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a b s t r a c t

The past environment is often reconstructed by measuring a certain proxy (e.g. d18O) in an

environmental archive, i.e. a species that gradually accumulates mass and records the

current environment during this mass formation (e.g. corals, shells, trees, etc.). When

such an environmental proxy is measured, its values are known on a distance grid.

However, to relate the data to environmental variations, the date associated with each

measurement has to be known too. This transformation from distance to time is not

straightforward to solve, since species usually do not grow at constant or known rates. In

this paper, we investigate this problem for environmental archives exhibiting a certain

periodicity. In practice, the method will be applicable to most annually resolved archives

because these contain a seasonal component, e.g. clams, corals, sediment cores or trees.

Due to variations in accretion rate the data along the distance axis have a disturbed

periodic profile. In this paper, a method is developed to extract information about the

accretion rate, such that the original (periodic, but further unknown) signal as a function

of time can be recovered. The final methodology is quasi-independent of choices made by

the investigator and is designed to deliver the most precise and accurate result. Every step

in the procedure is described in detail, the results are tested on a Monte-Carlo simulation,

and finally the method is exemplified on a real world example.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A fundamental problem often encountered in proxy
records is the reconstruction of the time series, starting
from a measured distance series. Variations in accretion
rate squeeze and stretch the distance series (Fig. 1). This
distortion results in the lengthening and shortening of
individual features present in the signal, as can be seen on
the horizontal graph. Mostly, investigators are interested
. All rights reserved.
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in the time series (vertical graph). Indeed, the associated
time series is much more interpretable than the original
measured distance series, especially when
(i)
 two different proxy series are to be compared, because
each series has its unique accretion rate, or
(ii)
 a proxy is to be compared with an instrumental record
measured as a function of time, because both must
have the same grid (time).
In other cases the accretion itself is of interest (diagonal
graph on Fig. 1). This can hold important information
because the sedimentation or growth rate is often
influenced by the environment itself and can thus be
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Fig. 1. Concept of transformation of a record along a distance grid (dots

on horizontal axis) to a time series (dots on vertical axis). Dashed

diagonal line represents constant growth, while curved gray line along

diagonal represents accretion optimized by method described in this

paper, which assumes that true time series is periodic (full black line in

vertical graph). Mirroring distance series on diagonal curve results in

time series.
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used as an additional source of information. The problem
handled in this paper is the reconstruction of the time
series and accretion (rate) for a given distance series. As
can be seen in Fig. 1, it is impossible to estimate the
vertical and diagonal graphs if only the horizontal one is
given. How to overcome this problem in a systematic way
is the core of this research.

The new method presented in this study was devel-
oped in an attempt to simultaneously reduce stochastic
and systematic errors, and still keep a flexible and user-
independent (i.e. objective) product. The methods pro-
posed or used in the literature so far appear to be
unsatisfactory with respect to at least one of these criteria.

The most frequently observed approach is to remove
distortions of the time base by correlating by eye.
A number of reference points are chosen in the observed
distance series and in a priorly assumed time series, and
the observation dates are optimized by stretching and
shortening the observation records between the anchor
points until this new record is most similar to the
predefined time series. This, however, works only in the
simplest cases, and is not readily quantified and is
generally limited to low resolution. What makes things
worse is that two investigators, who are dating the same
record with this same method, will come to different
conclusions, because they may have selected different
tuning points. The selection of these ‘‘anchor points’’ is not
only subjective but also absolute, i.e. they are assumed to
be correct and ignore the fact that the data are subject to
stochastic uncertainty. Therefore, systematic errors are
easily introduced in this procedure (wrong anchor points)
and the measurement noise is fully propagated into the
resulting time series. Finally, due to the use of fixed
anchor points, the resulting accretion rate is a step
function, which can hardly be called realistic for a natural
process like the growth of a shell or the accumulation of
tree biomass.
More refined methods have been proposed in litera-
ture, including those by Martinson et al. (1982), Lisiecki
and Lisiecki (2002), Wilkinson and Ivany (2002) and De
Ridder et al. (2004). Most of these methods display the
serious weakness that they need the time series to be
known in advance. Consequently, the problem of dating
the observations becomes a task of finding what was
postulated. Furthermore, some input of the user is always
crucial in order to find reasonable results. For instance, the
method proposed by Martinson et al. (1982) is based on
an optimization routine which is highly sensitive to initial
values. For the method described in Lisiecki and Lisiecki
(2002) the user has to decide how many anchor points
must be used; in Wilkinson and Ivany (2002) the user has
to define the width of the time window in advance; the
non-parametric method described in De Ridder et al.
(2004) needs the width of a spectral window to be
specified by the user.

In this paper, the aim is to achieve a flexible, user-
independent, accurate and precise reconstruction of the
time series. This means the use of anchor points is
avoided, since these are essentially subjective and result
in unrealistic stepwise accretion rates. Instead, some other
hypothesis about the shape of the unknown accretion rate
or time series must be made. Depending on the applica-
tion, different hypotheses may be suitable. Yet, in order to
be flexible enough, the hypothesis should not be too strict.
In the current paper, a periodic time series is assumed,
which is often the case for annually resolved archives,
because of the presence of a seasonal cycle. Such an
assumption is much less restrictive than assuming it is a
sine, and certainly than assuming it is fully known. This
(or any other) hypothesis can be quantified in a para-
metric model, containing time explicitly. The problem can
then be solved by a simultaneous estimation of the signal
model parameters and the time base for the measure-
ments.

The new method is most similar to the strategy
proposed by Brüggeman (1992), which simultaneously
optimizes the time–depth (or time–distance) relation and
a linear dynamic model for the time series. This is the only
method, so far, which does not assume that the time series
itself is known in advance, but only assumes it to belong
to a certain class, described by a parametric model.
The time–depth relation is optimized by tuning anchor
points, which is the main difference with the new method,
where the time base is also described by a parametric
model. So, with the new method the estimated accretion
rate will not be stepwise constant, but a continuous
representation of the accretion rate is ensured. The use of
a parametric model also reduces the influence of stochas-
tic errors and thus precision of the results is improved.
Besides this, the risk of model errors is limited because
the shape of the time series is not fixed. Indeed, a
parametric model is used, which has a number of free
parameters to be optimized to find the best correspon-
dence with the observations. In addition, not one but a
number of models will be considered simultaneously in
order to reduce the risk of model errors even more. The
most appropriate model is selected using a statistical
criterion.
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The remainder of this article is structured as follows. In
Section 2 parametric models for the time base and time
series are proposed. Estimating the model parameters
maximizes precision by filtering off the measurement
noise. The problem of finding appropriate starting values
and other issues of the algorithm are discussed in
Section 3. Time reversal and optimizing model complexity
are discussed, respectively, in Sections 4 and 5. Section 6
consists of a Monte-Carlo simulation to test the algorithm,
and in Section 7 real data are processed. In order to
illustrate the subsequent choices and strategies, real data
have been used throughout the paper.
Fig. 2. Six spline basis functions are shown in colors. These Gaussian-

like functions have been multiplied with their parameters B,

B ¼ ½�0:15;0:25;0:3;0:1;0:2;�0:2�. If TBD for observation around

20 mm is large and positive, then red spline function would obtain a

large positive parameter value B3. Consequently, neighboring observa-

tions would have a large TBD as well, because of the width of the spline

function. TBD is found by summing all scaled basis functions and is

shown in black.
2. The signal model and time base

If we made no assumptions at all about the signal as a
function of time it would be impossible to reconstruct a
time base for the measurements. This is the reason why
many methods are based on an a priori known target
function (e.g. Martinson et al., 1982; Paillard et al., 1996;
Yu and Ding, 1998; Lisiecki and Lisiecki, 2002; Ivany et al.,
2003). However, the time series is usually not exactly
known and may even be the unknown of interest.
Therefore, it is important to use a method that does not
fully fix the time series in advance, but some assumption
will still be necessary. Here it is assumed that the signal is
periodic, which is an obvious assumption for annually
resolved archives, because they often exhibit a seasonal
cycle. Other assumptions can be made, but for clarity we
limit this discussion to periodic models. In this section a
formal description of the method is given.

The measurements are assumed to be sampled along
an equidistant distance grid. These observations are
modeled by a discrete time signal smodel(t(n)), in which
the assumption of periodicity is contained:

smodelðtðnÞÞ ¼ A0 þ
Xh

k¼1

Ak sinðkotðnÞÞ þ Akþh cosðkotðnÞÞ
� �

(1)

where t(n) is the unknown time variable at sample
position nA{1,y,N}, A0 is the offset, Ak and Ak+h are the un-
known amplitudes of the kth harmonic, o is the unknown
fundamental angular frequency and h is the number of
harmonics, yet to be identified. Changing the number of
harmonics will change the complexity of the model. How
to choose the optimal value for h is discussed in Section 5.
Note that Eq. (1) does not generally represent a Fourier
analysis, since this would require that o ¼ 2p/T (with T

the period spanning the whole record) and that the
observations are sampled equidistantly in time.

Although the samples are equidistantly spaced along
the distance axis, the time instance between two
subsequent observations is not constant, due to variations
in accretion rate. Note that it is practically impossible to
estimate the time base distortion (TBD) directly, by
comparing the measurements with the signal model
(Eq. (1)), because

Problem (A): the measured record is disturbed by
stochastic noise, which would be propagated into the
TBD. This would result in a very low precision on the time
base and would make the results practically useless; and

Problem (B): the signal model itself is unknown (even if
we assume it is periodic, the abovementioned parameters
are still unknown).

To circumvent these two problems, the time instances
t(n) are modeled as follows:

tðnÞ ¼ ðnþ dðnÞÞTs (2)

where Ts is the average sample period (time between two
subsequent observations) and where the twists of the
time base are modeled by a function d(n), called the TBD.
In Fig. 1, the TBD is the difference between the dotted line
and the full line along the diagonal. To characterize this
TBD, it is expanded in a set of basis functions:

dðnÞ ¼
Xb

m¼1

BmbmðnÞ (3)

where b is the set of b basis functions (see Fig. 2 for an
example), B is a vector of length b with the TBD
parameters. The parameter b defines the complexity of
the time base function, which still has to be determined
(see Section 5).

Problem (A) is circumvented by the introduction of
basis functions (Eq. (3)). We tested trigonometric func-
tions, Legendre polynomials and splines as basis functions
(Abramowitz and Segun, 1968; Dierckx, 1995). The last
seem to work best. This choice has two reasons:
(i)
 If the TBD is large for a certain observation, we may
intuitively assume that it will be large as well for its
neighboring observations and that this correlation
decreases proportionally to the distance between the
observations. This type of behavior can exactly be
described by splines (see Fig. 2). On the other hand,
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keep in mind that hiatuses (growth stops) are not very
well described by this type of basis functions. The use
of polynomials would be beneficial if slow trends
are present in the time base and trigonometric
functions would outperform if periodic variations
are expected.
parameters

(ii)
TBD
parameters
The optimization routine is much more effective for
splines basis functions than for the other tested
functions. More particularly, local minima seem to
be a recurring problem for these other basis functions.
RELAXATION

LEVENBERG-MARQUARDT

SET OF ALL
OPTIMIZED

MODELS

signal
parameters

θ̂iθ̂1 θ̂2 θ̂max

iθ̂

AUTOMATED MODEL SELECTION 

θ̂

... ...

Fig. 3. Structure of algorithm. Initialization, relaxation and Levenberg–

Marquardt optimization must be performed for all models iA{1, y,

max}, having complexity (hi, bi), delivering optimal values ŷi for their

parameters. Using an automated model selection procedure (here based

on the MDLc criterion) optimal model complexity can be selected, giving

one final optimal parameter set ŷ.
In order to overcome Problem (B), the signal model and
time base model are optimized simultaneously, i.e. all
unknowns o, A, B (in practice, these are stored in a vector
y ¼ [o, AT, BT]T) are estimated simultaneously. This avoids
circular reasoning. Indeed, if the time base is known, the
signal model parameters can easily be estimated, but to
know the time base it is necessary to have identified the
signal model. The optimal values of all these parameters
can be calculated by a numerical minimization algorithm,
which minimizes a least squares (LS) cost function
(objective function). More details about the optimization
are given in the next section.

While the central concepts of the new approach are
given above, a number of additional issues are important
to consider for the results to be both realistic and reliable.
These issues are discussed in the following sections.

3. Initialization and optimization strategy

Minimizing the LS cost function will be successful only
if one can start from a reasonable set of initial values.
Finding good initial values is not trivial and this was one
of the main shortcomings of the method proposed by
Martinson et al. (1982). However, since their publication
some non-parametric methods have been proposed
(Wilkinson and Ivany, 2002; De Ridder et al., 2004). Such
methods are more sensitive to noise, but do not need
initial guesses for the parameters. We used the phase
demodulation method (De Ridder et al., 2004) to find a
non-parametric estimate of the TBD, which can serve as
the starting value for the parametric model optimization.
In order to minimize the risk of converging towards a bad
local minimum, the optimization strategy is performed in
five steps (for a structure of the algorithm, see Fig. 3):
1.
 Initialization of the angular frequency o: a non-
parametric estimate of the TBD and the corresponding
frequency can be gathered for periodic signal records,
e.g. following the guidelines of De Ridder et al. (2004).
2.
 Initialization of the TBD parameters B: initial values for
the TBD parameters can be gathered by matching
Eq. (3) on the non-parametric TBD. This can easily be
done, because Eq. (4) is linear in B. Next, Eq. (2) is used
to obtain more precise dates of the observations.
3.
 Initialization of the signal parameters A: these are
gathered by matching Eq. (1) on the observations
employing the previously estimated time base. An
efficient algorithm is described in Pintelon and Schou-
kens (1996).
4.
 Relaxation: alternating, the TBD parameters and the
signal parameters are optimized, while the other set is
remained fixed. Note that optimizing the TBD para-
meters, while the signal parameters are constant, is, in
fact, the method proposed by Martinson et al. (1982).
This relaxation algorithm is stopped when the largest
relative variation in the parameter vector y ¼ [o, AT,
BT]T is lower than a numerical stop criterion (typically
10�3). This step in the optimization is implemented to
increase the calculation speed but it will not influence
the final results.
5.
 Final simultaneous parameter estimation: all para-
meter values are estimated together employing a
Levenberg–Marquardt algorithm (this algorithm is
preferred over the Newton–Gauss algorithm, because
the convergence area is larger). Further, each row in
the Jacobian was scaled by its standard deviation in
order to improve the numerical conditioning.

4. Local time reversal problem

If the observations are ordered along the distance grid,
logically this same order should be found along the time
grid. So far, this is not necessarily true. The method as
presented until now is too powerful and can alter the
observations’ order. In this paragraph a solution is
presented.
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The method is especially vulnerable for this weakness
when the number of TBD parameters is relatively high (an
example is given in Fig. 4). This is not surprising, because
the noise sensitivity is larger in this case (more para-
meters have to be estimated from the same number of
observations). Since we known this reversal behavior is
physically impossible, an inequality constraint optimiza-
tion was implemented (e.g. Fletcher, 1991): in each step of
the Levenberg–Marquardt algorithm a check is performed
to verify if any time reversals have occurred. If the
minimal sample period is lower than 20% of the average
sample period, the constraints become active and the TBD
at these samples is fixed at this minimum for this step of
the optimization routine. The dotted line in Fig. 4 shows
the result after the implementation of the inequality
constraint optimization. This 20% is an arbitrary boundary.
If the dates of two observations coincide, the accretion
rate at that time is infinite, which is not realistic. Even if
two observations do not coincide but are dated too closely
to each other, the corresponding accretion rate is no
longer realistic. So, at a certain accretion rate we have to
control the further evolution of the time base during the
optimization process. The constraints become active when
the time between two neighboring observations becomes
smaller than 20% of the average one. Obviously, the value
of this parameter can be changed if necessary.

5. Selecting the optimal model complexities h and b

If we stopped developing the algorithm at this point,
the complexity of the signal model and time base model,
quantified by h and b, respectively, are still chosen by the
user. Fig. 5 shows some examples of the accretion rate and
Fig. 6 the associated signal models, estimated from the
same measurement record, with identically the same
algorithm, but with different levels of complexity.
In this section, the strategy for selecting optimal values
for h and b is presented. A good choice will result in a
maximum extraction of information, but a too simple or
too complex model will produce less accurate or precise
results. Increasing the model complexity will decrease the
systematic errors; however, at the same time the model
variability increases. In other words: at a certain complex-
ity the additional parameters no longer reduce the
systematic errors but are used to fit the actual noise
realization of the data. Hence, it is not a good idea to select
the model with the smallest cost function (best fit) within
the set because it will generally continue to decrease
when more parameters are added. For this reason the cost
function is extended with a penalty term that compen-
sates for the increasing model variability. In this way, the
resulting model selection criterion, called MDLc (De
Ridder et al., 2005), is able to detect undermodeling
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Table 1
One thousand Monte-Carlo simulations have been run

0 1 2 3 4 5 6 7 8 9 10

Selected h 0 3 985 12 0 0 – – – – –

Selected b 0 0 0 4 838 22 7 108 19 2 25

In this table the distribution of the selected model complexities is

shown. The ‘true’ model consisted of two harmonics h ¼ 2, and four time

base distortion parameters b ¼ 4. In the large majority of simulations

(83.3%) the criterion was able to identify the ‘true’ model (italic).
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( ¼ too simple model) as well as overmodeling ( ¼ too
complex model). In the examples of this paper the
criterion to be minimized has the following expression:

MDLcðŷ;ny;nc;NÞ ¼
KðŷÞ

N
exp pcðny;nc;NÞ (4)

with penalty

pcðny;nc;NÞ ¼
lnðNÞðny � nc þ 1Þ

N � ðny � ncÞ � 2
(5)

and ŷ the optimized values of the model parameters, KðŷÞ
the residual cost function (residual sum of squares), N the
total number of observations, ny the number of para-
meters and nc the number of active constraints. This
criterion expresses that if the cost function decreases
faster than the exponent of the penalty term, the more
complex model is preferred over the simpler one.
A detailed description of model selection criteria can be
found in Akaike (1974), Rissanen (1978), Schwarz (1978),
De Ridder et al. (2005), de Brauwere et al. (2005). Notice
that introducing a model selection criterion enables the
automatic selection of the optimal model complexity (i.e.
the optimal values for h and b), again eliminating an
interference from the user, which makes the proposed
method more objective and user independent. Especially
for the time base complexity b such a criterion is of much
help, since this complexity is difficult to interpret in terms
of physical constraints or processes.

Practically, the user chooses the maximum values for h

and b, i.e. (hmax, bmax). Next, all models with a model
complexity between (h,b) ¼ (0,0) and this maximum are
optimized and Eqs. (4) and (5) are used to select the best
model within this set (lowest MDLc value).

What values should be chosen for (hmax, bmax)? The
theoretical maxima for h and b are given by the number of
observations N: h+bpN. However, Eqs. (4) and (5) will
never select this most complex model. In any practical
case, the maximum complexity of the signal model is
limited by the Nyqvist frequency. So, as a rule of thumb,
hmax equals the average number of observations in each
year or period. For the complexity parameter of the time
base, bmax, a rule of thumb cannot be provided so easily.
From our own experience, we suggest that at least five to
ten observations per basis function should be available.
So, start with bmax ¼ N/10. If the model selection criterion
(Eqs. (4) and (5)) selects this maximum, the optimization
procedure should be repeated with a higher complexity.

6. Monte-Carlo simulations

To test the reliability of the algorithm and quantify
noise propagation, a Monte-Carlo simulation is used
(Fishman, 1996). Firstly, performance of the method is
tested, followed by an examination of the noise propaga-
tion.

In order to test the accuracy of the method, we have
tested it with a relative standard deviation of 40% (signal-
to-noise ratio of 2.5). This is a relatively weak signal. One
thousand measurement sets were generated and all
models were optimized with complexities varying from
zero to five harmonics hA{0, y, 5} and from zero to ten
spline functions bA{0, y, 10}. The ‘true’ simulated model
consists of two harmonics and four spline basis functions
(h ¼ 2, b ¼ 4). Table 1 shows the distribution of the
selected complexities after performing 1000 Monte-Carlo
simulations. In 83.3% the MDLc criterion was able to
identify the complexity of the ‘true’ model. Note that this
value increases to 98% if the relative standard deviation of
the stochastic noise is decreased to a more realistic 10%
(tested on 100 simulations).

To what extent does measurement noise influence the

actual parameter values? This can be assessed by Monte-
Carlo simulations, but also by linearizing the models and
calculating the error propagation directly (Pintelon and
Schoukens, 2001). However, the latter method is only
approximate, especially if the model is highly nonlinear in
the parameters and/or if the noise level is large. Both
conditions can be checked simultaneously by comparing
the linear analysis with the Monte-Carlo simulation. This
comparison for the model parameters is summarized in
Table 2. Both seem to correspond well and will correspond
even better for lower (more realistic) noise levels. If we
compare the uncertainties on the signal and time base
(not shown), we come to the next conclusions: the
average standard deviation on the residual is 0.14 per
mil according to the Monte-Carlo simulation, while it is
0.12 per mil according to the linearized uncertainty
estimation. Though, for the time base, the Monte-Carlo
simulation finds an uncertainty of 0.07 year, while the
linearized uncertainty estimation find 0.02 years. This
difference is probably due to the non-linearity of the
model with respect to the TBD parameters.
7. Application: Saxidomus giganteus

The method is illustrated on the stable oxygen isotope
records (d18O) measured in the aragonite shells of S.

giganteus from Puget Sound (Washington State, USA)
sampled in September 2001. For a detailed description of
the experimental setup and interpretation of the results, we
refer interested readers to Gillikin et al. (2005). This site
generally experiences a SST range of 8 1C (8–16 1C) and has a
salinity of 27.771.06 %, with occasional (less than yearly)
periods of freshwater input reducing salinity to ca. 20%. A
thick section of the aragonite shell was sampled using a
computer-controlled micro-drill from growing tip to half
way to the umbo. The carbonate powder (7100mg per
hole) was processed using an automated carbonate device
(Kiel III) coupled to a Finnigan Delta+XL. Data were
corrected using an internal laboratory standard and are
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Table 2
Summary of the uncertainties on the parameters estimated with a linearized uncertainty propagation method and with a Monte-Carlo simulation

Period Offset Amplitudes TBD parameters

2p/o (year) A0 (%) A1 (%) A2 (%) A3 (%) A4 (%) B1 B2 B3 B4

True parameter values 1 0 1 �0.5 0 0.5 0.4 �0.4 0.2 0.2

Estimated parameters 1.0099 0.05 0.95 0.34 �0.03 0.66 0.31 �0.44 0.15 0.13

Parameter standard deviation from

Linearization of model 0.0038 0.04 0.06 0.11 0.09 0.08 0.036 0.052 0.054 0.045

Monte-Carlo simulation 0.004 0.04 0.06 0.12 0.09 0.08 0.03 0.05 0.05 0.03

The estimated values are taken from the first run of the simulation.
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Fig. 7. Clam 1: (a) raw data and (b) signal on constructed time base (full line) and signal model (dotted line).
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reported relative to V-PDB in conventional notation.
Precision is generally better than 0.08%. Two different
specimens were studied and the raw data are shown in
Figs. 7a and 8a (see Gillikin et al. (2005) for more details).
Since the specimens come from the same sampling site, it is
expected that they have recorded similar environmental
conditions. However, due to individually varying growth
rates the measured distance series are distinct (Figs. 7a and
8a). The correlation between the reconstructed time
records can thus be used to validate the method. The
records consist of 190 (clam 1) and 123 (clam 2) observa-
tions and cover periods of approximately 9 years. The large
winter–summer variations are reflected in these signals
and motivate the hypothesis of a periodic signal model.

The maximum model complexity was limited to four
harmonics and 20 TBD parameters, i.e. (h,b)max ¼ (4,20).
For certain model complexities, the constraints became
active. This was typically the case when the number of
TBD parameters became high. The results are summarized
in Table 3: for both clams the lowest model selection
criteria were found for a signal model consisting of only
one harmonic. Both samples were collected in 2001 and
the most recent observation was dated as April 1, so that
annual maxima in d18O correspond to winter situations.
The correlation between both reconstructed records is
84% (see Fig. 9), whereas the original correlation (in the
distance domain) was only 27%. The accretion rates of
both clams are shown in Fig. 10. Note that
(i)
 annual variations in the accretion rate may have
occurred, but such a TBD model was too complex
according to the MDLc criterion. So, the quality of the
data is not sufficient to support annual variations in
the TBD;
(ii)
 the estimated accretion rates decrease slowly with
age, which can be expected;
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Fig. 8. Clam 2: (a) raw data and (b) signal on constructed time base (full line) and signal model (dotted line).

Table 3
Summary of the selected models used in the Saxidomus giganteus

examples

Clam 1 Clam 2

Residual cost function (per mil)2, KðŷÞ 3.48 4.64

Automated model selection criterion (per mil)2 MDLc 0.045 0.048

Number of observations, N 133 123

Selected number of harmonics, h 1 1

Selected number of TBD parameters, b 9 10
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(iii)
 most variation occurs at more or less the same
moments in both clams.
The latter is reflected in the correlation of 63% between
the two accretion rate profiles. The mismatch between the

two peaks around 1996 can be due to errors still present
in the time base, which is used to construct and date the
accretion rate. An alternative explanation can be found in
the fact that the accretion rate is a non-linear function of
the TBDs. Consequently, small errors on these parameters
can have a larger influence on the accretion rate than on
the TBD itself.

The relatively high correlation illustrates that these
variations are relevant (i.e. it does not reflect the
stochastic noise) and that they are determined not only
by the age and physiology of the individual specimens but
also by external forcing. Otherwise, accretion rate
decrease with age would be much smoother or in a
random manner with much less similarity between both
specimens. Such precise estimations of the accretion rates
open the possibility to use this information for climate
reconstruction purposes.
8. Summary and conclusion

A new method to reconstruct the time base for periodic
archives was presented. It is based on the methods
described in Martinson et al. (1982) and De Ridder et al.
(2004), and is closely related to the one proposed by
Brüggeman (1992). The novelty of this approach is that it
estimates the time base together with the signal describ-
ing the time series. The method has several advantages:
(i)
 it is combined with a statistically based model
selection criterion (MDLc), to choose the most
appropriate model complexity;
(ii)
 which makes it robust to overmodeling in the signal
and time base model; and
(iii)
 which makes it robust to undermodeling;

(iv)
 it is robust to stochastic measurement errors, since

parametric signal and time base models are used,
whose complexities are carefully chosen,
(v)
 it is robust to non-sinusoidal periodic signals,
because overtones are modeled too.
The combination of (i) and (iv) makes it possible to
largely separate the stochastic noise from the significant
variations. The combination of (i), (ii) and (iii) allows the
user to extract the maximum amount of significant
information, ‘‘hidden’’ in the record. In addition, all tuning
is done by the algorithm, which makes the method user-
friendly and more objective. On the other hand, the
algorithm does assume that the ‘true’ record is periodic,
which may not be true. A violation of this assumption may
bias the final result. However, this assumption is already
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Fig. 9. d18O-records from clams 1 and 2 after time base correction.
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Fig. 10. Estimated accretion rate in clams 1 and 2.
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much less stringent than assuming the full time series to
be known. Moreover, the general strategy proposed here is
not limited to periodic signal models, although gathering
initial values for arbitrary models can become a hard task.

The method has been exemplified on two records of
d18O, measured in clams. Both clams lived in the same
environment, so the time series of d18O could be used to
check the robustness of the method. After independent
optimization of the two records the correlation between
both records increased from 27% to 84%. Furthermore, the
correlation between the independently estimated accre-
tion rates was 63%. This could indicate that also the
accretion rate is changing with varying environmental
conditions in a deterministic manner.
With these arguments and results, we hope to have
convinced the reader of the importance of a correct time
base reconstruction. As seen in the clam example, this is
necessary for intercomparing records, but it is also critical
for any quantitative understanding of processes under-
lying the proxy data. In paleoclimate studies this issue
may have considerable influence on the actual potential of
e.g. multi-proxy approaches. In applications where multi-
ple elements or isotopes are measured in the same
sample, specific signal models may be used for each
proxy (i.e. not necessarily periodic as in Eq. (1), but e.g.
exponentially decaying) but all proxies must have the
same time base model.
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