
Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 1

A Feature Model of Coupling Technologies for Earth System Models

Version 1.0 - October 5, 2010

Rocky Dunlap, Spencer Rugaber, Leo Mark
College of Computing, Georgia Institute of Technology

{rocky, spencer, leomark}@cc.gatech.edu

Abstract

Couplers that link together two or more numerical simulations are well-known abstractions in the Earth
System Modeling (ESM) community. In the past decade, reusable software assets have emerged to
facilitate scientists in implementing couplers. While there is a large amount of overlap in the features
supported by software coupling technologies, their implementations differ significantly in terms of both
functional and non-functional properties. Using a domain analysis method called feature analysis, we
explore the spectrum of features supported by coupling technologies used to build today’s production
ESMs. The results of the feature analysis will enable automatic code generation of ESM couplers.

Motivation

Coupling is essential for implementing multi-physics models made up of two or more interacting
computer simulations. A quintessential example of such coupled models is a general circulation model
of the Earth’s climate, which involves several interacting components simulating the Earth’s
atmosphere, oceans, land, and sea ice systems. The software components that link together and
mediate interactions between these models are called couplers. Couplers are well-known abstractions in
the geophysical and other scientific communities, although their implementations differ vastly. With
respect to Earth System Models (ESMs), no standardized reference architecture has emerged. Instead,
couplers are designed to address particular modeling situations. The design space of couplers is
constrained by properties of the existing models, such as software architecture, dependencies on third
party libraries, numerical and scientific characteristics, as well as the nature of the target computational
environment.

Because coupling numerical modeling components is a common need, a number of technologies have
emerged in the form of reusable software assets to facilitate building coupled scientific applications.
Indeed, this is a classic software engineering problem with a range of partial solutions: Some
technologies are abstract and general-purpose, while others are highly targeted at particular domains.
General solutions have appeal because they can be applied to a broad range of applications and because
they promote a high level of model independence. However, general solutions may increase the burden
on adopters to implement more of the required functionality from scratch. At the other end of the
spectrum, highly targeted solutions offer customized capabilities that require little or no additional code
from developers. Nevertheless, in order to take advantage of reusable coupling technologies,
applications must conform to the narrow scope of the reusable software, such as adopting its
architectural style.

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 2

The purpose of this technical report is to present the results of a feature analysis of coupling
technologies we conducted in preparation for automatically generating couplers for numerical ESMs. In
the next section we give an explanation of Generative Programming and describe a domain analysis
mechanism called feature analysis, which is a prerequisite to generating couplers. We then give a brief
example of a feature diagram. In the next section, we describe existing taxonomies of coupling
technologies already found in the literature. Finally, we describe the specific process that we undertook
to arrive at a feature diagram for coupling technologies and present the results of our feature analysis in
the form of a series of feature diagrams with a brief description of each feature.

Feature Analysis of Coupling Technologies

Our approach to addressing coupling technology adoption is based on Generative Programming.
Generative programming is a software engineering method for automatically generating members of
software families by assembling reusable components into final products based on a declarative
requirements specification [1]. Couplers can be seen as members of a family of modules with similar
requirements (e.g., they coordinate data communication among models, transform and interpolate field
data based on the numerical properties of the constituent models, and manage use of parallel
computing resources).

A prerequisite to creating couplers generatively is the need to understand the space of possible
couplers. What features do couplers require? What features are common across couplers and what
features vary? How should those features be implemented to address the structure of existing modeling
components? A key step in generative programming is feature analysis in which similarities and
variations among members of a family of systems are made explicit. Feature analysis determines a
multi-dimensional design space for describing a family of applications. The output is a feature model
that identifies a concise and descriptive set of common and variable properties of domain concepts. The
feature model represents the intention of a software family and can be used to infer the set of possible
family instances, called the extension. Once a feature model has been produced, elements can be
selected to produce a configuration, describing a desired family member. An automated generator can
then be used to produce the actual code for that member.

One way to view a domain is as a set of related software applications [2]. Taking this view, a feature
analysis of couplers involves studying existing software systems used for coupling ESMs. The ESM
community has already developed reusable software assets in the form of coupling libraries and
frameworks, and we have conducted a feature analysis of these existing software assets in support of a
generative programming tool we are building. While no two systems are identical, our analysis has
revealed significant overlap in the features supported by these coupling technologies. However, there
are also significant variations in what features are supported and how the features are implemented. A
feature model of couplers makes these similarities and differences explicit and is a prerequisite to
building couplers generatively.

Similar to the domain analyses done by the Earth System Curator [3] and Metafor [4] projects, our work
focuses specifically on couplers and coupling technologies for ESMs. Our starting point is existing
couplers and coupling technologies, which gives credibility to the analysis and ensures that the results
are a true reflection of state-of-the-practice models. Feature analysis allows us to uncover the breadth
of features supported by coupling technologies while leaving room to go deeply into one particular
feature when desired. Features are abstract, supporting the specification of relevant aspects of coupling
technologies, without being tied to certain programming constructs or architectural structures. Features

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 3

may be functional or non-functional in nature—that is, we can specify not only what kinds of operations
are supported, but how they are accomplished (e.g., features related to performance and security). The
same feature may manifest itself quite differently across the range of coupling frameworks. Therefore,
we can specify that a feature exists without saying too much about how it is implemented.

The results of a feature analysis can be expressed as a feature diagram—an annotated tree in which
nodes represent features in the domain, where a feature is an element of user-visible functionality.
Nodes are connected with directed edges and edges have decorations that define the semantics
between parent and sets of child nodes. Figure 1 shows a simple feature diagram for a car.

Car

EngineTransmission
Navigation

System

Automatic Manual
Voice

Activated

Touchscreen

Activated
4 Cylinder 6 Cylinder Turbo

Constraint:

Manual Transmission

requires Turbo Engine

Figure 1 – Example Feature Diagram

The root node of a feature diagram is called the concept node. The example diagram describes the
concept Car. All nodes directly below the concept node represent features and lower nodes represent
subfeatures. Mandatory features are denoted by a simple edge ending with a filled circle. In the
example diagram, both Transmission and Engine are mandatory features. Optional features are denoted
by a simple edge ending with an open circle. In the example, the Navigation System feature is optional.
Subsets of features may be alternatives to each other, meaning that exactly one member of the subset
is included in any configuration. This possibility is represented in the feature diagram by connecting the
edges pointing to alternative features with an arc. The Transmission feature has two alternative
subfeatures: Automatic and Manual. If an arc connecting edges pointing to two or more features is filled
in, it indicates that the set of features are or-features. Within a set of or-features, any non-empty subset
of the features is included in the description. In the example, if the optional Navigation System feature is
included, then it will be either Voice Activated, Touchscreen Activated, or both.

Feature diagrams may also contain textual constraints that enforce dependencies among features.
Mutual-exclusion constraints are used to describe illegal combinations of features and requires
constraints indicate that the presence of one feature requires the presence of another. An example

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 4

constraint that could be imposed is that selecting the Manual Transmission feature requires also
selecting the Turbo Engine feature.

We have extended the feature diagram notation in two ways in this document. First, we allow diagrams
to be split into pieces. A box in a diagram may have its background shaded. This means that the
corresponding feature and its subfeatures are elaborated in a separate diagram. Second, where a
feature has many subfeatures, each of which is not further elaborated, then, instead of using boxes, we
present the subfeatures as a bulleted list under the given feature.

Existing Taxonomies of Coupling Technologies

To our knowledge, this is the first application of feature analysis to coupling technologies. That being
said, there are existing taxonomies in the literature describing coupling technologies based on
dimensions that overlap with those identified in our feature analysis. Bulatewicz offers a high-level
taxonomy of coupling methodologies based on how models are integrated. The four approaches
identified are: monolithic, scheduled, communication-based, and component-based [5]. The monolithic
approach is a brute force method, requiring manual merging of code from two existing models into a
single code base. The scheduled approach leaves the models as independent programs that do not
affect each other directly during execution. Instead, the output from one model is used as input to the
next model. Communication-based approaches allow models to remain as independently executing
programs that exchange data during execution via some form of message passing [6, 7]. This approach
requires instrumentation of model source code at certain locations with library calls for sending
(pushing) and receiving (pulling) data. Component-based approaches require that model source code be
modularized into reusable software components. Components have standard interfaces that can be
connected together in a variety of configurations to exchange data.

Another high-level distinction among coupling technologies is whether the technology is a coupling
library or a coupling framework. Coupling libraries, especially those in which each model is a separate
executable, are usually designed to minimize the amount of code changes required to produce
coupleable numerical models. This requirement recognizes that many complex numerical models have
long development histories, and that, consequently, code maintainers are often wary of extensive code
restructurings. Examples of coupling libraries are the PSMILe library with the OASIS coupler [8] and the
Typed Data Transfer library [9]. Each of these software assets act as a toolkit of functions typically
required when coupling models, such as parallel data transfer utilities, spatial grid interpolation
algorithms, and algorithms for time averaging of physical quantities and conservative regridding.
Coupling libraries typically allow each model in a coupled application to remain as an independent
executable, supplying data as it becomes available and requesting data when it is needed. The
capabilities provided by coupling libraries can be used as a foundation for building couplers. For
example, the Community Climate System Model coupler (the latest is CPL7) is based on the Model
Coupling Toolkit library [10, 11].

Coupling frameworks, on the other hand, enforce a component-based architectural design on the
constituent models. That is, models must be represented as components that satisfy abstract interfaces
and interact with the framework in a predetermined way. Examples of frameworks requiring adoption of
abstract component interfaces include CCA-compliant frameworks [12], Cactus [13], and the Earth
System Modeling Framework (ESMF) [14]. The fundamental difference between a coupling framework
and a library is inversion of control, the architectural choice in which a reusable asset invokes client

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 5

code, rather than the client code calling the reusable asset, as is normally the case with libraries. That is,
with frameworks, users’ code must be modified to conform to the calling conventions of the framework.

While both libraries and frameworks provide capabilities required for coupling ESMs (such as distributed
data management and grid interpolation), only frameworks provide a built-in control structure. As
expected, there are tradeoffs involved: Capabilities within a library can often be added without
architectural changes to existing codes. This was a requirement of the PSMILe library used for
communication with the OASIS coupler. Existing codes can be instrumented with relatively nonintrusive
“put” and “get” calls. On the other hand, the structure provided by a framework adds a level of
consistency to models, encouraging maintainability and separation of concerns (e.g., separating the
purely scientific code from the code responsible for control and communication).

Jagers provides a multi-dimensional comparison of coupling technologies by considering several
independent factors, including whether the technology defines a framework (“a reusable
implementation of a software architecture”), defines standard interfaces, provides a reference
implementation, supports plug and play / graphical coupling, supports high-performance computing
environments, and supports programming language interoperability [15].

Coupling Technologies Analyzed

The coupling technologies we analyzed are currently used in scientific applications or are under active
development. Our goal is to paint a relevant picture of the state of the practice for ESM couplers. Table
1 lists the coupling technologies we considered. It is important to note that the studied technologies
each have a different scope of use. As such, this is not an apples-to-apples comparison, but is intended
to reveal the set of features that are relevant when writing couplers for ESMs and, ultimately, for
generating them.

Acronym Full Name Reference Latest Released Version

BFG2 Bespoke Framework Generator [16] bfg2-beta

ESMF Earth System Modeling Framework [14] ESMF_4_0_0rp2

FMS Flexible Modeling System [17] Riga (internal)

MCT Model Coupling Toolkit [11] 2.6.0

OASIS/PSMILe Ocean Atmosphere Sea Ice Soil / PRISM
System Model Interface Library

[8] OASIS4

TDT Typed Data Transfer [9] 12 June 2008

Table 1 - Analyzed Coupling Technologies

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 6

Feature Analysis Process

The feature analysis we conducted is based on information found in technical documentation that
accompanies the coupling technologies (e.g., programming guides, user manuals) as well as articles that
describe the technologies and their uses. The initial feature analysis was conducted in a bottom-up
fashion by gathering a large list of features that couplers support. The resulting feature diagram
contained over one hundred features at the leaf level. We dealt with this complexity by abstracting
related sub-features into common higher-level features, sometimes producing a hierarchy several levels
deep. During this process we have defined a vocabulary that describes the space of features supported
by couplers for ESMs. When alternative terms were found in the literature, we either chose one of the
terms or selected a different term which we felt described the semantics of the set of alternatives. In an
attempt to appeal to a broad audience of researchers and scientific modelers interested in coupling
technologies, we have tried to avoid jargon terms that are only well-known within highly specialized
communities.

Clearly the set of features resulting from the analysis are interrelated. However, our goal is to maintain,
as much as possible, orthogonality among the features in the diagrams. Orthogonality promotes
separation of concerns, concept independence, and enhances our ability to reason about a single
feature without importing non-essential aspects of other features.

For readability, we present the feature analysis as a series of feature diagrams. The top-level concept is
“coupling technology.” The first diagram includes the top-level concept and five broad feature
categories. Each of these top-level features are further refined in separate diagrams. Along with each
diagram, we provide brief definitions of each feature, in the form of a glossary.

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 7

Coupling Technologies Feature Diagrams

Figure 2 shows the top-level feature diagram. The entire feature space is divided into five major
categories: Capabilities, Target Environment, Setup, Software Architecture, and Grids.

Coupling Technology

Target

Environment

Software

Architecture
Setup GridCapability

Figure 2 - Top Level of Coupling Framework Feature Diagram

Term Definition

Capabilities Functional requirements

Target Environment Properties of the computational environment

Setup Initialization and configuration procedures

Software Architecture Structural characteristics of the coupled models

Grids Properties of numerical grids

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 8

Software Architecture

Figure 3 - Software Architecture Feature

Term Definition

Components The high-level software elements present in the coupled application including how
the component boundary lines are drawn

Connectors Behavioral patterns describing how the high-level structures (components) are
interconnected

Control Mechanisms by which overall execution is mediated

Style Idiomatic patterns of component and connector organization including constraints on
their interactions

Inversion of
Control

The client code implements predefined interfaces that are called by the framework
using a predetermined control pattern

Embedded Calls to library functions providing coupling-related capabilities are embedded directly
in client code

Sandwich Client code sits between framework superstructure and library infrastructure

Central Registry Component is connected to a central registry that contains knowledge of related
components

Point to Point Component is connected directly to one or more other components

Mediator Separate mediator component encapsulates interactions between components

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 9

Components

Figure 4 - Components Feature

Term Definition

Type Functional roles that a component can play in the overall coupled model

Computational Implements numerical algorithms

Diagnostic Transforms internal data for external validation

Scientific Expresses scientific equations

Coupling Communicates data among models

Interpolation Data interpolation between models

Visualization Prepares data for external display

Post processing Transforms model output data for external consumption

Grid Data Exchange Transforms grid data for access by another model

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 10

Input-Output Communication with file system or user

Null No functionality

Properties Non-functional properties of components

Access to Science
Content

The means by which the component makes use of scientific computations

Hooks Call to science code located elsewhere

Embedded The component contains encoded science

None A purely infrastructural component that contains no embedded science

Field Granularity To what degree the overall coupling responsibilities are partitioned

Single Coupler component responsible for managing data communication for a single field

Multiple Coupler component responsible for managing data communication for multiple fields

Generality Degree to which specific kinds of components are recognized by the coupling
technology

Component-
Specific

Technology requires specific kinds of components

Pluggable Technology supports plugging in various kinds of components

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 11

Connectors

Figure 5 - Connectors Feature

Term Definition

Type Communication mechanism employed

Libraries Communication mediated by third party software libraries

Parallel Data Transfer Whether transfer of data in parallel is supported

Protocol Extensibility The degree to which the communication protocol can be extended by the user

Non-functional
Characteristics

Properties of how the connector’s protocol functions

SSH security SSH secured channels

Synchronization Coordination mechanism

Blocking Blocking synchronization

Non-blocking Non-blocking synchronization

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 12

Buffering Support for buffering of data during transmission

Byte swapping Support for byte reordering across heterogeneous machine architectures

Block data transfer Degree to which data can be transferred in bulk

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 13

Control

Figure 6 - Control Feature

Term Definition

Locus The location of control of the coupled application

Model The constituent models within a coupled application maintain control (multiple
autonomous models interacting)

Integrated Driver/Coupler Component responsible for coupling also maintains the locus of control

Driver A single driving component coordinates the execution of the coupled models

Staging The set of predetermined stages that the driver expects constituent models to

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 14

support

Initialize Driver can request model initialization

Run Driver can request model execution

Finalize Driver can request model finalization

Invocation Ordering
Mechanism

The mechanism by which the driver determines the order of called models

Constraints Pre-specified rules

Fixed Schedule Pre-specified order

Varying Schedule Order can vary at run-time

Termination Control
Mechanism

The mechanism by which the driver determines that execution should be terminated

Convergence Execution terminates when degree of change of a field is less than a specified
absolute or relative amount

Preset Limit Execution terminates after a fixed number of iterations

Exception / Alarm / Event
Handling

Are raised exceptions, alarms and/or events supported

Startup Whether the driver is responsible for starting up models that participate in the
coupled application

Just Driver Driver starts only itself

Driver and Component Driver starts itself and its subcomponents

Control Loops Properties of the iterative structures used to coordinate overall execution of the
coupled application

Nested Support for nested update schedules

Mismatched Request-
Supply Frequencies

Support for different request and supply frequencies

Different Calendars Support for different calendar schemes

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 15

Capabilities

Capability

Interpolation /

Regridding

Time

· Accumulation

· Averaging

· Integration

Data Assimilation

· Ensemble filters

· Sampled error spaces

· Multiple model copies

· Spanning

· Partial ensemble

adjustment

Space

· Conservation

(global, local)

· Dimensionality

(2D, 3D)

· Higher order

· Algorithm ...

Transformation

· Weighted

model merging

· Linear

· Grid

· Spectral

· Unit

conversion

· Nearest neighbor

computation (MxN,

Mxlog N)

· Inter-grid (exchange

grid, transfer vector)

· Spatial integration

· On-processor sums

· Dynamic compaction

· Subgrid scale variability

· User defined

· Correction vs. data in

files

· Time accumulation or

averaging

· Linear combinations of

fields

· Linear value

transformations

· Stable flux exchange

numerics

Redistribution /

Repartitioning

· Broadcast

· Scatter / gather

OtherClock Calendar

Figure 7 - Capabilities Feature

Term Definition

Transformation Data alteration performed when moving data between models

Interpolation /
Regridding

The spatial and temporal interpolation capabilities supported by the coupling
technology

Redistribution /
Repartitioning

The ability to move data among address spaces in parallel

Broadcast The ability to broadcast multi-dimensional data from a single address space into
multiple address spaces

Scatter/Gather The ability to distribute multi-dimensional data from a single address space into
multiple address spaces (scatter) and vice versa (gather)

Data Assimilation The degree to which the coupling technology provide support for incorporating
observational datasets

Clock A construct for keeping track of model time

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 16

Calendar Support for calendar functions

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 17

Setup

Figure 8 - Setup Feature

Term Definition

Configuration How the coupled application’s setup is parameterized to enable user configurations

Mechanism Medium and format of effecting a configuration change

XML Configuration parameters in XML file

Text Configuration parameters in plain text file

Checkout/configuration
parameter

Configuration set by incorporating certain source code

Compile parameter Configuration set statically via a compile-time parameter

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 18

Runtime parameter Configuration set dynamically via a run-time parameter

Run Configuration settings related to the run of the coupled application

Time Step Configuration of time step length for the coupled model and constituent models

Duration Length of run

Mapping to
Executables

Topology The high-level spatial arrangement of components including how they are mapped
onto processors

Component-processor
mapping

Assignment of components to processors

Point-to-Point
connections

How data output from one component is mapped to inputs of another component

Component sequence

Data How data structures are initialized before the central computation begins

Fields Initialization of field data elements

Data transfer protocols

Boundary values Initialization of data objects containing boundary conditions

Physical constants Initialization of physical constants

Field-level Metadata Configuration of field descriptors

Component Conformance
Checking

The ability to confirm (statically or dynamically) that a component conforms to
certain properties

Index Space Partitioning The mechanism by which the global index space is partitioned among available
computational resources

Variable Priming Responsibility for initializing data structures before a run

Master Process

Subprogram

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 19

Component itself Each component is responsible for priming its own data structures

File Initial values are read from a data file

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 20

Grids

The material in this section is an impoverished version of the feature analysis performed to produce the
GFDL grid spec. For details refer to [18].

Figure 9 - Grid Feature

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 21

Target Environment

Target

Environment

Execution

Model

Memory

· Shared

· Distributed

Multiple

Processors

Programming

Language

· Fortran (77,90)

· C/C++

· Java

· Python

· Matlab

· Multi-lingual

Platform

· Supercomputer

· Workstation / laptop

· Web service

Concurrency
Multiple

Threading

Operating

System

· Unix (Linux, *BSD,

AIX, OSX)

· Windows(98, NT, 2K,

XP, Cygwin)

Data Types

Figure 10 - Target Environment Feature

Term Definition

Platform A broad classification of the target computational environment(s) supported

Execution Model A high-level description of the supported memory architectures (shared and/or
distributed), support for concurrency and multi-processing, and the use of multiple
threads

Memory Supported memory architecture

Shared Shared memory architecture

Distributed Distributed memory architecture

Concurrency Support for concurrent execution

Multiple Processors Support for multi-processing

Multiple Threading Use of multiple threads

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 22

Operating System Supported operating systems

Programming Language Supported programming languages

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 23

Data Types

Figure 11 - Data Types Feature

Term Definition

Primitives The lowest level, atomic data types supported by the coupling technology

Composites The kinds of composite data structures supported

User-defined User-defined data types are supported

ANSI Standard ANSI standard types are supported

Serialization Data serialization is supported

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 24

References

[1] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools, and Applications:
Addison-Wesley, 2000.

[2] M. Simos, et al., "Organization Domain Model (ODM) Guidebook, Version 2.0," 1996.

[3] R. Dunlap, et al., "Earth System Curator: Metadata Infrastructure for Climate Modeling," Earth
Science Informatics, vol. 1, pp. 131-149, 2008.

[4] Metafor Home Page. Available: http://metaforclimate.eu/

[5] T. Bulatewicz, "Support for model coupling: An interface-based approach," PhD Dissertation,
Unversity of Oregon, Eugene, OR, 2006.

[6] S. Valcke and S. Redler, "OASIS4 User Guide," August 25, 2006 2006.

[7] S. Buis, et al., "PALM: A Computational Framework for Assembling High-Performance Computing
Applications," Concurrency and Computation: Practice and Experience, vol. 18, pp. 231-245,
2006.

[8] R. Redler, et al., "OASIS4--A Coupling Software for Next Generation Earth System Modelling,"
Geoscientific Model Development, vol. 3, pp. 87-104, 2010.

[9] C. Linstead, "Typed Data Transfer (TDT) User's Guide," Potsdam Institute for Climate Impact
Research, Potsdam2004.

[10] A. P. Craig, et al., "Cpl6: The New Extensible, High-Performance Parallel Coupler for the
Community Climate System Model," International Journal for High Performance Computing
Applications, 2005.

[11] J. Larson, et al., "The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics
Parallel Coupled Models," International Journal for High Performance Computing Applications,
vol. 19, pp. 277-292, 2005.

[12] D. E. Bernholdt, et al., "A component architecture for high-performance scientific computing,"
International Journal of High Performance Computing Applications, vol. 20, pp. 163-202, 2006.

[13] T. Goodale, et al., "The Cactus Framework and Toolkit: Design and Applications," in Vector and
Parallel Processing - VECPAR 2002, 2003.

[14] V. Balaji, et al., "ESMF User Guide Version 3.1," 2009.

[15] H. R. A. Jagers, "Linking Data, Models and Tools: An Overview," in International Congress on
Environmental Modelling and Software Modelling for Environment's Sake, Ottawa, Canada,
2010.

[16] C. W. Armstrong, et al., "Coupling integrated Earth System Model components with BFG2,"
Concurrency and Computation: Practice and Experience, vol. 21, pp. 767-791, 2009.

http://metaforclimate.eu/

Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 25

[17] V. Balaji, "The FMS Manual: A developer's guide to the GFDL Flexible Modeling System,"
December 17, 2002 2002.

[18] V. Balaji, et al. (2007). Gridspec: A standard for the description of grids used in Earth System
models. Available: http://www.gfdl.noaa.gov/~vb/gridstd/gridstd.html

http://www.gfdl.noaa.gov/~vb/gridstd/gridstd.html

