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ABSTRACT 10 

For a property measured at several locations, interpolation algorithms provide a 11 

unique and smooth function yielding a locally realistic estimation at any point within 12 

the sampled region. Previous studies searching for optimal interpolation strategies by 13 

measuring cross-validation error have not found consistent rankings; this fact was 14 

traditionally explained by differences in the distribution, spatial variability and sampling 15 

patterns of the datasets. This article demonstrates that ranking differences are also 16 

related to interpolation smoothing, an important factor controlling cross-validation 17 

errors that was not considered previously. Indeed, smoothing in average-based 18 

interpolation algorithms depends on the number of neighbouring data points used to 19 

obtain each interpolated value, among other algorithm parameters. A 3D dataset of 20 

calorific value measurements from a coal zone is used to demonstrate that different 21 

algorithm rankings can be obtained solely by varying the number of neighbouring points 22 

considered (i.e. whilst maintaining the distribution, spatial variability and sampling 23 

pattern of the dataset). These results suggest that cross-validation error cannot be used 24 

as a unique criterion to compare the performance of interpolation algorithms, as has 25 

*Manuscript
Click here to download Manuscript: ArticleCV_28_09.pdf

http://ees.elsevier.com/cageo/download.aspx?id=124422&guid=4c171602-8cf6-4ccf-9706-c42fece0e992&scheme=1


 
2 

been done in the past, and indicate that smoothing should be also coupled to search for 26 

optimum and geologically realistic interpolation algorithms. 27 

Keywords: interpolation, cross-validation, smoothing effect, Kriging, inverse distance 28 

weighting 29 

1. INTRODUCTION 30 

Interpolation algorithms aim to predict the value of a property at a location by 31 

using values of the same property sampled at scattered neighbouring points (Journel and 32 

Huijbregts, 1978; Jones et al., 1986; Davis, 2002). These algorithms yield a unique 33 

(though different for each method) property map honouring input data. Interpolation in 34 

geosciences is widely used for both predictive and visualization purposes. A variety of 35 

algorithms have been developed to carry out interpolations (Morrisson, 1974), for 36 

example inverse distance weighting (IDW, Kane et al., 1982), Kriging, (Matheron, 37 

1963), splines (Ahlberg et al., 1967; Mitasova and Mitas, 1993) or polynomial 38 

regression. 39 

The selection of optimal interpolation strategies for continuous variables is an 40 

important and ongoing subject of debate (Lu and Wong, 2008; Bater and Coops, 2009). 41 

Cross-validation (CV) has often been used to compare the performance of interpolation 42 

algorithms (Table 1). CV is based on calculating the value of the variable at locations 43 

where the true value is known, but has been temporally removed from the input data, 44 

and then measuring the CV error by comparing the estimated value against the true one 45 

(Davis, 1987; Isaaks and Srivastava, 1989). Past comparisons based on CV error have 46 

yielded a variety of results, not always consistent (Table 1). For instance, in comparison 47 

of two widely used algorithms such as Kriging and IDW, some authors have found that 48 

Kriging yields better interpolations (Weber and Englund, 1994; Zimmerman et al., 49 
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1999; Goovaerts, 2000; Teegavarapu and Chandramouli, 2005; Lu and Wong, 2008), 50 

some have not found any significant differences in the results (Dirks et al., 1992; 51 

Moyeed and Papritz, 2002; Gallichand and Marcotte, 1993), and others have found that 52 

IDW yields better interpolations (Weber and Englund, 1992; Lu and Wong, 2008). 53 

TENTATIVE POSITION FOR TABLE 1 54 

The disparity in the results obtained from existing interpolation algorithm 55 

rankings using CV error (Table 1) motivated this research. We demonstrate that the 56 

comparisons solely based on CV error are utterly flawed. Apart from the fact that 57 

rankings may depend on some specific characteristics of the particular data set used for 58 

the comparison, we provide evidence that the size of the search neighbourhood plays a 59 

determinant role in algorithm rankings considering only CV error. The search 60 

neighbourhood is amongst the factors controlling the smoothing effect of each 61 

interpolation strategy. These findings challenge the practice of ranking and qualifying 62 

interpolation algorithms considering CV error (Table 1), and show that there is no 63 

absolute best interpolation algorithm: one has to establish a trade-off between minimum 64 

CV error and predictions with low smoothing. A representative example, derived from a 65 

real 3D dataset with calorific values from a coal mine, is used for illustration purposes 66 

(Figure 1).  67 

TENTATIVE POSITION FOR FIGURE 1 68 

2. METHODS 69 

For our rankings, we considered two commonly used interpolation algorithms: 70 

IDW and Ordinary Kriging. Both methods provide an estimate Z
*
 of the studied variable 71 
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Z(x0) at an unsampled location x0, by means of a linear combination of N observed 72 

values of Z, denoted as z1, z2,..., zN, 73 

Z
*
(x0)=Σ wi·zi (1) 

For both algorithms compared, several numbers of averaged neighbours, N, 74 

ranging from 1 (nearest neighbour) to 288 were considered. Apart from well data 75 

locations (Figure 1B), interpolations were also carried out over the whole three-76 

dimensional grid (Figure 1D) to attach a visual representation to the interpolation 77 

strategies compared by CV.  78 

IDW is a straightforward and simple interpolation method, in which the weights 79 

wi of Eq. (1) for each averaged neighbouring data point are assigned according to an 80 

inverse of distance criterion (Kane et al., 1982).  81 

wi = β −1 · dα(xi,x0),   where  β = Σ dα(xi, x0)  

Several distance weighting power factors were tested (α=1, 2 and 5). For the 82 

IDW interpolations the implementation in GSTAT was used (Pebesma and Wesseling, 83 

1998).  84 

Kriging is a geostatistical interpolation method in which the weights for each 85 

averaged neighbouring data point are defined to minimise the estimation variance 86 

(Matheron, 1963; Journel and Huijbregts, 1978; Cressie, 1990). The minimisation of 87 

this variance enables a spatial covariance criterion to be introduced, which results in 88 

weights for each data point that not only depend on the distance and direction to the grid 89 

cell being estimated (as in IDW), but also on the characteristics of the interpolated 90 

property (described by the variogram, V(h), Figure 2) and the relative positions of the 91 
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averaged hard data (redundancy factor). For the Kriging interpolations the 92 

implementation in GSLIB was used (Deutsch and Journel, 1998).  93 

As usual, CV was carried out by temporarily removing an entire well from the 94 

dataset (Deutsch, 2002), but using the model parameters derived from the exhaustive 95 

dataset to execute interpolations. CV error was taken as the average of the absolute 96 

differences between each predicted interpolation estimate and its corresponding real 97 

value. Standard deviation of the CV estimations was used to measure interpolation 98 

smoothing; their relationship is inverse (the higher the standard deviation, the lower the 99 

smoothing). Reference behaviours for the CV comparisons were defined by nearest 100 

neighbour interpolation, and random-based interpolation (i.e. assigning random values 101 

from the input distribution (Figure 1C) considering different degrees of smoothing and 102 

without considering the neighbouring data points preferentially.  103 

3. ILLUSTRATION 104 

3.1. Dataset, interpolation grid and interpolation parameters 105 

The dataset used for illustration derives from the As Pontes Basin (NW Spain), a 106 

small mined non-marine basin (12 km
2
) resulting from the activity of an Oligocene-107 

Early Miocene strike-slip fault system (Bacelar et al., 1988; Santanach et al., 2005; 108 

Figure 1A). The sedimentary basin fill consists of a 350-400 m thick succession of 109 

siliciclastic facies assemblages alternating and interfingering with coal deposits 110 

(Cabrera et al., 1995, 1996; Falivene et al., 2007a, 2007b), and was extensively drilled 111 

owing to coal mining interest. Lithofacies of the continuously cored exploration wells 112 

were correlated, taking into account the settling and spreading of the major coal seams, 113 

which are bounded by isochronous or near-isochronous surfaces. Several composite 114 

sequences and intervals were identified (Ferrús, 1998; Sáez and Cabrera, 2002; Sáez et 115 
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al., 2003). Dry-base calorific values sampled on coal beds in 174 wells drilled through a 116 

30 m-thick, on average, coal-dominated interval (named 6AW, Falivene et al., 2007a) 117 

were used as the input data for the example in this study (Figure 1B and 1C). These 118 

wells were drilled along a roughly square grid at a spacing of about 105 m. Original 119 

data consisted of more than 2700 calorific value analyses spread over 4000 m of 120 

recovered core. Calorific value distribution in these coals, which form laterally 121 

continuous beds of up to several hundreds of meters, is mainly influenced by the 122 

amount of detritic material, and shows gradual lateral variations (Figure 1D and 1E). 123 

To restore the post-depositional structural deformation (Santanach et al., 2005) 124 

and allow an easier visualization of calorific value distribution, interpolations were 125 

carried out with shifted vertical coordinates transforming the top of the 6AW zone to a 126 

horizontal datum. A grid layering combining proportional and parallel-to-the-top 127 

layering schemes was designed to mimic paleodepositional surfaces, along which 128 

calorific values and facies display the largest continuity (Figure 1D). Horizontal grid 129 

spacing was set to 20 m. Vertical cell thickness was approximately 0.15 m, in line with 130 

the resolution of core descriptions. Calorific values measured in the cores were upscaled 131 

to the size of grid cells by arithmetic averaging (Figure 1C), which averaged variability 132 

at smaller scales than the cell size. Upscaled calorific values measured in the coal beds 133 

were then transformed to normal distribution using a normal-scores transformation 134 

(Deutsch and Journel, 1998). The transformed data were the input for further analyses.  135 

Parameters required for interpolation algorithms (i.e. variogram parameters for 136 

Ordinary Kriging and vertical-to-horizontal anisotropy ratios for IDW) were adjusted 137 

from the complete dataset (Figure 2). Anisotropy ratio (Jones et al., 1986; Falivene et 138 

al., 2007a) for IDW was approximated by the vertical-to-horizontal variogram range 139 
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ratio. This factor is used to multiply the vertical coordinates prior to the interpolation in 140 

order to deal with geometric anisotropy (Kupfersberger and Deutsch, 1999). This 141 

enables assigning different weights to hard data points located at the same real distance 142 

from the point being estimated, but with different stratigraphic position, and allows 143 

reproducing flattened geometries, which are typical of sedimentary deposits. 144 

TENTATIVE POSITION FOR FIGURE 2 145 

3.2. Results  146 

Results were computed directly both for the normal property and after undoing 147 

the normal scores transformation to the original data scale. As both results are 148 

qualitatively similar, for simplicity and geological relevance only the back-transformed 149 

results are shown (Figure 3, 4 and 5). Results in Figure 3 can be summarized as:  150 

1) CV error is not independent of smoothing; for random-based interpolation, as 151 

smoothing increases, CV error decreases (Figure 3). Nearest neighbour interpolation 152 

yields the largest CV error and the lowest smoothing with respect to Kriging and IDW 153 

(Figure 3). 154 

2) Compared to the results of random-based interpolation, by using average-155 

based interpolation methods, the CV error and smoothing are always smaller (Figure 3).  156 

3) When a small number of neighbouring data points are considered (Figure 4A 157 

and B), the largest CV errors are obtained (Figure 3). If the number of neighbouring 158 

data points increases (Figure 4C and D), then CV error decreases (Figure 3). In IDW, 159 

for very large numbers of neighbouring points, CV error increases slightly.  160 
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4) Smoothing always increases as the number of neighbours increases (Herzfeld 161 

et al., 1993, Figure 3). 162 

5) For IDW, on increasing the power factor, smoothing decreases, whereas CV 163 

error tends to increase (Figure 3B and C). Increasing the power factor increases the 164 

importance of the nearest samples, thus effectively reducing the number of influential 165 

samples in the neighbourhood. 166 

6) Depending on the degree of interpolation smoothing (i.e. on the number of 167 

neighbours considered for interpolation), completely different algorithm rankings can be 168 

obtained if only CV error is taken into account (Figure 3B and C). 169 

TENTATIVE POSITION FOR FIGURE 3 170 

TENTATIVE POSITION FOR FIGURE 4 171 

4. DISCUSSION AND CONCLUSIONS 172 

An optimal interpolation algorithm should provide minimum cross-validation 173 

(CV) error, as is common practice in the literature (Table 1). CV errors in the example 174 

presented here range between 10 to 15% of the mean measured calorific value (Figure 175 

3). These variations are large enough to rank the different algorithms, and can be 176 

significant when predictions are made over large coal volumes. In addition, an optimal 177 

interpolation algorithm should also obtain results with relatively low interpolation 178 

smoothing (Isaaks and Srivastava, 1989; Olea and Pawlowsky, 1996; Journel et al., 179 

2000), which seeks to preserve as much as possible the gradual lateral variation of 180 

calorific values shown in the mine (Figure 1D, compare Figure 4A to 4C, and 4B to 4D, 181 

Figure 5).  182 

TENTATIVE POSITION FOR FIGURE 5 183 
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Variations in interpolation algorithm rankings, taking only measurements of CV 184 

error (Table 1) have been traditionally justified by the fact that the studied variables are 185 

characterized by different histogram distributions, spatial continuity or sampling 186 

patterns (Brummert et al., 1991; Zimmerman et al., 1999; Lu and Wong, 2008). For 187 

example, a general consensus exists that, in irregularly spaced data, Kriging should 188 

provide more accurate and robust results than IDW, because Kriging takes into account 189 

the relative positions of sampling points, and not only their distance from the 190 

interpolated point (Kane et al., 1982; Lebel et al., 1987; Weber and Englund, 1994; 191 

Borga and Vizzacaro, 1997; Goovaerts, 2000; Falivene et al., 2007a).  192 

The results shown herein demonstrate that, if only CV error is considered, 193 

different algorithm rankings can be obtained by changing the number of neighbours 194 

averaged (Figures 3B and 3C). Thus, differences in algorithm rankings cannot be fully 195 

explained by intrinsic differences related to the variable studied and the sampling 196 

patterns, as suggested before. Indeed, interpolation smoothing partially controls the 197 

results of CV error (Figure 3). Interpolation smoothing is primarily controlled by the 198 

number of neighbours averaged, but also by the algorithm itself and other algorithm 199 

parameters (e.g. the semivariogram in kriging and the anisotropy ratio and the power 200 

factor in inverse distance weighting).  201 

As a consequence, using only CV error as ranking criteria provides ambiguous 202 

results, because smoothing (relating to each particular algorithm and algorithm 203 

parameters) heavily influences the CV rankings and the appearance and continuity of 204 

the interpolation results (Figure 4 and 5). The interpolation results obtained with the 205 

largest number of neighbours are the ones that yield the lowest CV error, but Figure 4 206 

and 5 shows that the predictions between data points in these cases tend to be too 207 
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smooth, because of the increasing influence from too much data further away. 208 

Therefore, minimum CV error cannot be the unique criterion of interpolation optimality, 209 

as have been used in previous studies (Table 1). Even for the same interpolation 210 

method, the optimum number of neighbours averaged is not the one that yields 211 

minimum CV errors because the smoothing introduced in the interpolation must also be 212 

taken into account. 213 

Multiple-criterion rankings, for instance coupling CV error and smoothing, 214 

needs to be used to search for optimum interpolation strategies. This multi-criterion 215 

would discard too smooth calorific value distributions (i.e. disconnecting large and 216 

small calorific values identified in adjacent wells), such as those in Figure 4D, even 217 

though they may yield the lowest CV error (Figure 3C). And it would favour gradual 218 

and laterally continuous, with moderate CV error and smoothing, such as those in 219 

Figure 4A or 4B (Figure 5). Therefore, in more general terms applicable to other 220 

geological situations or case studies, the analyst should search for a trade-off between 221 

geological continuity (low smoothing) and statistical optimality (low average CV error), 222 

in order to look for best interpolation practices. 223 
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FIGURE AND TABLE CAPTIONS 337 

Table 1. Summary of the results from published interpolation algorithm comparisons by 338 

means of the cross-validation (CV) check.  339 

Figure 1. Geological setting and dataset characteristics. (A) Present basin boundary and 340 

areal extent of the studied 6AW interval. Coordinates are in kilometres; see location of 341 

the basin in the upper right inset. (B) Well distribution in the 6AW interval. The 342 

location of the reference section in Frames D and E and in Fig. 4 is shown. (C) Relative 343 

frequency of calorific values; plotted information corresponds to the core data upscaled 344 

to the size of grid cells. (D) Reference section showing upscaled calorific values in the 345 

intersected wells; calorific values in lacustrine and alluvial mudstone are null. 346 

Approximate paleodepositional surfaces are shown. (E) Facies distribution in the coal 347 

zone obtained by using indicator Kriging with an areal trend applied to categorical 348 

variables (for details, see Falivene et al., 2007a). Vertical exaggeration of Frames D and 349 

E is 10x. 350 

Figure 2. Variograms for the transformed calorific values. Black dots, crosses and 351 

dashed curves correspond to the experimental variograms derived from upscaled well 352 

data. Grey continuous curves to the theoretical model fitted (Hr and Vr stand for 353 

horizontal and vertical ranges, respectively): V(h) = 0.82·Exp (Hr  = 450m, Vr =2.8 m) 354 

+ 0.18·Exp (Hr = 60m, Vr =100m). 355 

Figure 3. Interpolation smoothing (measured by the standard deviation of cross 356 

validation (CV) estimates) against mean absolute CV error for all the interpolation 357 

strategies compared. The greater the standard deviation, the lower the smoothing; 358 

standard deviation in the original dataset was 650. (A) Results for several numbers of 359 

averaged neighbours (2, 4, 12, 24, 48, 96, 192 and 288). Note also the results of the 360 

nearest neighbour and random-based interpolations (i.e. assigning random values from 361 

the input distribution (with different smoothing degrees), and without considering the 362 

neighbouring points. (B) Detail with the results for 12 averaged neighbours. (C) Detail 363 

with the results for 192 averaged neighbours. Note the correspondences with frames in 364 

Figure 4. 365 

Figure 4. (A, B, C, D) Reference section and map showing calorific value distributions 366 

in coal facies obtained by different interpolation strategies. Calorific value in alluvial 367 

and lacustrine mudstone facies shown in Figure 1E is null. (E) Location of the section, 368 

the map and the input data. Note that the horizontal scale of the map and the section are 369 

not the same. If the number of averaged neighbours increases, the spatial continuity of 370 

the resultant calorific value distribution in coal facies is obscured, as the result of larger 371 

interpolation smoothing. Vertical exaggeration 10x. 372 

Figure 5. Calorific values for those cells in the intersection of the map and the section 373 

shown section in Figure 4, obtained by different interpolation strategies. Note that too 374 

smooth interpolation methods such as Kriging or IDW with 192 averaged neighbours 375 

provide interpolations that in some cases deviate largely from the closest surrounding 376 

data due to the effect of data located further away, although they yield lower CV errors 377 

than algorithms considering a smaller number of averaged neighbours. 378 
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