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Abstract 

The semivariogram model is the fundamental component in all geostatistical 

applications and its inference is an issue of significant practical interest. The 

semivariogram model is defined by a mathematical function, the parameters of which 

are usually estimated from the experimental data. There are important application areas 
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in which small data sets are the norm; rainfall estimation from rain gauge data and 

transmissivity estimation from pumping test data are two examples from, respectively, 

surface and subsurface hydrology. Thus a benchmark problem in geostatistics is 

deciding on the most appropriate method for the inference of the semivariogram model.  

The various methods for semivariogram inference can be classified as indirect methods, 

in which there is an intermediate step of calculating the experimental semivariogram, 

and direct approaches that obtain the model parameter values directly as the values that 

minimize some objective function.  

To avoid subjectivity in fitting models to experimental semivariograms, ordinary least 

squares (OLS), weighted least squares (WLS) and generalized least squares (GLS) are 

often used. Uncertainty evaluation in indirect methods is done using computationally 

intensive resampling procedures such as the bootstrap method.  

Direct methods include parametric methods, such as maximum likelihood (ML) and 

maximum likelihood cross-validation (MLCV), and non-parametric methods, such as 

minimization of cross-validation statistics (CV).  

The bases for comparing the previous methods are the sampling distribution of the 

various parameters and the “goodness” of the uncertainty evaluation in a sense that we 

define. The final questions to be answered are (1) which is the best method for 

estimating each of the three parameters? (2) which is the best method for assessing the 

uncertainty of each of the three parameters?  (3) which method best selects the 

functional form of the semivariogram from among a set of options? and (4)  which is 

the best method that jointly addresses all the previous questions? 
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1. Introduction 

Since the early applications of geostatistics in mining (Matheron, 1963), the range of 

applications has been extended significantly to include hydrogeology (e.g. Kitanidis, 

1997), petroleum geology (e.g. Deutsch, 2002; Caers, 2005), meteorology and 

climatology (e.g. Diodato and Ceccarelli, 2005), soil science (e.g. Goovaerst, 1997), 

remote sensing (e.g. Curran and Atkinson, 1998), geographical information systems 

(e.g. Burrough, 2001), image analysis (e.g. Chica-Olmo and Abarca-Hernández, 2000), 

ecology (e.g. Liebhold et al, 1993), econometrics (e.g. Griffith and Paelinck, 2011), 

health sciences (e.g. Kelsall and Wakefield, 2002), and many other disciplines that use 

geostatistics in the analysis of spatial (and temporal) data. Geostatistics is applied to 

problems that require, inter alia, the quantification of spatial variability, optimal 

interpolation, scenario generation for risk analysis, and sampling design. With the 

exception of recent advances in multiple-point geostatistics (e.g. Strebelle, 2002), the 

basis of all geostatistical applications is a semivariogram model that describes the 

spatial variability of a random function that models the spatial (or regionalized) variable 

of interest. The semivariogram provides a means of detecting the defining 

characteristics of the spatial variability of a spatial variable such as anisotropic 

variability for different spatial directions (geometric and zonal anisotropies), different 

scales of spatial variability (nested structures), scales of variability shorter than the 

shortest sampling distance (nugget variance), measurement errors (nugget variance), 

differentiability of the variable (behaviour of the semivariogram close to the origin), and 

cyclic spatial patterns (semivariogram hole effect). In this sense the semivariogram is 
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important per se and is an essential tool of spatial statistics; in addition, a 

semivariogram model is required for kriging, cokriging, simulation and optimal design 

methodologies. Generally, in practice, the semivariogram model is unknown and is 

estimated from the experimental data. The estimation of the semivariogram is a process 

of statistical inference that has generated a significant amount of scientific literature 

covering many aspects of the problem. The following problems are of great interest in 

semivariogram parameter inference: 

(1) Robust semivariogram estimation (e.g. Dowd, 1983; Genton, 1998). 

(2) Non-parametric semivariogram estimation (e.g. Sampson and Guttorp, 1992). 

(3) Estimation of the trend or drift. The drift is important per se and special 

procedures may be used (e.g. Visser et al., 2009) or it may be implicitly 

incorporated in estimation by using a moving window for sample selection 

(Journel and Rossi, 1989). 

(4) Optimal sampling design for semivariogram estimation (e.g. Bogaert and Russo, 

1999) 

(5) Bayesian estimation or inclusion of a priori knowledge about the semivariogram 

parameters coded in an a priori probability density function (e.g. Pardo-

Igúzquiza, 1999a) 

(6) The impact of semivariogram estimation errors on kriging interpolation (e.g. 

Zimmerman and Zimmerman, 1991) 

(7) Transformation of the data (normal scoring, Box-Cox transform, etc) (e.g. 

Gringarten and Deutsch, 2001). 

(8) Criteria for model selection (e.g. Ye et a., 2008). 
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(9) Re-parameterization of semivariogram parameters to achieve parameter 

orthogonality in maximum likelihood estimation (e.g. Diggle and Ribeiro, 

2007). 

 

However, in order to be specific we limit our study to the estimation of the basic 

Matheron representation of the semivariogram (Matheron, 1963), that is, a second order 

stationary random function (thus constant drift) with an isotropic semivariogram model 

and allowing for a nugget effect. Thus, in general, there are three semivariogram 

parameters of interest: range, nugget variance and partial sill. The variance, or total sill, 

is the sum of nugget variance and partial sill. If there is no nugget variance then the two 

parameters of interest are the range and the sill of the semivariogram (variance of the 

random function).  There is a subtle difference between explicitly excluding a nugget 

variance from the model and estimating the nugget variance to be zero: 

 It may be concluded in advance that there is no nugget variance and thus 

implicitly the nugget variance has a value of zero with no uncertainty. 

 The nugget variance may be explicitly estimated. Even if the estimated value is 

zero, the estimate will have an associated uncertainty and the model complexity 

is increased by one parameter with the consequence of increasing the complexity 

of the estimation procedure. 

This basic Matheron model representation is adequate for the case of small data sets that 

we consider in this work. For large data sets, such as remotely sensed data, there is 

sufficient information in the data to provide acceptable semivariogram parameter 

estimates using the standard inference methods. However, very small data sets do not 

convey sufficient information for the inference of complex spatial variability models. 

For example, there may too few data from which to estimate directional statistical 
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variability and hence assess anisotropy. In such cases the most reliable strategy is to 

choose a simple model with the minimum number of parameters. The small data set 

problem is important in applications because there are many areas in geosciences in 

which data are few; for example, because data collection is expensive (e.g., rain gauges 

in remote regions or the cost of drilling a borehole) or because the measurement 

modifies the variable that is being measured (e.g., for potential underground hazardous 

waste repositories in which a borehole alters the hydraulic connectivity of the rock).   

In geoscience applications, a small sample is generally defined as one with a few tens of 

values, such as between 10 and 100 (O’Brien and Griffiths, 1965). In fact, in small 

sampling theory (Spiegel and Stephens, 2008) a small sample is considered to be one 

with less than 30 values. However, this refers to applications in classical statistics where 

the data are considered as realizations of independent and identically distributed random 

variables. When spatial correlation is present, the effective sample size may be smaller 

than the actual number of sample values and for this reason we consider small sample 

sizes to be those with up to 100 data. Typical examples of small sample sizes in 

geostatistical studies include sample sizes of 36 and 100 (Mardia and Marshal, 1984), 

25, 50, 100 (Krajewski and Duffy, 1988), 16 and 36 (Zimmerman and Zimmerman, 

1991), 32 and 72 (Russo and Jury, 1987), 12 (Sampson and Guttorp, 1992).   

An additional issue when estimating the semivariogram parameters from a small sample 

is that there is an unavoidable uncertainty associated with them and that uncertainty 

must be assessed and assigned to the estimates. This should be the norm, rather than the 

exception, in acceptable statistical practice (Bard, 1974). The next section describes the 

inference methods, the methods of uncertainty assessment, the design of the 

experiments and the criteria for the comparisons. 
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2. Methodology 

In this section we provide a brief review of the methods for inference methods and 

uncertainty evaluation. 

2.1. Inference methods 

The indirect methods involve two steps: firstly, the calculation of an experimental 

semivariogram and, secondly, fitting a theoretical model to the experimental 

semivariogram. The semivariogram model is defined as a functional form (e.g. 

spherical, exponential, Gaussian, Matérn) and a set of parameters (range, nugget 

variance and partial sill). The standard way of calculating the experimental 

semivariogram for irregularly located data is to use a binning process in which the bins 

are defined by a lag value plus/minus a lag tolerance and the squared differences of all 

data pairs are assigned to the bins (e.g., Chilès and Delfiner, 2012).  As the binning 

process leads to a loss of information, a preferable alternative is to calculate the 

semivariogram cloud. Given n experimental data, the semivariogram cloud is the set of 

2/)1( nn  semivariogram values calculated as the squared difference of each pair of 

experimental data: 

 

2)]()([
2

1
)( jiij zzh uu             ;1,...,1{  ni },...,1 nij   (1) 

where )}(),({ ji zz uu  is a pair of experimental data. iu  are the spatial coordinates of the 

i
th

 datum. For the purposes of this paper we use data measured in two-dimensional 

space, i.e., },{ iii yxu . The method of least squares is an objective method for fitting a 

theoretical semivariogram model to an experimental semivariogram (Cressie, 1985). 

The semivariogram parameter estimates are those that minimize the difference between 

the theoretical model and the experimental semivariogram: 
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))(ˆ())(ˆ(minargˆ 1T
θGGΣθGGθ

θ

     (2) 

θ : 1p  vector of semivariogram parameters (range, nugget variance and partial sill). 

θ̂ : 1p  vector of semivariogram parameter estimates or argument of the minimum, 

that is,  the values that minimize the objective function ))(ˆ())'(ˆ( 1
θGGΣθGG   . 

Ĝ : 1)2/)1(( nn  vector of experimental semivariogram values, that is, the 

semivariogram cloud. 

)(θG : 1)2/)1(( nn  vector of theoretical semivariogram values for the same 

distances as for the semivariogram cloud. These values depend on θ , the vector of 

semivariogram parameters. 

Σ : )2/)1(()2/)1((  nnnn  matrix in which the elements are defined by the least 

squares method used, i.e. ordinary least squares (OLS), weighted least squares (WLS) 

or generalized least squares (GLS). 

The superscript T denotes a transpose vector or transpose matrix and the superscript -1 

indicates inverse matrix. 

In OLS the matrix Σ  is a diagonal matrix a value of 1 on the diagonal Σ = diag(1,1, 

…,1).  

In WLS the matrix Σ  is a diagonal matrix with variance values on the diagonal Σ = 

diag( 1 , 2 , …, m ), with 2/)1(  nnm .  Where )](var[ ijk h   is the variance of 

the experimental semivariogram (as defined in (1)) for the pair of data )}(),({ ji zz uu  

that occupy the k
th

 location in the sequence of m diagonal elements. A simplification of 

k , to avoid the calculation of )](var[ ijh , is to use an empirical function, such as the 

square of the distance 
2

ijh  or the square of the semivariogram value );(  ijh ; see, for 
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example, Pardo-Igúzquiza (1999b). There are two drawbacks of WLS fitting, when used 

with binned data: first, the results depend on the parameters used for binning (e.g., 

number of directions, angle tolerance, number of lags, lag tolerance) and second, the 

results are biased (Diggle and Ribeiro, 2007).  

In GLS the elements of the matrix Σ  are the variances or covariances between the 

components of the semivariogram cloud. The general element is: 

   )](),(cov[][ ,lkijuv hh Σ      (3) 

The variance-covariance matrix of the semivariogram cloud can be calculated 

analytically by assuming that the data follow a multivariate Gaussian distribution 

(Pardo-Igúzquiza and Dowd, 2001).  More generally, without making the Gaussian 

assumption, a bootstrap procedure can be used (Olea and Pardo-Igúzquiza, 2011). These 

formulations are equally valid for the semivariogram cloud and for the traditional 

calculation using the binning procedure. 

For the direct methods, the semivariogram parameters are obtained directly without the 

intermediate step of calculating an experimental semivariogram. In turn, this group of 

inference methods can be divided into parametric and non-parametric methods. The 

most important of the parametric methods is the method of maximum likelihood (ML) 

The ML estimates of the semivariogram model parameters are those that minimize the 

negative log-likelihood function (Kitanidis and Lane, 1985; Mardia and Marshal, 1984): 

 

)()(
2

1
ln

2

1
)2ln(

2
)( 1T

mzCmzCz  
n

L   (4) 

z : 1n  vector of experimental data. 

C : nn  covariance matrix for the experimental data. The general term is 

)())(),(cov(][ 2

ijzjiij hzz   uuC   
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m : 1n  vector of identical elements equal to the global mean of Z: zm . 

2

z : variance of the random function Z and equal to the semivariogram sill. 

Another parametric method is ML cross-validation (Samper and Neuman, 1989) which 

is a special case of cross-validation as shown below (Kitanidis, 1991). 

A non-parametric method for estimating the semivariogram model parameters is cross-

validation (Lebel and Bastin, 1985). Given the n experimental data, z, the k
th

 datum is 

omitted and the rest of the data are used to estimate )( iz u  by any linear unbiased 

procedure yield the estimate 

    




n

ki
i

iik zz
1

)()(ˆ uu   ,     (5) 

with 

    




n

ki
i

i

1

1 .      (6) 

 

The estimation variance,
2

ks , can be expressed as a function of the semivariogram model 

parameters: 












n

ki
i

n

kj
j

ijjiik

n

ki
i

ik hhs
1 11

2 )()(2     (7) 

The standardized estimation error is given by: 

 

    
k

kk
k

s

zz
e

)()(ˆ uu 
        (8) 

and the following statistic can be calculated 

    



n

i

ke
n

S
1

2

2

1
      (9) 
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If the data are consistent with the semivariogram model, 2S  should be one. Thus the 

semivariogram parameter vector can be estimated by cross-validation as the solution to 

the equation: 

     12 S       (10) 

 

However, Kitanidis (1991) has shown that there are difficulties with the standardized 

residuals and it is better to use orthonormal residuals k  as defined in Kitanidis (1991). 

The equivalent statistic to 2S  with orthonormal residuals is 2Q ,  

     



n

i

k
n

Q
1

2

2
1

1
 .    (11) 

and the semivariogram parameter vector can be estimated by cross-validation as the 

solution to the equation: 12 Q , which is equivalent to Equation (10) but with 

orthonormal residuals instead of standard residuals. However, the solution of 12 Q , is 

unique only if there is a single semivariogram parameter to be estimated. For a larger 

number of parameters, there are several vectors θ  that satisfy Equation (11). Thus a 

measure of overall accuracy is introduced as, for example, (Kitanidis, 1991): 

     


n

i

is
n 1

2)ln(
1

     (12) 

 

The estimates of the parameter vector θ  are the values that minimize Equation (12) 

subject to the constraint given in Equation (11). Kitanidis (1983, 1991) shows that this 

solution is equivalent to the ML method of minimizing the negative Gaussian log-

likelihood: 

    
 


n

i

n

i

iis
1 1

22 })ln({minarg 
θ

      (13) 
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The latter method is similar to the maximum likelihood cross-validation (MLCV) of 

Samper and Neuman (1989). 

 

2.2. Methods of uncertainty assessment 

For least squares estimation, the approximate variance-covariance matrix of the 

estimates, under the assumption that their distribution is Gaussian, is given by the 

matrix C  (Menke, 1984): 

    
11T ][  JΣJC      (14) 

Where J  is the pK   Jacobian with ij
th

 element defined by jkkj h   /)(][J , 

evaluated at the least squares estimates. K is the number of elements of the 

semivariogram cloud and p the number of semivariogram model parameters. 

Another possibility for evaluating uncertainty is by a computationally intensive method 

such as the bootstrap. We use the procedure of Solow (1985) to generate bootstrap 

samples of correlated data. This procedure generates bootstrap samples from 

independent and identically distributed data after a transformation of the original data. 

This procedure is preferable to bootstrapping the semivariogram as shown in Olea and 

Pardo-Igúzquiza  (2011). 

For each bootstrap sample, a set of parameters θ  is estimated, providing an estimate of 

the sampling distribution of the parameters from which joint measures of uncertainty 

may be obtained (Olea and Pardo-Igúzquiza, 2011). 

One advantage of a parametric method, such as ML, is that it provides three ways of 

evaluating uncertainty: the Fisher information matrix, likelihood regions and confidence 

intervals from the likelihood ratio test statistic. 
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The Fisher information matrix )(θF  is given by the expression (Kitanidis, 1983; Mardia 

and Marshall, 1984): 

    ]Tr[
2

1
)]([ 11-

jiij CCCCθF
 ,    (15) 

where .]Tr[  denotes the trace of a matrix, and 

     
i

i





C
C      (16) 

The inverse of the Fisher information matrix is an approximation to the covariance 

matrix of the semivariogram parameter estimates: 

     
1)]([  θFC      (17) 

The likelihood ratio statistic is defined as (Kalbfleisch, 1979): 

     )]()([2)( MLLLD θθθ     (18) 

For large n, )(θD  is approximately distributed as a chi-squared distribution with p 

degrees of freedom (McCullagh and Nelder, 1989). For small n, this approximation is 

often more accurate than the Fisher information matrix (Kalbfleisch, 1979). Using this 

approximation it is possible to construct confidence regions for semivariogram 

parameters (Pardo-Igúzquiza and Dowd, 2003). A detailed description is given is given 

in Pardo-Igúzquiza et al. (2009, page 29). 

For uncertainty measurements of the semivariogram parameters estimated by cross-

validation and orthonormal residuals, the confidence regions can be calculated from the 

duality between confidence regions and hypothesis tests (Rice, 1995). Kitanidis (1991) 

shows that under the Gaussian assumption for the orthonormal residuals, the statistic 

     2)1( Qn  ,      (19) 

follows a chi-squared distribution with 1n  degrees of freedom. Thus, if the 

acceptance region of a test at significance level   is )( 2QA , then the set: 
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    )}(:{)( 222 QAQQR  θ ,      (20) 

is a 100( 1 )% confidence region for θ . 

Another possibility is to use the Fisher information matrix, equation (15), together with 

the full formulation of maximum likelihood cross-validation and the assumption of 

Gaussian residuals.  

 

2.3. Design of the experiments for the comparison 

Figure 1 shows the design of the experiment for comparing methods for inferring 

semivariogram parameters and the associated assessment of uncertainty. The underlying 

random function (RF) model is a zero-mean, second-order, stationary function with a 

given semivariogram model defined by a functional form (spherical, exponential or 

Gaussian) and the semivariogram model parameters θ . A realization of the RF is 

generated using any of the many methods available for non-conditional geostatistical 

simulation (Chilès and Delfiner, 2012). Because the simulation is generated on a grid 

defined on a finite region   (Figure 1), there is an ergodic fluctuation in the simulation 

(Deutsch and Journel, 1998) in the sense that, if the parameters are estimated from the 

simulation, the semivariogram parameters *
θ  of a realization, may differ from the 

underlying theoretical values θ . If many realizations of the RF are generated, then for 

any sound geostatistical simulation method: 

     θθ }{E *      (21) 

For the purposes of this paper a single realisation is sufficient.  The complete realisation 

is a reality on the scale of the simulation grid and the complete realisation is such that  

     θθ *       (22) 

We can now sample this realisation using the number of samples that typifies a small 

data set. The problem is to infer the underlying parameters θ  from the small sample set. 
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To do so, we are seeking efficient inference methods that are able to give estimates 

close to the underlying values θ  and provide efficient measures of uncertainty in a 

sense that we define later.  

The factors that have the most significant influence on the outcomes of the experiment 

are: 

 The sample size.  

 Whether of not the RF is Gaussian. 

 The nugget/variance ratio. 

 The ratio of the practical range to the characteristic length of the study area. The 

characteristic length of the study area is a measure of the size of the simulation 

region  . If this region is a square, the characteristic length is the length of the 

side of the square. 

 

We use four simulated fields: 

(A.) Gaussian field with no nugget variance, shown in Figure 2A. 

(B.) Gaussian field with nugget variance equal to 50% of the total variance, shown 

in Figure 2B. 

(C.) Non-Gaussian random field with no nugget variance, shown in Figure 2C. 

(D.) Non-Gaussian random field with nugget variance equal to 50% of the total 

variance, shown in Figure 2D. 

 

Each field is simulated on a 101×101 grid of points with unit distance between points 

along the X and Y axes. 

For each of the four fields we consider practical range/characteristic length ratios of 0.2 

(Small), 0.4 (Medium) and 0.6 (Large). This gives twelve cases (four fields and three 
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ratios for each) and for each case we use sample sizes of 10, 30, 50, 70 and 90. For each 

sample size we sample the field 1000 times to give 1000 data sets. Although we do not 

use all these data files, we provide them as a benchmark data set for further comparisons 

by others. The files are available on the usual site for software and supplementary 

material for papers published in Computers & Geosciences at the www.iamg.org web 

page.  The semivariogram model is exponential with variance 10 units and range 6 units 

(practical range 18 units of length). In cases B and D the nugget variance is 5, that is 

50% of the total variance. The particular values of 6, 10 and 5 have no influence on the 

results. 

The non-Gaussian RF is a chi-squared random field with one degree of freedom (Pardo-

Igúzquiza and Dowd, 2005). Although the chi-squared RF is obtained by squaring a 

Gaussian RF, it is not possible to recover the original Guassian field by a transformation 

of the chi-squared RF, and in this sense, this represents a difficult case and a very good 

example of non-Gaussian RF. 

 

2.4. Criteria for the evaluations 

Sampling consists of selecting the locations of the n data for each sample at random 

from the grid locations of the complete realisation (Figure 1). For each sample, each 

inference procedure provides a set of estimates θ̂  and associated uncertainty measures 

)ˆ(θU , which, for the general case, is the variance-covariance matrix of the estimates 

̂
)ˆ( Cθ U  or a confidence region such as that given in Equation (19). Provided a 

distribution is assumed for the estimates, the variance-covariance matrix can be used to 

construct confidence regions for the set of estimates. We are interested in comparing 

two performance measures for the inference methods: how well they estimate the 

http://www.iamg.org/
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underlying semivariogram parameters θ  and the ability of the uncertainty measures to 

evaluate the true uncertainty. 

 

2.4. 1. Methods of evaluating estimators 

The most common measure of the performance of the estimators is the mean square 

error (MSE) defined as:  

     )ˆvar()ˆ(MSE T
θbbθ      (23) 

i.e., the square of the bias plus the variance, where the bias is given by 

    θθb        (24) 

    }ˆE{θθ        (25) 

and the variance is: 

    })ˆ)(ˆ{(E)ˆvar( T
θθθθθ      (26) 

The MSE provides a measure of the closeness of the estimates to the true underlying 

parameters. The square root of the mean square error (RMSE) is also used. As the 

sampling distribution of the estimator is obtained for each parameter (Figure 1), other 

measures of performance could also be obtained.  

 

2.4. 2. Methods of evaluating uncertainty measures 

An uncertainty measured is assigned to each estimate. The larger the uncertainty the less 

will be the reliability of the estimate. One way of comparing uncertainty measures is by 

using interval estimates constructed from the uncertainty measures. The two measures 

for the intervals are size and coverage probability. The ideal is the narrowest interval 

with the maximum possible coverage. There is a trade-off between size and coverage 

because, usually, larger intervals have larger coverage. However, very large intervals, 

even with large coverage, are of little use; for example, for a single parameter, the 
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interval ),(   has a coverage of one, but it is obviously meaningless.  For a single 

parameter, the size of the confidence set is a length but, in the general case, it is a 

volume of a multiple parameters. As there are many confidence sets with the same 

probability coverage, we use the narrowest interval with the highest probability 

coverage. In addition, the estimate must be inside the confidence set.  

 

3. Results 

For an underlying Gaussian random function, Pardo-Igúzquiza (1988) shows that ML 

performs better than OLS, WLS or MLCV. Although we note that GLS and CV with 

orthonormal residuals were not used in this comparison.  

For the results reported here we used 100 samples for each estimator although we have 

provided the files with 1000 data sets for each of the 40 cases.  We show the results for 

the worst case scenario. That is, the underlying RF model is non-Gaussian and there is 

no possibility of transforming the data prior to applying the estimator or of correcting 

the estimates. We use a practical range/field length ratio of 0.4 and compare the 

estimators: 

OLS: ordinary least squares using the complete semivariogram cloud. 

WLS: weighted least squares, using the semivariogram cloud for distances less than 30 

units); this is done by applying zero weights to the semivariogram cloud for distances 

greater than 30 units. 

WLS2: weighted least squares with binning. 

GLS: generalized least squares with binning. 

ML: maximum likelihood. 

CV1: cross-validation 
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MLCV1: cross-validation with a global measure, i.e. maximum likelihood cross-

validation. 

CV2: cross-validation with orthonormal residuals. 

MLCV2: MLCV with orthonormal residuals. 

  

4. Discussion 

4.1. Estimation of semivariogram model parameters 

4.1.1. Non-Gaussian RF with no nugget variance 

In this case there are two parameters to estimate, the range and the variance (sill). The 

results are shown in Table 1 for a sample size of 30 and in Table 2 for a sample size of 

90. 

The conclusions for the range are: 

 The best estimator (in the sense of minimum RMSE) is ML for a sample size of 

30 and MLCV2 for a sample size of 90 (although ML is second and close to 

MLCV2). 

 The ML methods have a negative bias. 

 Among the LS estimators GLS is the best followed by WLS2.  

 There is no information lost in binning as GLS and WLS2 perform better than 

methods that use the semivariogram cloud (OLS and WLS1). 

 WLS1 performs better than OLS, thus it is better not to use the semivariogram 

values for long distances (high uncertainty). 

 CV methods are improved by including the global measure of overall accuracy, 

i.e. converting them to MLCV methods. 

 Orthonormal residuals provide better results than ordinary residuals. 

Conclusions for the sill: 
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 All methods have very similar RMSE.  

 

4.1.2. Non-Gaussian RF with nugget variance 

In this case there are three parameters to estimate, the nugget variance, the partial sill 

and range. The variance (total sill) is estimated as the sum of nugget variance and partial 

sill. The results are shown in Tables 3 and 4 for a sample size of 30. Table 3 shows the 

results for the sill and range parameters and Table 4 shows the results for nugget 

variance and partial sill parameters. Tables 5 and 6 show the results for a sample size of 

90. Table 5 shows the results for the sill and range parameters and Table 6 shows the 

results for nugget variance and partial sill parameters. 

Conclusions for the range: 

 The best estimator (in the sense of minimum RMSE) is ML for a sample size of 

30 followed closely by GLS. The remaining methods have significantly higher 

RMSE.  

 ML has a negative bias. 

 There is no information lost in binning as GLS and WLS2 perform better than 

methods that use the semivariogram cloud (OLS and WLS1). 

 Orthonormal residuals provide better results than ordinary residuals but the 

difference is less than when there is no nugget. 

 The RMSE is higher than for the case with no nugget (Table 1) and for all the 

estimators. That is, the presence of noise in the model increases the noise in the 

estimates and increases the uncertainty of the estimators.  

Conclusions for the variance (total sill): 

 The RMSE is similar for all estimators and similar to the no nugget case except 

for the GLS, which performs poorly. 
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Conclusions for the nugget variance: 

 CV1 gives the smallest RMSE. The other methods have similar performances 

except GLS, which is the worst performer. 

Conclusions for the partial sill: 

 ML gives the smallest RMSE. The other methods have similar performances. 

4.1.3. Non-Gaussian RF with estimated zero nugget variance 

This example shows the consequence of estimating the nugget variance to be zero when 

in fact the RF has no nugget.  

The results are shown in Tables 7 and 8 for a sample size of 30. Table 7 shows the 

results for the sill and range parameters and Table 8 shows the results for nugget 

variance and partial sill parameters. Tables 9 and 10 show the results for a sample of 

size 90. Table 9 shows the results for the sill and range parameters and Table 10 shows 

the results for nugget variance and partial sill parameters. 

Conclusions for the range: 

 The RMSE increases for all the methods. Thus if, from physical principles or 

expert knowledge, it is known that there is no nugget variance then it is better 

not to include the parameter in the estimation process. 

 ML is the best performer in the sense that its RMSE is a little higher than when 

the nugget parameter is not included in the inference while the RMSE for other 

estimators, including MLCV2, is double the value achieved when the nugget 

parameter is not included in the inference. 

Conclusions for the variance: 

 The RMSE for all methods except MLCV2 is increased but the increase in 

RMSE for ML is the smallest.  

Conclusions for the nugget variance: 
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 All methods estimate a nugget greater than zero. The smallest bias (i.e. value 

closest to zero) is for ML for n = 30 and MLCV1 for n = 90. 

Conclusions for the partial sill: 

 The partial sill, which is equal to the sill or total variance because the nugget 

variance of the RF is zero, is estimated with smaller RMSE than the variance 

because the variance is estimated as the sum of partial sill and nugget variance. 

 

4.2. Joint estimation of several parameters 

In order to evaluate the performance of the methods, the RMSE is accumulated and the 

methods are ranked according to their scores. The results are shown in Table 11. In 

increasing order of total RMSE, the ranked methods are: ML (259), MLCV2 (340), 

WLS2 (357), GLS (366), MLCV1 (370), WLS1 (379), CV1 (389), CV2 (396), OLS 

(416).  For the range the best is ML (26) with almost half the RMSE of any other 

method. MLCV2 is second (48). For the nugget variance, ML (11) and MLCV1 (11) are 

the best. For the partial sill ML is the best (19) closely followed by three methods (21). 

Finally, for the variance (sill) MLCV2 is the best (27) closely followed by ML (28).  

 

4.3. Assessment of the uncertainty of the estimates 

We can compare the uncertainty evaluations by comparing the coverage and the width 

of the intervals. However, it should be borne in mind that we have chosen to use the 

worst-case scenario in which the RF is highly non-Gaussian, there is no transformation 

of the data and no transformation of the estimates. On the other hand all the uncertainty 

evaluations are parametric with Gaussian or chi-square distribution assumptions for the 

given statistics, i.e., Equations (14), (15), (18) and (19). 
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By way of example, the results of Equations (14) and (15) for GLS and ML are given in 

Table 12. Because the assumptions are not correct there is no correspondence between 

the actual coverage and the nominal coverage under the Gaussian assumption. This 

requires further work, for example, implementing non-parametric approaches like a 

bootstrap procedure. 

 

 

5. Conclusions 

The primary purpose of this paper is to compare methods of inferring semivariogram 

model parameters. The study is limited to small samples from a two-dimensional, 

second-order stationary non-Gaussian random function with an isotropic semivariogram 

model with and without a nugget effect. 

The OLS estimator using the full semivariogram cloud is the worst performer among 

the set of estimators that have been compared. The estimator may be improved in two 

ways: (1) by using WLS1 with zero weights applied to those data pairs in the 

semivariogram cloud that are separated by significant distances. Uncertainty of the 

semivariogram values increases with distance and beyond a certain limit there is no 

value in including them in the estimator; (2) by using WLS2 and using only 

semivariogram lags up to a given distance (for example one third of the study area or 

three times the expected range). GLS gives similar results to WLS2. This may be 

because we have used the worst-case scenario with a highly skewed non-Gaussian RF 

from which the original distribution cannot be recovered.  

Among the cross-validation estimators those that use the global measure of accuracy of 

Kitanidis (1991) have proved superior to the others. Estimators that use the global 

measure are equivalent to the maximum likelihood cross-validation method. In addition, 
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the orthonormal residuals give better results than classical residuals. Thus MLCV2 is 

the best among the cross-validation estimators and the second best among all the 

estimators tested. 

ML is the best estimator even when the data are non-Gaussian. ML is a good measure of 

the goodness of fit of a semivariogram model to the experimental data.   

If there is no reason to believe that a nugget variance is present in the data, the results 

can be improved by not including this parameter in the inference, i.e., implicitly taking 

it to be zero. 

Finally, further research is needed on the estimation of uncertainty measures with a 

given probabilistic coverage in the worst-case scenario.  
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List of acronyms 

RF: random function. 

OLS: ordinary least squares with the complete semivariogram cloud. 

WLS1: weighted least squares with the semivariogram cloud for distances less than a 

distance threshold. 

WLS2: weighted least squares with binned semivariogram data. 

GLS: generalized least squares with binned semivariogram data. 

ML: maximum likelihood. 

CV1: cross-validation. 

CV2: cross-validation with orthonormal residuals. 
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MLCV1: maximum likelihood cross-validation. 

MLCV2: maximum likelihood cross-validation with orthonormal residuals. 

RMSE: root mean square error. 
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n = 30 Mean of  

sill   

(target = 10) 

Variance of 

sill 

Mean of 

range  

(target = 6) 

Variance of 

range 

OLS 11.04 27.49 8.12 64.08 

WLS1 10.75 27.78 6.92 42.97 

WLS2 11.08 31.25 3.84 23.29 

GLS 
10.71 32.76 6.58 41.02 

ML 9.78 26.25 4.43 9.74 

CV1 13.17 15.24 8.70 41.99 

MLCV1 11.04 30.79 6.48 35.39 

CV2 13.10 22.29 9.25 40.72 

MLCV2 10.73 28.39 5.69 21.81 

n = 30 Bias of 

sill 

RMSE of 

Sill 

Bias of  

range 

RMSE of 

range 

OLS 
1.04 5.34 2.12 8.28 

WLS1 
0.75 5.32 0.92 6.62 

WLS2 
1.08 5.69 -2.16 5.28 

GLS 
0.71 5.76 0.58 6.43 

ML 
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CV1 
3.17 5.02 2.70 7.02 

MLCV1 
1.04 5.64 0.48 5.96 

CV2 
3.10 5.64 3.25 7.16 

MLCV2 
0.73 5.37 -0.31 4.68 

 

Table 1. Statistics of the sampling distribution of the estimates in the case non-Gaussian 

RF and 0.4 for the practical range/side length ratio. RF with no nugget variance. Sample 

size is 30. 

 

 

 

 

 

 

 

 



 35 

 

n = 90 Mean of  
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Variance of 

sill 

Mean of 

range 

Variance of 

range 

OLS 10.10 28.19 8.55 63.74 

WLS1 9.26 28.23 5.66 27.84 

WLS2 9.28 29.54 2.65 8.54 

GLS 
8.61 27.97 5.86 41.10 

ML 9.21 27.38 3.91 6.64 

CV1 12.38 17.45 6.78 24.59 

MLCV1 9.46 30.52 4.44 17.76 

CV2 12.77 17.35 7.83 33.74 

MLCV2 9.68 28.63 4.29 7.74 

n = 90 Bias of 

sill 

RMSE of 

sill 

Bias of  

range 

RMSE of 

range 

OLS 0.10 5.31 2.55 8.38 

WLS1 -0.74 5.36 -0.34 5.28 

WLS2 -0.72 5.48 -3.35 4.44 

GLS 
-1.39 5.46 -0.14 6.41 

ML -0.79 5.29 -2.09 3.31 

CV1 2.38 4.80 0.78 5.02 

MLCV1 -0.54 5.55 -1.56 4.49 

CV2 2.77 5.00 1.83 6.09 

MLCV2 -0.32 5.36 -1.71 3.26 

 

Table 2. Statistics of the sampling distribution of the estimates in the case non-Gaussian 

RF and 0.4 for the practical range/side length ratio. RF with no nugget variance. Sample 

size is 90. 
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n = 30 Mean of  

sill   

(target = 10) 

Variance of 

sill 

Mean of 

range  

(target = 6) 

Variance of 

range 

OLS 
11.17 25.36 13.17 96.64 

WLS1 
11.34 30.38 13.13 93.33 

WLS2 
11.11 28.77 10.78 91.21 

GLS 
10.79 26.76 10.46 88.84 

ML 
9.45 12.36 4.06 19.63 

CV1 
14.52 25.15 13.43 47.70 

MLCV1 
10.89 23.23 10.51 98.05 

CV2 
12.40 22.30 13.94 41.31 

MLCV2 
10.44 17.84 9.28 87.56 

n = 30 Bias of 

sill 

RMSE of 

sill 

Bias of  

range 

RMSE of 

range 

OLS 
1.17 5.17 7.17 12.16 

WLS1 
1.34 5.67 7.13 12.00 

WLS2 
1.11 5.47 4.78 10.68 

GLS 
0.79 5.23 4.46 10.42 

ML 
-0.55 3.55 -1.94 4.83 

CV1 
4.52 6.75 7.43 10.14 

MLCV1 
0.89 4.90 4.51 10.88 

CV2 
2.40 5.29 7.94 10.21 

MLCV2 
0.44 4.24 3.28 9.91 

 

Table 3. Statistics of the sampling distribution of the estimates in the case non-Gaussian 

RF and 0.4 for the practical range/side length ratio. RF with nugget variance equal to 

50% of the total variance. Sample size is 30. This table shows the sill and range 

parameters. 
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n = 30 Mean of  

nugget   

(target = 5) 

Variance of 

nugget 

Mean of 

partial sill 

(target = 5) 

Variance of 

partial sill 

OLS 
4.32 10.93 6.85 27.72 

WLS1 
4.51 12.37 6.83 28.52 

WLS2 
4.38 15.67 6.73 27.37 

GLS 
3.91 13.08 6.88 25.86 

ML 
3.87 10.71 5.58 20.88 

CV1 
4.93 7.70 9.59 25.64 

MLCV1 
4.23 12.15 6.66 30.08 

CV2 
4.51 11.51 7.89 24.15 

MLCV2 
4.40 11.08 6.04 23.13 

n = 30 Bias of 

nugget 

RMSE of 

nugget 

Bias of  

partial sill 

RMSE of 

partial sill 

OLS 
-0.68 3.37 1.85 5.58 

WLS1 
-0.49 3.55 1.83 5.64 

WLS2 
-0.62 4.00 1.73 5.51 

GLS 
-1.09 3.77 1.88 5.42 

ML 
-1.13 3.46 0.58 4.60 

CV1 
-0.07 2.77 4.59 6.83 

MLCV1 
-0.77 3.57 1.66 5.73 

CV2 
-0.49 3.42 2.89 5.70 

MLCV2 
-0.60 3.38 1.04 4.92 

 

Table 4. Statistics of the sampling distribution of the estimates in the case non-Gaussian 

RF and 0.4 for the practical range/side length ratio. RF with nugget variance equal to 

50% of the total variance. Sample size is 30. This table shows the nugget variance and 

partial sill parameters. 
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n = 90 Mean of  

sill   

(target = 10) 

Variance of 

sill 

Mean of 

range  

(target = 6) 

Variance of 

range 

OLS 
12.07 15.26 15.82 86.02 

WLS1 
11.38 13.81 12.92 72.87 

WLS2 
11.19 13.91 11.34 81.90 

GLS 
11.04 14.79 9.68 81.23 

ML 
10.22 8.61 5.56 28.62 

CV1 
14.82 18.64 13.3 35.73 

MLCV1 
12.02 28.94 9.38 90.49 

CV2 
13.43 21.12 14.04 47.23 

MLCV2 
10.44 17.84 9.28 87.56 

n = 90 Bias of 

sill 

RMSE of 

sill 

Bias of  

range 

RMSE of 

range 

OLS 
2.07 4.42 9.82 13.50 

WLS1 
1.38 3.96 6.92 10.98 

WLS2 
1.19 3.91 5.34 10.50 

GLS 
1.04 3.98 3.68 9.73 

ML 
0.22 2.94 -0.44 5.36 

CV1 
4.82 6.47 7.30 9.43 

MLCV1 
2.02 5.74 3.38 10.09 

CV2 
3.43 5.73 8.04 10.57 

MLCV2 
1.12 3.69 3.30 9.72 

 

Table 5. Statistics of the sampling distribution of the estimates in the case non-Gaussian 

RF and 0.4 for the practical range/side length ratio. RF with nugget variance equal to 

50% of the total variance. Sample size is 90. This table shows the sill and range 

parameters. 
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n = 90 Mean of  

nugget   

(target = 5) 

Variance of 

nugget 

Mean of 

partial sill 

(target = 5) 

Variance of 

partial sill 

OLS 
5.03 7.24 7.04 19.67 

WLS1 
5.31 5.95 6.07 18.72 

WLS2 
4.92 7.43 6.27 16.53 

GLS 
4.6 7.24 6.44 17.12 

ML 
4.13 7.09 6.09 13.58 

CV1 
5.55 5.90 9.27 26.09 

MLCV1 
3.99 7.27 8.03 31.26 

CV2 
4.65 7.70 8.78 28.49 

MLCV2 
3.77 11.49 7.35 20.08 

n = 90 Bias of 

nugget 

RMSE of 

nugget 

Bias of  

partial sill 

RMSE of 

partial sill 

OLS 
0.03 2.69 2.04 4.88 

WLS1 
0.31 2.46 1.07 4.45 

WLS2 
-0.08 2.72 1.27 4.26 

GLS 
-0.40 2.72 1.44 4.38 

ML 
-0.87 2.80 1.09 3.84 

CV1 
0.55 2.49 4.27 6.65 

MLCV1 
-1.01 2.87 3.03 6.36 

CV2 
-0.35 2.79 3.78 6.54 

MLCV2 
-1.23 3.60 2.35 5.06 

 

Table 6. Statistics of the sampling distribution of the estimates in the case non-Gaussian 

RF and 0.4 for the practical range/side length ratio. RF with nugget variance equal to 

50% of the total variance. Sample size is 90. This table shows the nugget variance and 

partial sill parameters. 

 

 

 

 

 

 

 



 40 

 

 

n = 30 Mean of  

sill   

(target = 10) 

Variance of 

sill 

Mean of 

range  

(target = 6) 

Variance of 

range 

OLS 
12.52 52.03 11.74 87.15 

WLS1 
12.45 60.24 10.62 69.27 

WLS2 
12.17 56.28 9.56 58.94 

GLS 
11.83 49.02 8.66 57.18 

ML 
10.04 31.55 5.93 20.74 

CV1 
12.98 43.58 14.93 42.48 

MLCV1 
12.64 36.41 11.08 70.91 

CV2 
12.30 49.13 13.9 50.39 

MLCV2 
10.61 19.25 10.03 89.98 

n = 30 Bias of 

sill 

RMSE of 

sill 

Bias of  

range 

RMSE of 

range 

OLS 
2.52 7.64 5.74 10.95 

WLS1 
2.45 8.13 4.62 9.51 

WLS2 
2.17 7.81 3.56 8.46 

GLS 
1.83 7.23 2.66 8.01 

ML 
0.04 5.61 -0.07 4.55 

CV1 
2.98 7.24 8.93 11.05 

MLCV1 
2.64 6.58 5.08 9.83 

CV2 
2.3 7.37 7.9 10.62 

MLCV2 
0.61 4.43 4.03 10.30 

 

Table 7. Statistics of the sampling distribution of the estimates in the case non-Gaussian 

RF and 0.4 for the practical range/side length ratio. RF with no nugget variance. Sample 

size is 30. This table shows the sill and range parameters. 
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n = 30 Mean of  

nugget   

(target = 0) 

Variance of 

nugget 

Mean of 

partial sill 

(target = 10) 

Variance of 

partial sill 

OLS 
2.36 13.01 10.16 30.39 

WLS1 
2.38 14.75 10.07 33.74 

WLS2 
2.07 12.70 10.10 33.01 

GLS 
1.69 10.01 10.14 32.70 

ML 
1.31 5.61 8.73 28.25 

CV1 
4.87 19.73 8.11 23.67 

MLCV1 
1.22 4.37 11.42 35.22 

CV2 
4.92 21.81 7.38 25.85 

MLCV2 
3.91 13.06 6.70 24.39 

n = 30 Bias of 

nugget 

RMSE of 

nugget 

Bias of  

partial sill 

RMSE of 

partial sill 

OLS 
2.36 4.31 0.16 5.51 

WLS1 
2.38 4.51 0.07 5.80 

WLS2 
2.07 4.12 0.10 5.74 

GLS 
1.69 3.58 0.14 5.72 

ML 
1.31 2.70 -1.27 5.46 

CV1 
4.87 6.59 -1.89 5.22 

MLCV1 
1.22 2.42 1.42 6.10 

CV2 
4.92 6.78 -2.62 5.72 

MLCV2 
3.91 5.32 -3.30 5.94 

 

Table 8. Statistics of the sampling distribution of the estimates in the case non-Gaussian 

RF and 0.4 for the practical range/side length ratio. RF with no nugget. Sample size is 

30. This table shows the nugget variance and partial sill parameters. 
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n = 90 Mean of  

sill   

(target = 10) 

Variance of 

sill 

Mean of 

range  

(target = 6) 

Variance of 

range 

OLS 
10.89 40.35 13.61 95.63 

WLS1 
10.19 40.35 10.96 72.97 

WLS2 
9.94 37.91 9.29 55.28 

GLS 
9.78 34.01 8.47 57.98 

ML 
9.29 27.46 5.82 17.30 

CV1 
11.52 29.09 14.63 34.73 

MLCV1 
11.39 38.25 11.33 70.12 

CV2 
11.14 34.12 13.02 40.58 

MLCV2 
11.12 12.42 9.30 83.59 

n = 90 Bias of 

sill 

RMSE of 

sill 

Bias of  

range 

RMSE of 

range 

OLS 
0.89 6.41 7.61 12.39 

WLS1 
0.19 6.35 4.96 9.87 

WLS2 
-0.06 6.15 3.29 8.13 

GLS 
-0.22 5.83 2.47 8.00 

ML 
-0.71 5.28 -0.18 4.16 

CV1 
1.52 5.60 8.63 10.45 

MLCV1 
1.39 6.34 5.33 9.92 

CV2 
1.14 5.95 7.02 9.47 

MLCV2 
1.12 3.69 3.30 9.72 

 

Table 9. Statistics of the sampling distribution of the estimates in the case non-Gaussian 

RF and 0.4 for the practical range/side length ratio. RF with no nugget variance. Sample 

size is 90. This table shows the sill and range parameters. 
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n = 90 Mean of  

nugget   

(target = 0) 

Variance of 

nugget 

Mean of 

partial sill 

(target = 10) 

Variance of 

partial sill 

OLS 
1.77 4.41 9.12 32.12 

WLS1 
1.90 3.79 8.29 33.40 

WLS2 
1.86 3.36 8.08 29.91 

GLS 
1.55 3.66 8.23 29.01 

ML 
1.14 2.06 8.15 26.40 

CV1 
3.09 7.90 8.43 28.92 

MLCV1 
1.33 2.94 10.06 35.73 

CV2 
4.18 18.42 6.96 21.11 

MLCV2 
3.77 11.49 7.35 20.08 

n = 90 Bias of 

nugget 

RMSE of 

nugget 

Bias of  

partial sill 

RMSE of 

partial sill 

OLS 
-3.23 3.85 4.12 7.00 

WLS1 
-3.10 3.66 3.29 6.65 

WLS2 
-3.14 3.63 3.08 6.27 

GLS 
-3.45 3.94 3.23 6.28 

ML 
-3.86 4.11 3.15 6.02 

CV1 
-1.91 3.39 3.43 6.37 

MLCV1 
-3.67 4.05 5.06 7.83 

CV2 
-0.82 4.37 1.96 4.99 

MLCV2 
-1.23 3.60 2.35 5.06 

 

Table 10. Statistics of the sampling distribution of the estimates in the case non-

Gaussian RF and 0.4 for the practical range/side length ratio. RF with no nugget. 

Sample size is 90. This table shows the nugget variance and partial sill parameters. 
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Accumulated 

RMSE  

RMSE of   

nugget 

 

RMSE of 

partial sill 

RMSE of 

variance 

RMSE of 

range 

Total RMSE 

OLS 
13 22 34 66 416 

WLS1 
13 22 35 54 379 

WLS2 
13 21 35 48 357 

GLS 
13 21 34 49 366 

ML 
11 19 28 26 259 

CV1 
16 24 36 53 389 

MLCV1 
11 24 35 51 370 

CV2 
19 23 35 54 396 

MLCV2 
18 21 27 48 340 

 

Table 11. Scoring of accumulated RMSE (in Tables 1 to 10) for the different estimator 

and for the different parameters as well as for all of them.  

 

 

 

 

 

 Coverages Variance 

estimate 

SE1  

 

Variance 

estimate 

SE2  

 

Range 

estimate 

SE1  

 

Range 

estimate 

SE2  

 

GLS 30 
55 72 65 78 

GLS 90 
36 63 41 57 

ML 30 
43 68 95 98 

ML 90 
21 48 75 88 

 

Table 12. Coverage of random intervals for GLS and ML. For a Gaussian distribution the 

coverage of  estimate SE1  is of 68% and estimate SE2 has a coverage of 95%. 
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List of Figures 

Figure 1. Design of the experiment in order to have the small samples for comparing 

estimators. 

 

Figure 2. Realization of a zero-mean Gaussian field with exponential semi-variogram of 

range 6 units (practical range 18 units of distance). The nugget variance is zero and the 

variance is 10. 

 

Figure 3. Realization of a zero-mean Gaussian field with exponential semi-variogram of 

range 6 units (practical range 18 units of distance). The nugget variance is 50% of the 

total variance. The total is 10, the nugget variance is 5 and the partial sill is 5. 

Figure 4. Realization of a chi-square field with exponential semi-variogram of range 6 

units (practical range 18 units of distance). The nugget variance is zero and the variance 

is 10. 

 

Figure 5. Realization of a chi-square field with exponential semi-variogram of range 6 

units (practical range 18 units of distance). The nugget variance is 50% the total 

variance. The variance is 10, the nugget variance is 5 and the partial sill is 5. 
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