench-

marks, and four examples highlighting the capabil-

ities of Ellipsis3D in modelling crustal-scale to

mantle-scale processes.

2. Mathematical framework

Mantle convection simulations involve the solu-

tion to the coupled equations of momentum and

energy (Moresi and Solomatov, 1998), subject to an

incompressibility constraint. The momentum equa-

tion is generally written as

r � s ¼ gr0aT ,

sij ¼ 2ZDij � pdij. (2.1)

Here Z is the viscosity, Dij ¼ ðqvi=qxj þ qvj=qxiÞ=2 is

the rate of deformation tensor, p is the dynamic

pressure, r0 the reference density, g the gravitational

acceleration, a the thermal expansivity, and T the

temperature. The above equation is essentially the

Navier–Stokes equation, without the inertial terms

(i.e., Stokes equation). This assumption is justified

given the large viscosity of the mantle, and the short

timescale for the re-equilibration of body forces

compared to convection timescales. To simplify the

solution, the mantle is considered incompressible,

i.e.,

r � v ¼ 0. (2.2)

The assumption that the flow is incompressible

apart from terms where density provides buoyancy

forces is known as the Boussinesq approximation. It

is an appropriate assumption for most mantle

convection studies (Hansen and Yuen, 2000).

The time dependence of the problem is intro-

duced through the energy equation:

DT

Dt
¼ kr2T þQ. (2.3)

Here D/Dt is the material time derivative (taken at a

point moving with respect to the fluid), Q the

thermal diffusivity, and Q the volumetric heat

production.

These equations describe the fundamental physics

required for modelling mantle convection; however,

their implementation depends on the scheme em-

ployed. The dominant influence on the solution of

this coupled set of equations is the temperature,

pressure, stress and history dependence of the

viscosity term, Z. The strong spatial variations in

viscosity, mainly due to the temperature depen-

dence, suggest the use of specialized solution

methods optimized for problems with strong

gradients in material coefficients, for which more

research has been done in the context of Eulerian

formulations. The history-dependent rheology, on

the other hand, promotes the use of a Lagrangian

reference frame.

Ellipsis (Moresi, et al., 2003; Moresi, et al., 2001)

uses a particle-in-cell finite-element scheme which

attempts to combine these two requirements. Its

implementation is described in the following sec-

tions.

3. Particle-in-cell finite-element formulation of

mantle convection

The motivation for Ellipsis was to combine the

functionality of a particle method, in particular

features like tracking material interfaces, tracking
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material damage and degree of depletion, with a

robust, reliable multigrid solver (Moresi, et al.,

2003, see Fig. 1).

It is beyond the scope of this paper to introduce

fully the finite-element method, and its application

to convection problems; a number of good refer-

ences exist (e.g., Hughes, 1987). Additionally, the

implementation of a particle-based finite-element

method for mantle convection problems is detailed

in Moresi et al. (2003). Here we focus here on a

working understanding of the grid–particle inter-

relationship in Ellipsis3D.

The finite-element method always begins by

transforming the conservation Eqs. (2.1)–(2.3) to a

weak or variational form. The weak form takes the

form of an integral over the solution domain. The

advantages of this are: (1) problems with integrable

discontinuities can be treated in a straightforward

manner; (2) flux boundary conditions become a

natural part of the problem; and most importantly

(3) the ‘‘global integral’’ can be expressed naturally

as a sum of sub-integrals over sub-domains, or

elements (Hughes, 1987), that is, the problem

domain is split into smaller elements—in Ellipsis3D,

this takes the form of a Cartesian grid. The ‘‘weak-

form’’ integrals, over continuous variables, are then

replaced by discrete approximations, for the pur-

poses of numerical computation. This is done by

introducing interpolation functions, which interpo-

late unknowns in the element interiors from the

values at the element vertices. The integrals are then

replaced with weighted sums over a small number of

sample points within the elements, i.e.,

Z

Oe

cdOe

X

P

p¼1

wpcðxpÞ. (3.1)

Here Oe is the element volume, c is the integrand

evaluated at the sample points xp, P is the number

of sample points within the element volume (also

known as integration points), and wp are the weights

of each integration point. So far, this approach is

the same for standard finite-element methods, and

Ellipsis3D. However, in conventional finite-element

methods, the integration points are usually picked

according to some scheme to get the most accurate

integral for the smallest number of points (an

example is the Gaussian quadrature scheme). In

the particle-in-cell finite-element method, instead of

optimally chosen integration points, the sample

points are actually the particle positions. These

particles move with respect to the mesh. The particle

weights are varied to provide the correct integra-

tion, with a method described in more detail in

Moresi et al. (2003). However, since the positions of

the particles are not, as a rule, optimal, several times

more particles per element are required for accu-

racy, compared to Gaussian quadrature points in an

equivalent finite-element scheme. This is a disad-

vantage, but it is offset by an improved accuracy in

integrating material properties at the actual material

points where the information is tracked, which

avoids the need to interpolate information to fixed

integration points.

Fig. 1. Representation of the particle-in-cell in finite-element scheme: A conventional Eulerian finite-element grid is used, but instead of a

Gaussian quadrature scheme to determine the distribution of integration points, the integration points coincide with material points,

which are advected with the flow. Representation of the multigrid solver: A solution is found at the coarsest grid size (level 1), and the

nodal solutions interpolated to successively finer grids as an initial solution for the next iteration.
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The discrete representation of the integral equa-

tions described above produces a matrix equation in

a form which is common to most finite-element

codes designed to solve problems of mechanical

equilibrium. For details of the matrix form see

Moresi et al. (2003). The pressure and velocity are

solved using an Uzawa scheme employing a

conjugate gradient method, eliminating the need

for a separate back substitution to obtain velocity

(Moresi & Solomatov, 1995).

The Uzawa iteration is coupled to a multigrid

solver. Here, an approximate solution is calculated

on the coarsest mesh, and is interpolated to a finer

mesh, and used as the starting point for the

iteration. The energy equation is solved using

explicit time stepping of a Petrov-Galerkin upwind

method (Moresi and Solomatov, 1995).

4. Ellipsis3D

4.1. Input

Ellipsis3D has been developed in C, and has been

extensively tested under Linux and Macintosh

operating systems. The problem to solve is defined

in an input ASCII file, several of which are provided

with the online documentation of this paper. The

input file is fairly detailed, allowing a great deal of

flexibility in the problem set-up.

The input file is divided into a number of

subsections. Within it, the user specifies the stan-

dard output required, e.g., the advection-diffusion

and solver-related parameters. The grid is assumed

Cartesian, with the z-dimension being positive

downward by default. The user specifies the coarsest

grid units, and the number of times to subdivide this

grid (i.e., the number of multigrid levels). The grid

can be refined in regions where greater detail is

required.

In the initial conditions, the user specifies the

initial temperature distribution, including spatial

perturbations. The user can also define the initial

material, temperature and strain, by defining the

vertices of rectangular or triangular prisms, or by

defining the position and radii of spheres. A material

type is assigned to each distribution. If the distribu-

tions overlap, the last defined distribution is effective.

Nodal or particle files from previous runs can be input

as initial temperature, plastic strain, or material

distributions. The initial distribution of integration

points, or tracers, and their density are also defined

under the initial conditions.

Stress, velocity, and temperature boundary con-

ditions are implemented in Ellipsis3D. The bound-

ary conditions can be rectangular, circular,

harmonic, or polynomial. All boundaries are free-

slip by default, and the side boundaries can be

periodic if required. The grid itself can be defined to

change through time, e.g., expanding in an exten-

sional model. It is possible to define time-varying

deformation rates, in varying dimensions (see our

example input file).

Ellipsis outputs a number of ascii files, ppm image

files, and binary files, depending on what is

requested in the input template. Nodal information,

such as velocity, temperature, and pressure, can be

exported to an ascii data file containing this

information at each node. Similarly, a binary

particle file can be created containing particle data

at each particle position. Ellipsis3D can also create

ascii files containing horizontal averages or surface

observables of required data at each timestep. A

time-log file of large-scale averages such as the rms

velocity (total or directional, or at the surface), the

Nusselt number, the surface or basal heat flow can

also be created.

Sampling tracers can be used to create profiles in

a given direction, or construct histories for a

particle. The tracers can be Eulerian or Lagrangian,

and can sample such properties as temperature,

velocity, pressure, stress or strain. They can also be

plotted on image files generated as the simulation

progresses.

The standard image files generated by Ellipsis3D

are ppms (Portable Pixel Map)—one the simplest

image file formats to output. Fields to be plotted

include temperature, viscosity, stress, pressure,

strain, strain rate, depletion etc. The ppm colouring

scheme is defined under the material properties.

Data from nodes and particles can also be output to

plot in alternative programs.

The material set-up is defined in the initial

conditions. The materials themselves are defined

individually, so that physical properties such as

density, and thermal properties such as thermal

expansivity, thermal diffusivity, heat capacity, and

internal heat generation, can vary for different

materials.

4.2. Physical models within Ellipsis

4.2.1. Viscosity

The effective viscosity of the mantle is a

combination of both diffusion creep and dislocation

4



creep processes, which are described by the Ar-

rhenius formulation (Karato and Wu, 1993):

Z ¼ B exp
E þ PV

RT

� �

s1�n. (4.1)

Here E is the activation energy, P the pressure, V

the activation volume, R the universal gas constant,

T the temperature, s a scalar measure of stress (such

as the differential or second invariant of deviatoric),

and n the power-law exponent. The mantle can flow

either by diffusion creep or dislocation creep, and

the effective viscosity of the mantle is the smaller

viscosity of the two. However, we only include one

viscosity formulation at a time in Ellipsis3D. A

simplification of this relationship, which is useful for

purely temperature-dependent convection:

Z ¼ A exp½�T1T �. (4.2)

This is known as the Frank–Kamenetski approx-

imation (Frank-Kamenetskii, 1969), the constants A

and T1 define the reference viscosity and viscosity

range over the range of temperatures experienced,

respectively. An arbitrary number of deformation

mechanisms can be constructed for each material in

the mesh. These are combined as follows:

1

Z
¼

1

Z1
þ

1

Z2
þ

1

Z3
þ � � �

1

Zn
(4.3)

to form the final effective viscosity for each material

point under its current conditions.

4.2.2. Brittle deformation

A further mechanism of deformation relevant for

near-surface deformation is brittle failure (Fig. 2).

This behaviour occurs once the material’s stress

attains a yield stress, defined by

tyield ¼ C0 þ msn. (4.4)

Here C0 is the cohesion, m the coefficient of friction,

and sn the stress normal to the plane of failure,

which is approximated by the lithostatic pressure

(Moresi and Solomatov, 1998). The actual failure

mechanism is modelled by means of an effective

viscosity:

Zyield ðDÞ ¼
tyield

2D
. (4.5)

D is the second invariant of the deviatoric strain-

rate tensor. Thus the method of failure at a point is

determined by the material stress; for values of

stress below the yield stress at a given pressure, the

viscosity is given by Eq. (4.2), and the fluid is purely

viscous. For stresses that attain the yield stress, the

material fails, and the deformation is governed by

Eq. (4.4).

4.2.3. Strain and strain-rate weakening

Tackley (1998) has shown that the realistic

generation of plates in convection simulations

requires some sort of strain or strain-weakening

mechanism, to stabilize the zones of failure, and

allow for the integrity of rigid, non-deforming

plates. These damage terms are incorporated in

Ellipsis3D by modifying Eq. (4.4):

tyield ¼ ðC0 þ msnÞ � f ð�; �
�
Þ, (4.6)

where e and �
�

are the strain and strain rate,

respectively, and f is given by

f ð�; �
�
Þ ¼ 1� ð1� EaÞð�=�0Þ

n1 � ð1� E
�

aÞð�
�
=�
�
0Þ

n2 .

(4.7)

Fig. 2. (a) Strength of lithosphere as a function of depth: For shallow depths, the lithosphere is cold and the viscosity is high. However, the

yield stress t is low at low pressures, and the lithosphere deforms by brittle deformation. At higher temperatures, the viscosity is lower, and

the material deforms viscously (lower crust and lower lithosphere). Inset: strain weaking term f ð�Þ as defined in Eq. (4.7), as a function of

strain e (similar for strain rate). (b) Illustrative geotherm and linear solidus and liquidus, and particle temperature (Tp) as used in Eq.

(4.11). Inset: relationship between supersolidus temperature Tss and melt fraction F defined in Eq. (4.12).
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Here �0 and �
�
0 are the strain and strain-rate

weakening terms, respectively. Ea is defined as the

ratio of f ð0; 0Þ=f ð�0; 0Þ, and E
�

a is the ratio of

f ð0; 0Þ=f ð0; �0
�
Þ. The exponents n1 and n2 describe

the non-linearity of the response of f to strain and

strain-rate. A visualization of this relationship is

shown in Fig. 2.

4.2.4. Elasticity

Ellipsis3D uses a Maxwell viscoelastic model,

where the strain rate tensor (Eq. (2.1)) is assumed to

be the sum of the elastic and viscous strain rate

tensors, De and Dv:

t
r

2m
þ

t

2Z
¼ D̂v þ D̂e ¼ D̂, (4.8)

where t is the stress tensor, m is the shear modulus,

and Z is the shear viscosity. D
^

is the deviatoric part

of the strain rate tensor. To maintain mechanical

objectivity, Ellipsis incorporates the Jaumann cor-

otational stress rate, t
r
, for a material point, given by

t
r
¼ t

�
þtW �Wt, (4.9)

where W is the spin tensor,

W ij ¼
1

2

qV i

qxj
�

qV j

qxi

� �

. (4.10)

See Moresi et al. (2003) for details of the numerical

implementation.

4.2.5. Melt depletion

A parameterization of melt production, assuming

batch melt extraction and depletion of the mantle

residuum similar to de Smet et al. (1998, 1999), has

also been incorporated in Ellipsis3D. We define a

supersolidus temperature Tss, where

T ss ¼
T � TðPÞs

TðPÞl � TðPÞS
, (4.11)

where T is the temperature of a particle tracer, P is

the pressure, T(P)s and T(P)l are the solidus and

liquidus temperatures at pressure P, for the

peridotite solidus of (Takahashi and Kushiro,

1983) and the liquidus of (McKenzie and Bickle,

1988). McKenzie and Bickle (1988) demonstrated a

relationship between the Tss and melt fraction F,

given as

F ¼ 2:0684T ss � 4:0564T2
ss þ 2:988T3

ss. (4.12)

The production of melt results in an additional

latent heat term in the energy equation, which

becomes

DT

Dt
¼ kr2T þQ� T

DS

cp

DF

Dt
. (4.13)

Here T is the temperature, t the time, k the thermal

diffusivity, Q a volumetric heat source term, DS the

entropy change on melting, cp the thermal capaci-

tance, and F the fraction of partial melting. The

effect on the density of the residuum has been

modelled by assuming an extra term in the

constitutive relationship:

r ¼ r0ð1� aDT � bF Þ. (4.14)

Here r and r0 are the density and reference density,

a the thermal expansivity, DT the difference between

the temperature and the reference temperature, F

the degree of melt depletion, and F the density of

change of material upon full melt depletion.

5. Benchmarks

A three-dimensional convection benchmark was

outlined in Busse et al. (1993). We have bench-

marked Ellipsis3D against their solutions, and the

results are shown in Fig. 3. We tested the Nusselt

number, heat flux at various points on the surface,

the root mean square (RMS) velocity, the velocity at

various mid-depth points, and the temperature at

mid depths, against the benchmarked solution, for

the configuration shown in Fig. 3(a). The config-

uration is an example of isoviscous bimodal

convection at a Rayleigh number of 104, in an

a� b� 1 box, where a ¼ 1:0079 and b ¼ 0:6283.
The particle density for all cases is 64 (i.e., 4� 4� 4

particles in the finest element). For smaller particle

densities, the integration in the finest multigrid level

may not be accurate. However, we have found that

the improvement in accuracy for higher particle

densities places a greater constraint on performance

than increasing the multigrid level, and 4� 4� 4

particles per finest element is the optimal trade-off

between speed and accuracy. The top and bottom

surfaces are no-slip (i.e., zero velocity), and the side

boundaries are assumed to have mirror symmetry

(the default in Ellipsis). The initial conditions are

chosen so that we have ascending flow at ðx; yÞ ¼
ð0; 0Þ and descending flow at ðx; yÞ ¼ ða; bÞ. The

simulation was allowed to run to a statistical steady

state. As shown in Fig. 3(b), (c) and (d) the nodal

velocities, surface heat flux and temperatures all

converge towards their benchmark solutions for

increasing grid resolution. The resolution we could

6



reach is limited in this problem; however, by the

necessity of loading and dynamically storing in-

formation on all the particles, a 24� 24� 24 grid is

probably the current problem limit on a single

processor.

We also performed a test of our viscoelastic

rheology also by comparing our modelled results for

a two-dimensional compressible square, and three-

dimensional compressible cube, with an analytical

solution. The configuration is shown in Fig. 3(e).

The analytical solution is derived from the consti-

tutive equation for pressure:

P
�

Ke

þ
P

x
¼ ��yy ¼ �

Vy

hðtÞ
¼ �

V y

hð0Þ þ V yt
. (5.2)

Here Ke and x are the elastic (storage) modulus, and

the viscosity (loss) modulus respectively, and Vy is

the vertical velocity (see Fig. 3). When the velocity is

not zero, a variational method can be used to

obtain:

PðtÞ ¼ lðtÞe�ðKe=xÞ=t, (5.3)

where

lðtÞ ¼ �

Z t

0

KeV y

hðtÞ
eðKe=xÞt dt. (5.4)

This is integrated numerically to obtain the analy-

tical solution for compression. A comparison

between analytical solution, and our results for

two and three dimensions, are shown in Fig. 3(f),

and agree well over the range explored.

6. Examples

The following examples are designed to highlight

the capabilities of the code, and provide starting

templates for potential users of laboratory exercises.

These examples are of low resolution, and take

about an hour of real time to complete on a
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p
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solution
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H
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Fig. 3. (a) (Inset) 3D isoviscous benchmark example of Busse et

al. (1993) benchmark, in an axbx1 geometry (a ¼ 1:0079,

b ¼ 0:6283). This example uses 12� 12� 12 grid cells, with a

particle density of 64 per cell. Shown are isosurfaces of hot

(T40.7, red) and cold (To0:3, blue) temperatures. Arrows

represent the velocity field The Rayleigh number is 104, the top

and bottom surfaces are no-slip (i.e., zero velocity), and the side

boundaries are assumed to have mirror symmetry. (b) Steady-

state velocities vs. grid size for the configuration shown in (a).

Grid size increases from 4� 4� 4, to 8� 8� 8, to 12� 12� 12

and 16� 16� 16. Particle density was held constant at 64 per

finest element (higher grid resolutions were not possible at this

particle density). We measured the RMS velocity of the system,

and the vertical nodal velocities at two points at mid depth. The

solution converges to Busse et al. (1993) benchmark solution

(horizontal dashed lines) for increasing grid size. (c) (Inset)

Temperature vs. grid size, for temperatures for two points at mid

depth ðz ¼ 0:5Þ. (d) Heat flux (Q), or Nusselt number (Nu) for

increasing grid size, for the Busse et al. (1993) benchmark

example shown in (a). Heat flux is measured at different points on

the surface ðz ¼ 0Þ. (e) Schematic of our elastic benchmark of a

compressed square. (f) Pressure vs. time for the analytical, 2D

and 3D case.
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Pentium IV processor using Linux. Ellipsis3D is, at

this stage, is only a serial code, and each problem

can be run on only one processor.

6.1. Chemical plume

Figure 4 shows the material field for a chemical

plume. The visualization of all 3D output is

accomplished using the freely available OpenDX

software. The nodal velocities are shown as small

arrows. The input files for the simulations described

here, as well as instructions and scripts for plotting

the results with OpenDX, are included in the code

distribution. Both the plume material, and back-

ground mantle material are isoviscous in this

example, with the plume having a viscosity 100

times less than that of the surrounding mantle. The

large plume head, followed by a thinner conduit,

shows fairly typical behaviour for plumes observed

in laboratory experiments, which have lower visc-

osities than the material surrounding them (see van

Keken, (1997), for comparison. Benchmark is

similar to this example, but not performed due to

the resolution required). The plume’s density was

100 times less than that of the surrounding mantle.

The grid used in this example is a 3� 3� 3 grid,

with three multigrid levels. For this problem, the

resolution of the problem takes about an hour to

run on a desktop PC using Linux. Two tracer

regions were defined, with nine tracers per element

in the background material, and 15 tracers per

element within the plume material. A linear

temperature gradient exists at the start of the

simulation, and the boundary conditions are free

slip, and reflective (zero normal velocity) at the

sides.

6.2. Oblique-forced subduction

Figure 5 shows an example of forced subduction.

In this example, we have defined two materials,

mantle and lithosphere (purple). The nodal velo-

cities are shown as arrows. The surface colourfield

shows the second invariant of the deviatoric strain

rate tensor, indicating regions of high-accumulated

distortional strain. This example contains two

velocity conditions: one, rectangular velocity con-

dition extending from 0.42 to 0.99 in the x-direction,

and 0.01–0.99 in the y-direction. It has a magnitude

of �1, and corresponds to the red arrows in Fig. 5.

The second velocity condition is the circular region

of zero velocity, situated at x ¼ 0, y ¼ 0. These two

velocity conditions serve to force subduction of the

lithospheric material in the region between them.

The grid in this example is a 4� 4� 4 grid with

two multigrid levels, and 64 tracers per finest

element. The side boundary conditions in the x-

direction are periodic, those in the y are reflecting.

The lithosphere is more dense than the underlying

mantle. The mantle is purely isoviscous, while the

lithosphere deforms viscoplasticly, using a pressure-

dependent yield stress, and including strain weak-

ening.

6.3. Two-layered extension model

Figure 6 shows a three-layered crustal extension

model, with a brittle upper crust, ductile lower crust,

and compressible air layer. The particles constitut-

ing the upper crust are shown as orange spheres,

those of the lower crust as yellow spheres. Plastic

strain is also shown, either as a superposed

translucent grid on the right side of the box, and

as a red translucent contour surface delineating the

areas with a plastic strain of 0.2. The air layer is not

shown. A compressible material is necessary in the

simulations in order to satisfy continuity; i.e., as the

mesh extends and the crust is pulled apart, the air,

which has a positive bulk viscosity, expands to fill

the gap. The tracers may split and merge under

deformation and mesh extension to ensure that the

Fig. 4. A chemical plume: A 3� 3� 3 grid is used with three

multigrid levels. The plume and mantle are isoviscous, with a

viscosity contrast of 100, and a variable tracer density.
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modelling domain is sufficiently resolved at all

times, the details of whose interactions are covered

in Moresi et al. (2003).

The lower crust has a low viscosity, and deforms

in a purely viscous manner. The upper crust, in

contrast, has a viscosity 1000 times greater than the

lower crust. The stresses generated in the upper

crust by the extension of the box reach the yield

stress for the material, and failure occurs. Areas

undergoing plastic strain in this example are plotted

as a red surface, and also the sidewall of the box

consists of a coloured grid of the plastic strain at

that place.

Ellipsis3D allows for time-dependent mesh exten-

sion, which was used in this example. The currently

available time dependence involves combinations of

up to three linear segments (with or without

piecewise continuity). For example, the extension

of the mesh might start with a linear increase in

boundary velocity from zero to a target velocity for

the first segment. This is followed immediately by a

period of constant (or perhaps still increasing)

velocity during the second segment, immediately

followed by a linear decrease in velocity from the

current velocity back to zero. Separate sequences or

sets of these three segment linear functions are

allowed, permitting isolated periods of extension/

compression interrupted by times of tectonic quies-

cence.

6.4. Plate flexure

Figure 7 shows the flexure of a viscoelastic plate

under an applied load, in this case the weight of a

Fig. 5. Oblique forced subduction: Lithosphere is shown as

purple, and the nodal velocities are shown as arrows. The surface

colourfield indicates regions of high accumulated distortional

strain. Two velocity conditions are used (see text).

Fig. 6. A three-layered crustal extension model, with a brittle

upper crust, ductile lower crust, and compressible air layer.

Orange spheres denote the upper crust, and yellow spheres denote

the lower crust. Plastic strain is also shown, either as a

superposed translucent grid on the right side of the box, and as

a red translucent contour surface delineating the areas with a

plastic strain of 0.2.
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dense block on top of the free edge of the plate. This

example has parallels in geodynamics, e.g., the

loading of oceanic plate by a seamount, near a plate

boundary. The units in this example are non-

dimensionalized for simplicity. In this case, the

viscoelastic plate is shown is shown as purple, and

has a density of 3300. The load (blue) has similar

physical properties, but with a density of 8000. The

surrounding area is filled with air. The plate is held

in place at its attached edge by two rectangular

velocity conditions. The plate has a viscosity of 1e4,

and an elastic shear modulus of 1e5.

Also shown is the velocity at the nodes (arrows—

the scale tends to be dominated by the large

velocities in the low viscosity air). In this example,

the coarsest grid is of two elements in the x-, y-, and

z-directions, with four multigrid levels, so that at the

finest multigrid level there are 16 elements. Regard-

ing the integration point density, there are 64 tracers

per finest element. All boundaries are reflective.

7. Conclusions

Ellipsis 3D is a robust, particle-in-cell finite-

element code for modelling mantle convection and

lithospheric deformation. It combines the standard

advantages of the Eulerian formulation for large-

deformation problems, and Lagrangian integration

points for tracking materials and history-dependent

properties. Ellipsis3D can model materials with

viscoelastic–plastic rheologies, and include the

effects of strain and strain-rate weakening, and

depletion. Released under the GNU Public License,

Ellipsis3D is a powerful tool for a range of

geodynamic research and teaching applications.
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