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10

Abstract11

This article describes the use of simulated annealing for allocation of land units to a set 12

of possible uses on, the basis of their suitability for those uses, and the compactness of 13

the total areas allotted to the same use or kind of use, which are fixed a priori. The 14

results obtained for the Terra Chá district of Galicia (N.W. Spain) using different 15

objective weighting schemes are compared with each other and with those obtained for 16

this district under the same area constraints, using hierarchical optimization, ideal point 17

analysis, and multi-objective land allocation (MOLA) to maximize average use 18

suitability. Inclusion of compactness in the simulated annealing objective function 19

avoids the highly disperse allocations typical of optimizations that ignore this 20

subobjective.21

Key words: multicriterion land allocation, land uses, MOLA, hierarchical optimization, 22

ideal point analysis. 23
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1. Introduction28

Rural land use allocation is becoming increasingly complex due to the emergence of 29

new uses, the growing multifunctionality of rural areas, and the pressures put on these 30

areas by urban and industrial expansion. In these circumstances, land use allocation 31

must try to reconcile multiple conflicting interests as rationally and transparently as 32

possible (Carsjens and Van der Knaap 2002), which among other things, involves 33

evaluating land units not only with regard to their suitability for competing uses but also 34

in regard to such factors as contiguity among units assigned to the same use, and the 35

compactness of the single-use land masses so created (Aerts et al. 2003; Nalle et al.36

2002).37

Most land use allocation techniques consider only one use at a time; see, for example, 38

Carver (1991), Malczewski (1996) and Pereira and Duckstein (1993). Studies 39

distributing land simultaneously among several mutually incompatible uses include 40

those of Aerts and Heuvelink (2002), Aerts et al. (2003), Martínez-Falero et al. (1998) 41

and Stewart et al. (2004); see also Cromley and Hanink (2003). The computational 42

burden on computer programs for land use allocation, which makes exact optimization 43

methods such as integer programming infeasible when there are more than two or three 44

thousand land units to be allocated (Aerts et al. 2003), is increased by simultaneous 45

consideration of multiple possible uses. It is, therefore, necessary to turn to heuristic 46

algorithms capable of achieving near-best solutions in a reasonable time (Matthews 47

2001). In particular, good results have been obtained using stochastic methods such as 48

the simulated annealing technique (SA) originally due to Kirkpatrick et al. (1983) 49

(Aerts et al. 2003; Alier et al. 1996; Boyland et al. 2004; Nalle et al. 2002); an 50

additional advantage of such methods is the possibility of using nonlinear objective 51

functions with essentially no increment in computational complexity (Tarp and Helles 52

1995). Studies in which SA has been applied to land use allocation include work by 53
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Martínez-Falero et al. (1998), who allocated ten agricultural activities using an 54

objective function that took six considerations into account (profit, land-use 55

transformation cost, social costs, environmental impact, total land area, and continuity); 56

Aerts and Heuvelink (2002), who minimized development costs while maximizing 57

spatial compactness; Sharma and Lees (2004), who compared SA with the IDRISI 58

multi-objective land allocation facility MOLA; and Duh and Brown (2007), who 59

endowed their SA program with mechanisms by which auxiliary knowledge could be 60

used to increase search efficiency. 61

In the work described in this paper, we applied SA to the problem of distributing given 62

total areas of 13 crops or covers among the 182,168 cells with a size of 100 m 100 m 63

which make up the district of Terra Chá (Galicia, N.W. Spain). We employed an 64

objective function that took into account the suitability of each land unit for each use, 65

the compactness of the total area assigned to each use, and the compactness of the total 66

area assigned to each group of similar uses. We ran the algorithm with several different 67

sets of weights applied to these three objectives, and we compared the corresponding 68

results with each other and with those obtained when average suitability alone was 69

maximized using hierarchical optimization (Campbell et al. 1992; Carver 1991; 70

Mendoza 1997), ideal point analysis (Barredo 1996) and MOLA (Eastman et al. 1998). 71

In Section 2 below, we describe the SA algorithm in terms allowing its generalization to 72

problems other than the specific case of Terra Chá; in Section 3, we provide details of 73

the application of SA and the other methods to Terra Chá in this study; and, in 74

Section 4, we compare the various sets of results obtained. Section 5 concludes.75

2. The general problem and the simulated annealing algorithm76

Our problem is to distribute I square land units, each of unit area, among N different 77

uses under the constraint that the total number allocated to each use n is the given 78

number In, with n In = I. Also given are the suitability Ain of each land unit i for each 79
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use, and, optionally, a set of use weights wn that allow preferences among uses to be 80

taken into account as well as the suitability of the land unit for those uses (see 81

Section 2.2). We aim to obtain solutions addressing three objectives, individually or 82

jointly: maximization of the overall w-weighted suitability of the land units for the uses 83

allocated to them; maximization of the compactness (and hence minimization of the 84

fragmentation) of the total area assigned to any particular use; and maximization of the 85

compactness of the total area assigned to any particular group of uses, as defined by the 86

problem solver (for example, use groups for the case of Terra Chá are defined in 87

Section 3). 88

The simulated annealing algorithm, as its name suggests, emulates the behaviour of a 89

thermodynamic system that, as the result of configurational changes subject to the 90

Boltzmann probability distribution, finally adopts its least-energy configuration as its 91

temperature is gradually reduced to absolute zero (Metropolis et al. 1953). When 92

applied in non-thermodynamic contexts, energy is replaced by the objective function to 93

be minimized or maximized, and temperature by an arbitrary parameter T that is used to 94

control the thoroughness of the search for the optimum. The basic procedure is as 95

follows: 1) Given the current configuration of the system being optimized, a trial 96

configuration is generated by a method that includes some element of chance. 2) The 97

value of the objective function for the trial configuration, Et, is compared with the value 98

of the objective function for the current configuration, Ec. If Et is better than Ec, the trial 99

configuration is adopted as the current configuration for the next iteration of the 100

procedure. If Et is worse than Ec, the trial configuration is adopted as the next current 101

configuration according to the Boltzmann probability distribution; that is to say, only 102

with probability e-(Et - Ec)/T (if E is to be minimized) or e-(Ec - Et)/T (if E is to be 103

maximized). 3) For each value of T, the system is allowed to explore configuration 104

space in this way for a number of iterations (or a number of iterations resulting in a 105
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change of configuration) that, in principle, should be sufficient to ensure that, with very 106

high probability, E values are within a range that is so good that worse E values are 107

being accepted at a lower average rate than better E values, so that the average value of 108

E keeps improving. The value of T is then reduced (so that better E values are again 109

favoured through a heavier filtering in the Metropolis condition) and the loop starts 110

again. 4) The algorithm terminates upon satisfaction of some appropriate stop condition 111

such as a pre-established number of temperature reductions. 112

For the present application, the whole procedure is summarized in Fig. 1. In what 113

follows, we describe in greater detail its main components: the generation of trial 114

solutions, the objective function, and the annealing schedule. 115

<Figure 1 about here>116

2.1. Generation of land use configurations117

At the beginning of the procedure a configuration is generated that satisfies the 118

constraint on the total area of land allotted to each land use. In order to ensure 119

satisfaction of this constraint by successive trial configurations, these latter are 120

generated by simply exchanging the land use allocations of a randomly selected pair of 121

land units. This procedure furthermore facilitates calculation of the value of the 122

objective function for the trial configuration, which will differ from the value for the 123

current configuration by a quantity that can be determined by consideration of only the 124

land units affected by the proposed change in configuration.125

2.2. The objective function126

As noted above, the objective function E combines three distinct subobjectives: 127

maximization of overall w-weighted land suitability (function S), maximization of the 128

compactness of the total area assigned to any particular use (function UC), and 129

maximization of the compactness of the total area assigned to any particular group of 130

uses (function GC). These subobjectives are combined linearly:131
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E(S,UC,GC)  = 1S + 2UC + 3GC132

where the coefficients j are chosen by the problem solver, subject to the condition 133

j j = 1, so as to control the relative importance of satisfying the individual 134

subobjectives. To facilitate this choice and enhance its transparency, the subobjective 135

functions are all normalized to the range [0,1]. We also define these functions so as to 136

make the overall problem the minimization of E.137

Overall w-weighted land suitability is evaluated in the first instance as the sum 138

LS = i wnAin139

The value of the subobjective function S is given by the normalizing expression 140

S  =  (LSmax - LS)/(LSmax - LSmin)141

where LSmax is the value of LS when each land unit i is assigned its maximum weighted 142

suitability, maxn(wnAin), and LSmin is the value of LS when each land unit i is assigned its 143

minimum weighted suitability, minn(wnAin).144

Following Fischer and Church (2003), the compactness of the total areas assigned to the 145

various land uses is evaluated in the first instance through calculation of the total length 146

UB of the boundaries of connected areas allotted to a single use (hereinafter "use 147

patches"):148

UB = n
N

rn
Rn Prn149

where Prn is the length of the boundary of the rn-th of the Rn use patches with use n.150

Calculation of the boundary lengths is facilitated by the fact that the land units are unit 151

squares, which likewise facilitates identification, for normalization purposes, of the 152

maximum and minimum possible values of UB: the maximum value UBmax, which 153

would be realized if the area In allotted to each use n consisted of In isolated land units, 154

is 4I; and the minimum, UBmin, which corresponds to the doubtless unrealizable 155

situation in which each use occupies a single square area, is 4 n
N In

½. The normalized 156

subobjective function UC is given by the expression 157
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UC  =  (UB - UBmin)/(UBmax - UBmin)158

Finally, the subobjective function GC is defined similarly to UC in terms of the length 159

of the boundaries of "use group patches", GB.160

2.3. The annealing schedule161

The annealing schedule of an SA procedure determines the thoroughness of the search 162

for the optimum. In general, it is recommended that the initial value of T ensure that 163

about 80% of trials are successful at this stage; this value will depend on both the way 164

in which the objective function varies with configuration, and the configuration 165

generating scheme, and must be identified by trial and error for each problem. In this 166

work, the number of iterations employed at each value of T was approximately 25I and, 167

following Boyland et al. (2004), each reduction of T was effected by multiplication by a 168

constant factor, which was 0.98. Annealing was halted when fewer than five trials with 169

worse values of E had been accepted during the 25I iterations with the current value of 170

T and at least 300 values of T had been employed. 171

3. Application to Terra Chá172

The 1,832 km2 of Terra Chá are distributed between a broad southern plain in which the 173

main towns and most farming activity are located, and a hilly northern area devoted 174

predominantly to forestry and environmental protection. Some 53% of the total area is 175

agricultural land, and some 7,700 of its approximately 47,000 inhabitants are farm 176

workers.177

The land uses listed for Terra Chá in the Galician Agricultural Statistics yearbook for 178

2001 were regrouped for this study on the basis of land area occupied and similarity, 179

similar minority uses being grouped together. As a result, the following thirteen crops or 180

covers were distinguished: maize fodder, pluriannual green fodder, other fodder crops 181

(kale, beet), meadow, pasture, wheat, other cereals (rye, oats), potatoes, other 182

vegetables, fruit, eucalyptus, softwood, and deciduous hardwood. These thirteen uses 183
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were then grouped in the following five use groups: fodder (maize, pluriannual green 184

fodder, other fodder crops, meadow and pasture), cereals (wheat and other cereals), 185

intensive agricultural crops (potatoes, other vegetables and fruit), productive forest 186

(eucalyptus and softwood), and protective woodland (deciduous hardwood). 187

The suitability of each 100 m 100 m land unit for each of the above uses was taken 188

from Santé and Crecente (2005a). The total areas to be occupied by the various uses 189

were determined using a decision support system employing multiobjective linear 190

programming (Santé and Crecente 2005b). More specifically, the interactive STEP 191

method implemented in that system was used for joint optimization of economic, social 192

and environmental objectives, prioritized in this order. The resulting total areas are 193

listed in Table 1. 194

<Table 1 about here>195

Also listed in Table 1 are the weights wn given to the various uses. These weights were 196

obtained as if they were to be used in an analytic hierarchy decision process (Saaty 197

1980), on the basis of subjective comparison of all pairs of uses with regard to their 198

economic importance. 199

With the areas, use weights and suitabilities described above, SA solutions were 200

generated for eleven different sets of subobjective weights j (Table 2): one in which 201

the only objective was maximization of overall w-weighted land suitability (option A in 202

Table 2), three in which relative weights of 3:1 (the weight of the first subobjective is 203

three times higher than the weight of the second subobjective), 1:1 and 1:3 were given 204

to maximization of suitability and use area compactness (options B-D); three in which 205

these same relative weights were given to maximization of suitability and use group 206

area compactness (options E-G); and four in which all three subobjectives were 207

considered, with relative weights of 1:1:1, 2:1:1, 1:2:1 and 1:1:2 (options H-K). In 208

addition, solutions maximizing suitability were sought, for the same set of total areas, 209
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by hierarchical optimization (ranking uses in accordance with the wn values of Table 1), 210

by ideal point analysis (with the weights wn of Table 1 as objective weights, and using 211

the Euclidean distance), and by MOLA (with the weights of Table 1 and an area 212

tolerance of 100 ha). 213

All calculations were performed on a PC with 512 Mb of RAM, a 40 Gb hard disc, and 214

an Intel Pentium processor running at 1.4 GHz. 215

<Table 2 about here>216

4. Results and discussion217

Hierarchical optimization, ideal point analysis, and MOLA only optimize land 218

suitability, without considering the spatial distribution of land uses. This is why the 219

characteristics of the solutions obtained for Terra Chá by these three methods were 220

compared to the solution provided by SA when the only objective was maximization of 221

the suitability of the land units for the uses assigned to them (see Table 3). SA offered 222

the solution with the greatest total suitability value, about 1% better than that achieved 223

by MOLA, but took almost 60 times longer than MOLA and, more importantly, in the 224

SA solution the total area allotted to each use was very much more fragmented than in 225

the MOLA solution (see also Fig. 2). Overall, when used only to maximize total 226

suitability, SA thus appears to be inferior to MOLA, which itself tends to generate 227

excessively fragmented solutions (Bosque and García 2000). Hierarchical optimization 228

achieved the least fragmentation, with about 6% fewer use patches than in the MOLA 229

solution, but its suitability was also lower, by about 4%. The solution afforded by ideal 230

point analysis was inferior to the MOLA solution as regards both suitability and 231

fragmentation. Note that, although SA achieved the best total suitability, it did not 232

achieve the best suitability for each individual use (see Table 4). 233

<Table 3 about here>234

<Figure 2 about here>235
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In Fig. 2 it can be observed that the main difference between the outcomes of the four 236

methods is the location of intensive agricultural crops, mainly vegetable and fruit crops. 237

In the maps obtained with SA and MOLA, the entire vegetable crop area is located in 238

the vicinity of the main village of Terra Chá, located in approximately the centre of the 239

region. In the SA map, this crop area is concentrated to the south of the village, whereas 240

in the MOLA map it is distributed along the main roads leading from the village. In the 241

map provided by ideal point analysis, the vegetable crops are distributed in the vicinity 242

of several villages. In the map obtained with hierarchical optimization these crops are 243

even more dispersed, with small areas in the surroundings of several villages and roads. 244

The spatial allocation of fruit crops is similar in the maps obtained with SA and ideal 245

point analysis, being located along the region’s main highway which intersects its 246

south-west corner, and in the results of MOLA and hierarchical optimization, where the 247

fruit crops are located in two small regions of low suitability in the vicinity of Terra 248

Chá. In the case of fodder crops, the SA solution is also more similar to the MOLA 249

map, especially in the case of maize. The pluriannual fodder crops are dispersed across 250

the maps obtained with the four methods, mainly on the hierarchical optimization map, 251

whereas with ideal point analysis these crops are quite concentrated in the eastern part 252

of the region, which has significant livestock activity. The SA and MOLA maps provide 253

intermediate distributions between the former two examples. In the case of meadows, 254

the SA and MOLA maps are again quite similar, comprising the river Miño region. 255

Hierarchical optimization provides a similar distribution, albeit more compacted, 256

whereas the ideal point analysis map is quite different. Pasture is distributed in small 257

areas on the four maps, mainly in the mountainous zones. In the case of forest land uses, 258

hardwood forest is allocated in a similar way with the four methods, located mainly in 259

areas with high slope and protected by the Nature Network. The location of the other 260

two forest land uses is also very similar with the four methods, especially between SA 261
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and MOLA. In short, the land use solutions provided by SA and MOLA are quite 262

similar and differ from the solutions of hierarchical optimization and ideal point 263

analysis.264

Interestingly, the inferiority of SA with regards to computation time was considerably 265

less marked when the size of the problem was increased by using land units sized 266

20 m 20 m instead of 100 m 100 m, so that the total number of land units was 267

4,339,725. In this situation, SA (with an appropriate number of iterations at each 268

temperature) took 12 h, MOLA 3.5 h, ideal point analysis 7.5 h, and hierarchical 269

optimization 45 min.270

<Table 4 about here>271

Table 5 shows that whenever one of the compactness subobjectives was included in the 272

SA objective function along with the suitability subobjective, the solution obtained 273

exhibited the expected considerable decrease in UB - by as much as a factor of 2.8 -274

with respect to the option A solution obtained optimizing for suitability alone. Solutions 275

B-K were also more compact than any of the solutions obtained using other methods to 276

optimize for suitability. Reducing 1 always reduced the suitability of the solution, but 277

in no case did suitability fall as low as the value achieved when hierarchical 278

optimization was used to optimize suitability. When only use patch compactness was 279

included (options B-D), both UB and GB  were always reduced by more than a factor of 280

2, and both UB and GB decreased as 2 increased. This can be seen graphically in 281

Fig. 3, where a small region of Terra Chá is presented to show how isolated pixels 282

disappear and how larger land use patches are created as 2 increases. By contrast, 283

when only use group patch compactness was included (options E-G), UB was reduced 284

by at most a factor of 1.4, and although GB decreased with increasing 3 (see also 285

Fig. 4), UB was greater with 3 = 0.75 than with 3 = 0.50. Varying 2 with 3 = 0 also 286

caused greater variation in UB, GB and suitability than varying 3 with 2 = 0. 287
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Comparison of solution I with solutions B and E shows that splitting the weight 288

assigned to compactness between use compactness and use group compactness 289

achieves, with only a small reduction in suitability, UB and GB values that are only 290

slightly greater than when all the compactness weight is assigned to 2 or 3. With 291

respect to solution A, solution I reduces UB by 61% and GB by 68% in exchange for a 292

reduction in suitability of only 2.3%. Further increasing 2 and 3 at the expense of 1293

(option H) had the expected effects on compactness. This option shows that the use of 294

SA, assigning the same weight to each objective function, provides a much better spatial 295

distribution of land uses than hierarchical optimization, ideal point analysis and MOLA, 296

as well as a higher suitability value than hierarchical optimization and ideal point 297

analysis. Comparison of the solutions obtained with 1 = 0.25 (D, G, J and K) confirms 298

that sharing weight between use compactness and use group compactness achieves 299

better values of both UB and GB than when all the compactness weight is assigned to 300

either 2 or 3, albeit at the expense of suitability. 301

The number of subobjectives with non-zero weight in the objective function had 302

practically no effect on run time.303

<Table 5 about here>304

<Figures 3, 4 about here>305

5. Conclusions306

When the area of land to be alloted to each of a number of uses is given a priori, SA is a 307

feasible approach to the distribution of these areas among land units on the basis of the 308

suitability of the units for each use and the compactness of the resulting use patches and 309

use group patches. Application of this approach to a rural area in which thirteen uses 310

belonging to five use groups were to be allotted to some 182,168 land units suggests 311

that when only suitability is optimized, SA is superior to hierarchical optimization, ideal 312

point analysis, and MOLA, offering solutions that have better suitability but are more 313
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fragmented than those achieved by the other methods. For problems of the size 314

indicated above, run time of SA on a medium-range desktop computer is a matter of 315

hours rather than minutes, but is not prohibitive. The greatest weakness of the SA 316

approach is precisely that, to avoid a prohibitive computational burden, it relies on 317

being fed good a priori land use areas.318

The inclusion of compactness in the SA objective function allows the achievement of 319

significantly more compact solutions at the price of a relatively small reduction in 320

suitability. Inclusion of only use compactness in the objective function leads to greater 321

overall improvement than inclusion of only use group compactness, but inclusion of 322

both achieves results that are better than with either alone. This means that a better 323

value of use patch and use group compactness will be achieved if the compactness 324

weight is shared between both subobjectives than if all the weight is assigned to one of 325

them.326
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LEGENDS FOR TABLES AND FIGURES409

Table 1. Total areas and weights wn for each use n in Terra Chá problem.410

Table 2. Subobjective weighting schemes used in SA optimization to solve Terra Chá 411

problem.412

Table 3. Characteristics of solutions obtained for Terra Chá problem by hierarchical 413

optimization, ideal point analysis, MOLA and SA when used exclusively to maximize 414

total suitability. 415

Table 4. Suitabilities of individual uses obtained for Terra Chá problem by hierarchical 416

optimization, ideal point analysis, MOLA and SA when used exclusively to maximize 417

normalized total suitability S.418

Table 5. Total suitability (LS), total use patch boundary length (UB) and total use group 419

patch boundary length (GB) of SA solutions obtained for Terra Chá problem with  420

subobjective weightings of Table 2, together with corresponding run times.421

Figure 1. Pseudo-code summary of SA procedure.422

Figure 2. Solutions obtained for Terra Chá problem by a) SA, b) MOLA, c) ideal point 423

analysis (IPA) and d) hierarchical optimization (HO) when used exclusively to 424

maximize total suitability.425

Figure 3. Effects of 2 in land use patches in a small area of solutions obtained by SA 426

with various weighting scheme options: a) A, b) C, c) B, d) D. 427

Figure 4. Solutions obtained by SA for use groups of Terra Chá problem with various 428

weighting scheme options: a) A, b) F, c) E, d) G. 429

430

431



Acc
ep

te
d m

an
usc

rip
t 

Table 1

Area  (ha) Weight wn
Maize 31 799 0.2037
Wheat 2509 0.0147
Other cereals 181 0.0070
Potatoes 2408 0.0108
Pluriannual green fodder 28 835 0.1483
Other fodder crops 3025 0.0208
Vegetables 15 530 0.0557
Fruit 264 0.0083
Meadow 32 473 0.2770
Pasture 5129 0.0289
Eucalyptus 8247 0.0401
Softwood 23 161 0.0773
Deciduous hardwood 28 607 0.1074
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Table 2

Option 1 2 3
A 1 0 0
B 0.50 0.50 0
C 0.75 0.25 0
D 0.25 0.75 0
E 0.50 0 0.50
F 0.75 0 0.25
G 0.25 0 0.75
H 0.34 0.33 0.33
I 0.50 0.25 0.25
J 0.25 0.50 0.25
K 0.25 0.25 0.50
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Table 3

Hierarchical
optimization

Ideal
point
analysis

MOLA SA (option 
A)

Total suitability (LS) 122 726 125 146 127 312 128 705
Mean use patch area (ha) 25.33 22.94 24.00 14.86
Use patch boundary (UB, km) 13 779.6 14 879.6 13 864.2 16 184.8
Use group patch boundary (GB, km) 9345.6 10 170.0 9440.4 11 220.8
No. of use patches 7352 8195 7833 12 674
Largest use patch (ha) 19 680 17 548 17 682 18 511
Smallest use patch  (ha) 1 1 1 1
Run time 5 min. 19 min 5 min 4 h. 57 min.
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Table 4

Hierarchical
optimization

Ideal point 
analysis

MOLA SA ( 1=1,
2=0, 3=0)

Maize fodder 21 240.3 20 322.2 21 819.6 21 848.6
Wheat 736.6 781.7 666.5 859.1
Other cereals 11.2 12.0 10.0 19.0
Potato 545.6 642.9 464.0 641.2
Pluriannual green fodder 16 078.3 20 747.6 17 051.7 19 132.7
Other fodder crops 1273.3 2227.2 948.9 1343.9
Vegetables 9524.3 11 231.3 11 768.9 11 006.2
Fruti 22.0 88.0 59.0 85.0
Meadow 25 893.9 21 219.1 25 063.5 24 958.9
Pasture 3134.0 3085.0 3158.0 3173.0
Eucalyptus 4109.1 5472.3 5412.6 4965.3
Softwood 19 764.3 19 269.5 20 092.0 20 159.4
Deciduous hardwood 20 393.0 20 047.1 20 797.2 20 512.9
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Table 5

Option
( 1/ 2/ 3)

Total
suitability
(LS)

Use patch boundary 
(UB, km)

Use group patch 
boundary (GB, km)

Run time

A (1/0/0) 128 705 16 184.8 11 220.8 4 h. 57 min.
B (0.5/0.5/0) 126 037 6073.8 4293.4 4 h. 56 min.
C (0.75/0.25/0) 127 201 7096.0 5078.2 4 h. 56 min.
D (0.25/0.75/0) 125 668 5776.6 4084.6 4 h. 51 min.
E (0.5/0/0.5) 126 162 11 870.2 3455.2 4 h. 54 min.
F (0.75/0/0.25) 126 828 12 097.8 4019.6 4 h. 53 min.
G (0.25/0/0.75) 126 013 11 955.6 3387.0 4 h. 53 min.
H (0.34/0.33/0.33) 125 303 5873.8 3405.8 4 h. 56 min.
I (0.5/0.25/0.25) 125 787 6249.8 3590.4 4 h. 52 min.
J (0.25/0.5/0.25) 123 160 5684.4 3516.2 4 h. 56 min.
K (0.25/0.25/0.5) 125 026 5900.0 3251.0 4 h. 56 min.
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Figure 1

Initialize T
Number_of_Ts := 1 
Generate starting solution Sc
Ec := E(Sc)
Moves_uphill := 0
Do while Number_of_Ts  Number_of_Ts_Limit OR
         Moves_uphill > Moves_uphill_Limit
   Moves := 0
   Moves_uphill := 0
   Do while Moves Moves_Limit
      Generate trial solution St

Et := E(St)
      If Et Ec
         Sc := St

Ec := Et
         Moves := Moves + 1
      Else
         P := Random_number_in_(0,1)
         If P < exp(-(Et - Ec)/T)
            Sc := St

Ec := Et
            Moves := Moves + 1
            Moves_uphill := Moves_uphill + 1
         Endif
      Endif
   Enddo
   T := T Cooling_constant
   Number_of_Ts := Number_of_Ts + 1
Enddo
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Figure 2
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Figure 3
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Figure 4


