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Abstract: 

We present a novel method for detecting circles on digital images. This transform is called the circlet 
transform and can be seen as an extension of classical 1D wavelets to 2D; each basic element is a 
circle convolved by a 1D oscillating function. In comparison with other circle-detector methods, mainly 
the Hough transform, the circlet transform takes into account the finite frequency aspect of the data; a 
circular shape is not restricted to a circle but has a certain width. The transform operates directly on 
image gradient and does not need further binary segmentation. The implementation is efficient as it 
consists of a few fast Fourier transforms. The circlet transform is coupled with a soft-thresholding 
process and applied to a series of real images from different fields: ophthalmology, astronomy and 
oceanography. The results show the effectiveness of the method to deal with real images with blurry 
edges. 
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1. Introduction

The detection of circular structures is a key factor in a number of com-
puter vision applications, especially in medical imaging and robotics. The
objective is for example to derive automatic inspections or to extract fea-
tures from an image or from a sequence of images (Mallat, 1996; Davies,
1997). More specific references related to circle detection can be found in
Lam and Yuen (1996); Ayala-Ramirez et al. (2006). Within the determinis-
tic approaches, the geometric hashing techniques try to match geometrical
features against a database (Iivarinen et al., 1997). The Hough transform
(HT) is an widely used alternative method to find parametrized shapes in
digital images (Duda and Hart, 1972; Ballard, 1981). For a review, we refer
to Mâıtre (1985); Leavers (1993); Illingworth and Kittler (1988); Song and
Lyu (2005). The HT is known to be robust against noise, but the classical im-
plementation requires massive computation and memory. More importantly,
it does not take into account the width of the contours. The band-limited
aspect of the data is a key element that should be considered (Kiryati and
Bruckstein, 1991).

Figure 1: Retinography image (left) and the associated image gradient (right), with A:
optic disk, B: retinal blood vessels, and C: exudates. The local gradient values are higher
around B and C. Only the optic disk has a circular shape.

In this introduction, we select a particular example in the medical imaging
domain to motivate the development of a new transform. Other applications
in different fields are later introduced. In the eye fundus image (Fig. 1, left),
one could distinguish between the optic disk with a circular shape (A), the
retinal blood vessels (B) and exudates (C). Glaucoma neuropathy refers to
damages of the optic nerves and can lead to loss of vision. In that context,
the evaluation of the size of the optic disk is of first importance (Montgomery,
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1993). The particular eye (Fig. 1) shows hard exudates with a possible large
risk of macular edema. The objective is to detect the optic disk that should
not be mistaken for exudates nor for vessels.
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Figure 2: Reconstructed image after Meyer wavelet (left) and curvelet (right) transforms.
In each case, only coefficients with values higher than 40% of the maximum value are
selected. Other coefficients are set to zero.

In order to emphasize the contrast in the eye image f(x, y) where (x, y)
denotes the spatial coordinates, the processing is usually performed on the
image gradient |∇f | (Fig. 1, right). It appears that the contrast at the
exudates and along the blood vessels are larger than the contrast around the
optic disk. With the multi-scale aspect, the width of the contours is taken
into account in the wavelet and curvelet transforms, not in the classical
HT. A wavelet analysis (Daubechies, 1992; Mallat, 1996) first reveals the
positions of the exudates with their irregular shapes (Fig. 2, left). Classical
2D wavelets or oscillatory functions are indeed very useful to detect point
singularities. Vessels are rather associated to a relatively smooth curve. For
that, curvelets are well suited for the detection (Candes and Donoho, 2004;
Candes et al., 2005) (Fig. 2, right). Curvelets can be seen as an extension of
wavelets where the elements used for the decomposition are elongated along
one axis and oscillating in the perpendicular direction. We refer to Ma and
Plonka (2010) for a review on curvelet applications. Both the wavelet and
curvelet analysis do not reveal the optic disk. The circlet transform proposed
here has been designed to detect objects with circular shapes. It should be
understood as an alternative to wavelets and curvelets, still with the multi-
scale aspect, but also with the possibility to follow global structures as for
the HT.

The objective of the new transform for detecting circular shapes should
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address the following issues: (1) the user should be able to specify a range of
radii for the selection; (2) the segmentation part should be avoided for more
robustness; (3) the circular shape should be an annulus of a certain width
in order to handle non perfectly circular shapes. This is also a way to take
into account the band-limited aspect of the data; (4) the transform should
be perfectly invertible: if all coefficients are selected, then the inverted image
should be the same as the original image; (5) the transform should be fast
enough to enable iterative processes such as the soft-thresholding technique
for reducing the number of key elements needed to represent the circular
structures in the image (Donoho, 1995).

The outline of the paper is the following. We first describe the circlet

transform. We then present the algorithm used to select only a few repre-
sentative circlet coefficients. We show applications in three different fields:
ophthalmology, moon exploration and coastal oceanography, with mainly
real images. The applications range from the detection of a single and clear
circular shape to the finding of a series of circular shapes with more diffuse
contours. Finally, we discuss the current limitations of the method and what
could be modified, in particular to remove some spurious detections.

2. The circlet transform

In the proposed approach, there is no need for binary image segmenta-
tion. The method consists of decomposing any image into “circles” with
different radii and a certain width, via a series of Fast Fourier Transforms
(FFTs). These circles are called circlets as they can be seen as the convo-
lution of a circle with a 1D oscillatory function, possibly a wavelet, in the
same way as wavelets relate to waves. However, the strategy for computing
the circlet coefficients is rather different from the classical approach used
for wavelet decomposition. Usually, wavelet coefficients are obtained via a
series of cascaded convolutions and down-sampling (Daubechies, 1992). As
explained bellow, the circlet decomposition is formulated in the Fourier do-
main with the definition of specific filters, following a similar approach as the
one proposed by Candes et al. (2005) for curvelets.

2.1. General framework

The circlet elements are characterized by a central position (x0, y0), a
radius r0 and a central frequency content f0 (Fig. 3). This finite frequency
f0 provides a certain width to the circlet in the spatial domain. This is
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the main difference with the Hough transform, beyond the implementation
aspects. All circlet elements cµ(x, y) can be deduced from a reference circlet

cref(x, y), either by a shift or by modifying the radius or the central frequency
content of the circlet (Fig. 4, Eq. 1). The parameters µ = (x0, y0, r0, f0) fully
characterize each circlet. Formally, the circlet function can be written as

cµ(x, y) = Ω[2πf0(r − r0)], (1)

where r =
√

(x − x0)2 + (y − y0)2. Ω is typically an oscillatory function,
possibly a wavelet function, designed to detect discontinuities (Daubechies,
1992). From a practical point of view, cµ will be explicitly defined in the 2D
Fourier domain.
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Figure 3: Representation of a single circlet (left) and its 2D Fourier transform (right). By
construction, it is well-localized in the Fourier domain.

2.2. The circlet decomposition

The forward and inverse transform is similar in essence to the curvelet
transform (Candes and Donoho, 2004; Candes et al., 2005). The objective is
to decompose any 2D image f(x, y) into a sum of basic functions cµ:

f(x, y) =
∑

µ

Aµ · cµ(x, y). (2)

For curvelets, the basic elements have elongated shapes, similar to the
representation of local plane waves (Candes et al., 2005). For circlets, the
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Figure 4: Representation of the reference circlet (left) and other circlets corresponding
to a different radius (middle) and to a different frequency content (right). The artifacts
visible on the image in the middle are due to an abrupt truncation in the shape of the Fk

filters (Fig. 5).

basic functions are circular. The circlet construction uses the properties of
a tight frame, so that the associated amplitudes Aµ are obtained by a scalar
product

Aµ =< f, cµ >=

∫∫

dxdy f(x, y) · cµ(x, y). (3)

From a practical point of view, the circlet coefficients are defined in the
Fourier domain, using Parseval’s theorem

Aµ =< f̂, ĉµ >=

∫∫

dω1dω2 f̂(ω1, ω2) · ĉ
∗
µ(ω1, ω2), (4)

where f̂ denotes the 2D Fourier transform of f and f ∗ the conjugate of f .
With this formulation, the circlet transform is constructed in the 2D Fourier
domain. The key step consists of defining ĉ∗µ(ω1, ω2), the Fourier transform
of cµ. This is obtained by developing appropriate filters to ensure that the
basic functions cµ(x, y) have circular shapes.

2.3. Definition of filters

The filter construction is obtained in a two-step process: first we derive
1D filters Fk and then 2D filters Gk. Both filters Fk and Gk are defined in
the frequency domain and form a partition of it: for all ω and (ω1, ω2), we
have
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∑

k

|Fk(ω)|2 = 1 (5)

∑

k

|Gk(ω1, ω2)|
2 = 1 (6)
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Figure 5: Representation of a single filter Fk for k = 2 determining the frequency content
of the circlet.

This condition is important to ensure a perfect reconstruction scheme
(Candes et al., 2005). First define ωk = π(k − 1)/(N − 1) where N is the
number of filters. For |ω ± ωk| ≤ π/(N − 1), Fk(ω) = cos(ω ± ωk), otherwise
Fk = 0. Note that the Fk filters are symmetric (Fig. 5). One can easily check
that the Fk filters form a partition of the 1D frequency domain. The Gk

filters are defined from the Fk filters by introducing a phase delay in order
to create a circular shape in the space domain,

Gk(ω1, ω2) = ei|ω|r0 · Fk(|ω|), (7)

where ω = (ω1, ω2) and |ω| =
√

ω2
1 + ω2

2. Once the filters Gk are defined,
equation 8 provides an explicit formulation for the Fourier transform of a
circlet

ĉµ(ω) = ei<ω,xc> · Gk(ω), (8)

where xc = (x0, y0) is the central position and where r0 determines the radius
of the circlet. By definition, <, > denotes the scalar product. We thus have
µ = (xc, r0, k). The index k controls the frequency content of the circlet
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(Fig. 4). With equations 5 and 7, it is also easy to see that for any given r0

values, the Gk filters also form a partition of the 2D frequency domain. By
using polar coordinates, we show in appendix A that the 2D inverse Fourier
Transform of Gk is circular, meaning that the basis functions cµ(x, y) have
circular shapes.

2.4. Practical implementation

The forward circlet transform consists of (1) a 2D Fourier transform of the
original image f(x, y) to obtain f̂(ω1, ω2); (2) for all filters and for all selected
r0 values, a multiplication of f̂ by Gk; (3) the inverse Fourier transform of
the product that provides all the circlet coefficients related to scale k and
radius r0.

The inverse transform follows the same rule. First apply a 2D Fourier
transform for all scales and selected radii, multiply by the conjugate of Gk

and sum all results. The final image is obtained by applying a 2D inverse
Fourier transform. Because of the condition on Gk (Eq. 6), we have a perfect
reconstruction scheme if all circlet coefficients are preserved. For more details
on the forward and inverse transform, we refer to the curvelet transform
(Candes et al., 2005). The main difference with the circlet construction is
the choice of the filters Gk. From a practical point of view, we rather select
a single scale (i.e. single Fk filter) and a series of radii, with expected values
from rmin > 0 to rmax to potentially emphasize circular forms with some
specific spatial sizes.

3. Applications

We first indicate how to choose the key circlet coefficients and then
present applications to different fields.

3.1. Selection of representative circlets

Fig. 6 illustrates a very simple example. The input image consists of
rectangular and circular shapes. The coefficients with the highest absolute
amplitudes are associated with circular shapes. The selection of these coef-
ficients leads to an image freed from the rectangles. In the circlet domain,
the coordinates of the coefficients directly indicate the centers of circles and
their associated radii.
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Figure 6: Simple input image (left), image reconstructed after the selection of all coeffi-
cients corresponding to a single k = 2 value, and radius values in [10,55] pixels (middle),
and image after selection of 0.01% of the coefficients with the highest amplitudes.

For more complicated cases where the contours are diffuse, we apply the
following strategy. As a pre-processing step, perform a spatial gradient (dis-
crete Laplacian operator) to the original image in order to emphasize the
discontinuities in the data. In the case of satellite images, they classically
suffer from missing information due to the presence of clouds. We then in-
terpolate the data by a geostatistical filtering method (kriging) that provides
results spatially consistent with the original data (Wackernagel, 2003).

For the detection of a single circular structure, we simply select the high-
est circlet coefficient. For finding more circles, we used the soft-thresholding
approach in an iterative process (Donoho, 1995). First, we select the highest
coefficient. The circlet transform is redundant, meaning that the number of
coefficients is larger than the size of the input data. The next coefficients
with high values have approximately the same radius and central positions.
For that reason, we set to zero all coefficients associated to the same ra-
dius and spatially close to the selected coefficient. By close, we mean a
distance lower than half of the radius. It does not prevent from selecting
a coefficient with a different radius around the same central position. We
then recompose/decompose the image to obtain new coefficients. The oper-
ation is repeated until the number of key coefficients specified by the user is
reached. The combination of reconstruction and decomposition is not neces-
sarily needed. It is used here because the transform is redundant: different
combinations of coefficients may represent the same image. This iterative
approach is feasible with the use of FFTs.

For the different applications, we specify the radius ranges in the legend

9



of the figures.

3.2. Ophthalmology

The motivations have been presented in the introduction part. In the first
example (Fig. 7), the optic disk is clearly defined and the algorithm easily
detects it. In Fig. 7 (bottom), the bright zone within the optic disk is not
selected as the minimum radius is set to 30 px.
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Figure 7: Images of eye fundus. For the detection, the radius range varies from 30 to 80
pixels.

In a slightly more complicated example with the presence of exudates
(Fig. 8), the algorithm is still able to detect the optic disk. Its circular shape
compensates for a lower value of the gradient. We conclude on this example
the ability for the circlet transform to detect at least a single circle.

3.3. Astronomy

Counting craters is a method for estimating the age of a planet’s surface
(Kerr, 2006). We selected two zones from the Moon image and detected
a number of craters in a specified radius range (Fig. 9 and 11). The soft-
thresholding process as proposed here allows to remove circles with the same
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Figure 8: Images of a eye fundus (top) and the associated gradient map (bottom). The
blood vessels and exudates (see Fig. 1) have large gradients. For the detection, the radius
range varies from 30 to 80 pixels.

radii and slightly different positions. Within the specified range, the craters
are indeed well detected (Fig. 9, right). However, some spurious events are
also selected (Fig. 10). These are due to the combination of the shallow sun
and the topography. We indicate in the discussion part how the artifacts
could be removed.

The application on a second moon image leads to similar conclusions
(Fig 11). On the crater on the bottom left side, the shape is rather elliptic.
In that case, two significant circlets were detected.

3.4. Oceanography

In coastal oceanography, the detection of eddies with a sub-mesoscale
structure (20–100 km) is a key element for a better understanding of the sur-
face circulation. On remote sensing images, tracers such as the Sea-Surface
Temperature (SST) or the chlorophyll maps, are used to reveal the ocean cir-
culation. The underlying assumption is a high correlation between the tracer
and the velocity field (Sugimura et al., 1984; Borisov and Monin, 1989; Essen,
1995). The eddies are generally detected either on spatial or temporal gradi-
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Figure 9: Satellite image from the moon (left), with the first 13 selected circlets (right).
The radius range varies from 25 to 60 pixels.
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Figure 10: Zoom from the previous figure, where only circlets considered as artifacts are
represented, superimposed on the image (left) and its gradient (right). These circlets are
tangent to arc lines due to the combination of the sun shadow and the topography.

ent maps (Aleksanin and Aleksanina, 2001; Yang, 2000). We refer to Castel-
lani (2000); Fernandes and Nascimento (2006); Hai et al. (2008); D’Alimonte
(2009) for a more complete review. Classically, the Hough transform and
several other circle or ellipse fitting algorithms are applied to determine the
radius and the central position of eddies on binary edge maps (Peckinpaugh
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Figure 11: Other satellite image from the moon (left), with the first 16 selected circlets

(right). The radius range varies from 15 to 75 pixels.

and Holyer, 1994; Fernandes and Nascimento, 2006).
The main difficulty for detecting eddies is certainly due to the weak and

blurry contours. We apply the circlet transform on both synthetic and satel-
lite images.
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Figure 12: Synthetic SST map. The radius range varies from 10 to 30 pixels.

In the first example, the main circular feature within the radius range is
extracted from an SST image computed from a model in a turbulent flow
(Fig 12). Two circlets limit the spiral shape. On a larger image, the soft-
thresholding process coupled with the circlet transform is able to detect a
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Figure 13: Synthetic SST map (top) and its gradient (bottom). The radius range varies
from 15 to 40 pixels.

series of turbulent structures (Fig 13). Further refinements are indicated in
the discussion part.

Remote sensing images are usually more blurry (Fig 14, 15 and 16). The
circlet transform is able to detect the main eddy on the SST images. For the
chlorophyll map, the first four circlet elements are related to spiral features:
the chlorophyll filament is trapped in a cyclonic eddy (Fig. 16). The user
has to specify the number of selected circlets. A broader selection simply
consists of continuing the iterative thresholding process.
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Figure 14: Remote sensing SST image in the Gulf of Lion, North Western Mediterranean
Sea (top), and the image gradient (bottom). The radius range varies from 10 to 20 pixels.

4. Discussion

Through a series of applications on synthetic and real images, we have
shown the capability for the circlet transform to detect circular shapes. The
applications are certainly not restricted to the fields presented here. The
width of the circlet is important to handle blurry and weak contrasts. The
user may easily change the shape of the 1D wavelet under the condition
that equation 5 is satisfied. The flexibility also comes from the possibility to
specify radius ranges.

The large redundancy of the transform is due to the selection of many
radii. With the soft-thresholding approach presented here, this is not really
an issue, except for applications on very large images. In practice, these
images could be split into smaller images. The size of the overlapping zone
should be twice the maximum specified radius to avoid edge effects.

We have observed some spurious detections (e.g. Fig 10). The first pos-
sibility would be to measure the local coherency along arcs for the selected
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Figure 15: Remove sensing SST image (top) and its gradient (bottom), still in the Gulf of
Lion. The radius range varies from 10 to 20 pixels.
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Figure 16: Gradient image of the chlorophyll map (left), with the first 4 more significant
circular structures (right). For the selection, the radius range varies from 5 to 20 pixels.
The spiral shape on the bottom left is detected by two circlets.
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circlets. This would remove artifacts related to the shadow on the moon
image. The other possibility would be to detect circular structures on a
sequence of images and track them. Applications in coastal oceanography
would be interesting in particular for remote sensing images with weak con-
trasts (Ma et al., 2006). Other investigations could deal with the multi-scale
approach provided by circlets. Currently, we have selected a single scale and
various radii. The same analysis could be repeated for different scales. This
could deliver a more robust approach if circular shapes are stable at different
scales.

5. Conclusion

We have presented a flexible method for detecting discontinuities with
circular shapes on 2D images. The key property of the transform is certainly
the finite frequency aspect of the basis functions. The transform is efficient
due to its implementation in the Fourier domain. Combined with a soft-
thresholding algorithm, it appears to successfully detect circular structures
on a series of images from different fields. The next step is to track these
structures on a sequence of images. This is also potentially a way to remove
some spurious detections.
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A. Appendix – Circular shapes

We aim at proving that with the definition of Eq. 7, the circlets have cir-
cular shapes. In other terms, the functions Gk expressed in polar coordinates
(r, θ) should not depend on θ. By definition, we have (x, y) = (r cos θ, r sin θ).
The inverse Fourier transform of Gk is
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Gk(x, y) =
1

(2π)2

∫∫

dω1dω2e
−iω1xe−iω2yei|ω|r0 · Fk(|ω|). (9)

In polar coordinates, Gk is expressed as

Gk(r, θ) =
1

(2π)2

∫∫

dω1dω2e
−iω1r cos θe−iω2r sin θei|ω|r0 · Fk(|ω|). (10)

We apply a second change of variables from (ω1, ω2) to (|ω|, α), where
(ω1, ω2) = (|ω| cosα, |ω| sinα), leading to

Gk(r, θ) =
1

(2π)2

∫∫

d|ω|dα|ω|e−i|ω|r(cosθ cos α+sin θ cos α)ei|ω|r0 · Fk(|ω|),

=
1

(2π)2

∫∫

d|ω|dα|ω|e−i|ω|r cos(θ−α)ei|ω|r0 · Fk(|ω|),

=
1

(2π)2

∫∫

d|ω|dξ|ω|e−i|ω|r cos ξei|ω|r0 · Fk(|ω|). (11)

In equation 11, we use the change of variables ξ = θ − α, where ξ is
integrated between 0 and 2π. Eq. 11 does not depend anymore of θ: in other
terms, Gk have circular shapes. As all other circlets can be deduced from
a shift or by changing the radius or the frequency content of the original
circlet, they all have circular shapes.
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