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Abstract25

    Hydraulic fracturing has been used widely to stimulate production of oil, natural 26

gas, and geothermal energy in formations with low natural permeability. Numerical 27

optimization of fracture stimulation often requires a large number of evaluations of 28

forward hydraulic fracturing models, which are computationally expensive and even 29

prohibitive in some situations. Moreover, there are a variety of uncertainties associated 30

with the pre-existing fracture distributions and rock mechanical properties, which require31

evaluation of their impact on the optimal treatment. In this study, a surrogate-based 32

approach is developed for efficient optimization of hydraulic fracturing well design in the 33

presence of natural-system uncertainty. The fractal dimension is derived from the 34

simulated fracturing network as the objective for maximizing energy recovery sweep 35

efficiency. The surrogate model mapping the input parameters to the fractal dimension is 36

constructed using training data generated by high-fidelity fracturing models, and it 37

provides fast approximation of the objective functions. A suite of surrogate models 38

constructed using different fitting methods is evaluated and validated for fast predictions. 39

Global sensitivity analysis is conducted to gain insights into the impact of the input 40

variables on the output of interest, and further used for parameter screening. The high 41

efficiency of the surrogate-based approach is demonstrated for three optimization 42

scenarios with different, uncertain ambient conditions. Our results suggest the critical 43

importance of considering uncertain pre-existing fracture networks in optimization 44

studies of hydraulic fracturing.45

Keywords: Hydraulic fracturing; Fractal dimension; Surrogate model; Optimization; 46

Global sensitivity47



1. Introduction48

Hydraulic communication is a key factor determining hydrocarbon or thermal energy 49

recovery sweep efficiency in an underground reservoir. Sweep efficiency is a measure of 50

the effectiveness of heat, gas or oil recovery process that depends on the volume of the 51

reservoir contacted by an injected fluid. In the petroleum industry, hydraulic fracturing 52

techniques have been used for over 60 years to increase hydraulic communication and 53

stimulate oil and gas production (Britt, 2012). Artificial (stimulated) hydraulic fractures 54

are usually initiated by injecting fluids into the borehole to increase the pressure to the 55

point where the minimal principal stress in the rock becomes tensile. Continued pumping 56

at an elevated pressure causes tensile failure in the rock, forcing it to split and generate a 57

fracture that grows in the direction normal to the least principal stress in the formation.58

Hydraulic fracturing activities often involve injection of a fracturing fluid with proppants 59

in order to better propagate fractures and to keep them open (Britt, 2012). The design of 60

fracturing treatment should involve the optimization of operational parameters, such as 61

the viscosity of the fracturing fluid, injection rate and duration, proppant concentration, 62

etc., so as to create a fracture geometry that favors increased sweep efficiency. The net 63

present value (NPV) introduced by Ralph and Veatch (1986) as the economic criteria, is64

usually used as the objective for optimal fracturing treatment design. Some studies have 65

been reported to use a sensitivity-based optimization procedure coupled with a fracture 66

propagation model and an economic model to find the optimal design parameters leading 67

to maximum NPV (Balen et al., 1988; Hareland et al., 1993; Aggour and Economides, 68

1998). Nevertheless, this procedure, requiring brute-force parameter-sensitivity analysis,69



is tedious and incapable of exploring parameter space globally, which could potentially 70

lead to the problem of converging to a local minimum of the objective function. 71

Rueda et al. (1994) optimized fracturing variables, including the injected fluid 72

volume, pumping rate, fluid and proppant type, by applying a mixed integer linear73

programming (MILP) approach, which also lacks a global optimization capability. 74

Mohaghegh et al. (1999) proposed a surrogate-based optimization approach by using a 75

genetic algorithm to fit the dataset generated from a fracturing simulator that models both 76

fracture propagation and proppant transport. Surrogate-based optimization refers to the 77

idea of speeding optimization processes by using fast surrogate models. Queipo et al. 78

(2002) applied a neural network algorithm to construct a “surrogate” of the NPV for an 79

optimal design of hydraulic fracturing treatments. The objective function (NPV) was80

trained as a function of inputs by a synthetic dataset produced from a high-fidelity 81

physics model, which integrated a fracturing simulator, a proppant transport and 82

sedimentation model, a post-fracturing production model, and an economic model. This83

surrogate-based procedure is computationally less expensive for obtaining global minima 84

without executing physics-model simulations, which are computationally prohibitive in 85

some optimizations. However, none of these studies has considered optimizing the86

hydraulic fracturing of a pre-existing fracture network, which is a very common feature 87

of rocks (Odling, 1992). Moreover, uncertainties of geomechanical properties and of the 88

pre-existing fracture networks, resulting from the geologic architecture and fracture 89

properties, such as fracture density, length, and orientation, etc. (Reeves et al., 2008), 90

have not been rigorously studied for optimization of hydraulic fracturing treatment.91



It has been demonstrated from field studies that fluid flow in fractured rock is 92

primarily controlled by the fracture geometry and the interconnectivity between fractures 93

(Long and Witherspoon, 1985; Cacas et al, 1990). A fractal is a self-similar geometric set 94

(Mandelbrot, 1983) with Hausdorff-Besicovitch dimension exceeding the topological or 95

Euclidian dimension, which is referred as fractal dimension. It is well recognized that 96

natural fracture networks are fractal over a wide scale range (Barton, 1995; Bonnet et al., 97

2001), and fractal dimensions have been demonstrated to be efficient metrics for natural 98

fracture patterns (e.g. LaPointe, 1988; Barton, 1995; Berkowitz and Hadad, 1997).99

In this work, a surrogate-based optimization approach is proposed for optimizing 100

hydraulic fracturing design in the presence of uncertainties in a pre-existing natural 101

fracture network and its geomechanical properties. A state-of-the-art 2-D hydraulic 102

fracturing model, GEOS-2D (Fu, et al., 2012), is used to simulate dynamic fracture 103

propagation within a pre-existing facture network. Instead of integrating physical models 104

and economic models to maximize NPV as the objective function, we focus on physical 105

criteria, that is, the optimal hydraulic fracture propagation under uncertain natural 106

conditions. The fractal dimension of the connected fractures can be derived from the 107

post-fracturing network simulated by GEOS-2D to represent the network density and 108

connectivity. More importantly, the scale-invariant feature of fractals allows observations 109

from the core scale to be applied in another scale (e.g. reservoir scale). Therefore, the 110

fractal dimension is chosen as the objective function to optimize the hydraulic fracturing 111

well design. While a line, square, and cubic have the integer dimensions of 1, 2, and 3 112

respectively, the fractals in this study, which are applied to linear fractures in a 2-D plane, 113

have a non-integer fractional dimension between 1 and 2.  114



In this paper, both non-parametric and parametric algorithms are used to construct 115

surrogate models. Both types of surrogate models are quantitatively evaluated for 116

prediction performance by cross-validations, and the best quality model is then selected 117

for optimization. BOBYQA (Powell, 2009), a powerful and efficient derivative-free 118

nonlinear optimization algorithm, is applied to drive a global search on the surrogate-119

modeled response surface. Compared to previous studies, our optimization methodology 120

includes advances in (1) incorporating uncertain pre-existing natural fracture networks, (2) 121

constructing both non-parametric and parametric surrogate models and conducting122

rigorous quality evaluations, (3) applying the high-efficient state-of-the-art optimizing 123

algorithm, and (4) deriving the scale-invariant fractal dimension as the objective function.124

2. Surrogate-based optimization approach125

The proposed surrogate-based approach includes the following key steps (Fig. 1).126

1. Construct samples of the parameter space.127

2. Conduct mathematical simulations using the input samples from the previous 128

step.129

3. Derive the objective function from the simulated results.130

4. Construct and validate surrogate models using the data from the previous steps 131

for predication.132

5. Perform optimization using selected surrogate model.133

2.1. Sampling in parameter space134

As shown in Fig. 1 and Table 1, an 11-dimensional parameter space is constrained by 135

the ranges of the 11 input parameters. Latin Hypercube Sampling (LHS) procedure is 136



used to draw N samples in the designed space following probability distribution functions 137

(PDF) for each parameter. LHS is an effective stratified sampling approach ensuring that 138

all portions of a given partition are sampled (McKay et al., 1979). Each point in the 139

parameter space represents a deterministic vector for the 11 input variables.  Fig. 1 shows 140

an example of a 3-D input space, in which N = 800 points are sampled from the uniform 141

distribution within the specified parameter range. 142

2.2. Hydraulic fracturing simulations143

In this step, the computationally expensive physical models are executed N times with 144

each input configuration sampled in the previous step. Each model includes generating 145

an initial fracture network followed by simulation of hydraulic fracturing.  The initial 146

discrete fracture network is generated with fracture lengths controlled by the Pareto 147

distribution (Odling, 1997)148

�(� > �) = � ∙ ��� (1)149

where P is the probability of a fracture of length larger than l, C is a constant that 150

depends on the minimum fracture length in the system, which is assumed to be 5% of the 151

domain size (100 m) in this study, and a is the power law exponent varying between 1152

and 3 for natural fracture networks (Davy, 1993; Renshaw, 1999; Reeves et al., 2008).153

Typically, the mean fracture length of the fracture network increases as a decreases. 154

Natural fracture networks usually consist of two fracture sets with most fractures in a set 155

oriented in the same direction (LaPointe and Hudson, 1985; Ehlen, 2000). In this study, 156

the fracture orientation refers to the angle between the fracture and the maximum 157

principal stress direction (east). The orientation of the first fracture set ranges between 0o158

and 135o, while that of the second set is always 45o more than the first one. For example, 159



the orientation of the first fracture sets in the pre-existing fracture network shown in Fig. 160

1 is 25o from the input sample, hence that of the second set is 70o, with 45o from the first 161

set.  162

Hydraulic fracturing under injected fluid pressure is simulated using an explicitly 163

coupled hydro-geomechanical code, GEOS-2D, developed at Lawrence Livermore 164

National Laboratory (Fu et al., 2012). This code couples a solid solver, a flow solver, a 165

joint model, and a remeshing module, and is capable of dynamically simulating fracture 166

propagation in a pre-existing fracture network. Fig. 1 presents the simulated fracture 167

distribution after hydraulic fracturing with an injection well located at (0, 0), at sample 168

point 1 with parameter values provided in Table 1. 169

2.3. Fractal dimension calculation170

The fractal dimension of fractures opened by pressurized fluids can be reasonably 171

representative of the density and connectivity of the network. Owing to self-similarity of 172

fractals, the fractal dimension calculated from borehole samples can be extrapolated to 173

reservoir-scale fracture networks. Due to these attractive features, the fractal dimension 174

calculated from the simulated post-fracturing distribution is used as objective function of 175

surrogate models for optimization. In the widely used box-counting method, measuring 176

the fractal dimension of the fracture network (Barton and Larsen, 1985; Chil�s, 1988; 177

Walsh and Watterson, 1993), the number of boxes of side length r needed to cover the 178

fractal shape, N(r), is approximated as a power law relation179

�(�) = � ∙ (1/�)�, (2)180



where k is a constant and D is the fractal dimension. By log-transforming the both sides, 181

we obtain182

���(�(�)) = � ∙ ���(1/�) + ���(�). (3)183

Thus, the fractal dimension D can be derived as the slope of the line linearly regressed 184

from a series of size r and the corresponding N(r). Fig. 1 shows that the fractal dimension 185

of the simulated network is 1.725 from the well-fitted regression line with an R2 value of186

0.9963. 187

2.4. Surrogate-based optimization188

Since surrogate models can be quickly constructed once the expensive training 189

dataset is generated, we build alternatives from which the best one is selected according 190

to the model validation results. The selected surrogate model is then used for evaluating 191

objective functions for optimization or for other analyses.192

193

2.4.1. Surrogate model construction194

The calculated fractal dimensions, paired with the corresponding sample inputs, 195

constitute the training data set for construction of the non-linear relations between them. 196

For n paired observations, the model is given by197

�� = �(x�) + �� , � = 1 �� �. (4)198

Here, x� is the input variable vector of sample i, �� is the response observation (calculated 199

fractal dimension), �(x�) is the mean response, �� is the error, and N is the sample 200

number. Generally speaking, there are two kinds of fitting methods, namely, parametric 201

and non-parametric regression. The parametric approaches, such as Gaussian Process 202



(GSP) and Polynomial Regression (PRG), presume a uniform global function form 203

between input variables and the response variable, and require the estimation of a finite 204

number of coefficients (Williams and Rasmussen, 1996; Draper and Smith, 1998), while 205

non-parametric approaches, such as Multivariate Adaptive Regression Splines (MARS), 206

use different types of local models in different regions of the data to construct the overall 207

model (Friedman, 1991). In our approach, we build MARS, GSP, and PRG models and 208

determine which one performs the best by follow-up validation. Various PRG models are 209

also built with different order and different number of input variables that are the most 210

sensitive ones ranked by global sensitivity analysis to be discussed next section. The first, 211

second, and third order PRG including Nv input variables can be expressed as212

�1(�) = �� + ∑ ����,
��
���213

�2(�) = �1(�) + ∑ ∑ �������,
��
���

��
��� (5)214

�3(�) = �2(�) + ∑ ∑ ∑ ���� ������,
��
���

��
���

��
���215

where ��, ���, ���� are coefficients to be estimated. Higher order PRG can be formulated 216

by adding higher-order terms. With more input variables included in higher order PRG, 217

the fitting is better, but the number of coefficients increases, which must be less than the 218

number (N) of observations (training dataset). Because of the limited training data, there 219

is a trade-off between the order of PRG and the number of included variables for the best 220

fit.221

222

2.4.2. Global sensitivity analysis223



Sensitivity is a measure of the contribution of an independent variable to the total 224

variances of the dependent variable. Sensitivity analysis of a model system can be used as 225

the following purposes.226

1. Parameter screening: fix one or more of the input variables with negligible 227

influence on the output variability.228

2. Variable prioritization: rank input variables according to their sensitivity indices.229

3. Variable selection for reducing uncertainty: invest money to measure those 230

sensitive variables that can reduce output uncertainty to maximum extent.231

There are numerous methods for sensitivity analysis (Frey and Patil, 2002), among 232

which the Sobol’ method (Sobol’, 1993) is used to drive global sensitivity analysis of 233

input variables for the response variable, i.e., the fractal dimension.  Using the training 234

dataset, the relative importance of input variables is quantified by Sobol’ total sensitivity 235

indices. In this study, the sensitivity analysis for the preliminary experiment screens out 236

the non-sensitive parameters to reduce the parameter dimension for the 2nd stage 237

experiment of optimization.  The selection of input variables in the PRG models is also 238

based on parameter ranking by Sobol’ indices.239

240

2.4.3. Model validation and selection241

A well-fitted surrogate model does not necessarily mean that it is good for prediction. 242

It is easy to over-fit data by including too many degrees of freedom. One way to measure 243

the predictive ability of a surrogate model is to test it using a test dataset, which is split 244

from the sample data and not used in training. Nevertheless, it will limit the data 245

available for constructing the surrogate models. Alternatively, the popular leave-one-out 246



cross-validation (LOOCV) method can make use of the available sample data much more 247

efficiently (Picard and Cook, 1984). Given N input samples, a surrogate model is 248

constructed N times, each time leaving out one of the input sample from training, and 249

using the omitted sample to test the model. The generalization error of the LOOCV can 250

be estimated using the root mean square error (RMSE)251

���� = �∑ (�����
(��)

)��
���

�
(6)252

where �� represents the ith response observation (calculated fractal dimension), and ��
(��)

253

denotes the prediction (interpolated fractal dimension) tested by sample i using the 254

surrogate model fitted by all the other N-1 samples. The surrogate model with a minimum 255

RMSE is selected for optimization.256

257

2.4.4. Optimizer258

Bound Optimization BY Quadratic Approximation (BOBYQA) algorithm is applied 259

to search the minimal objective function (negative fractal dimension) of the surrogate 260

model �(�), � ∈ ℛ�, where ℛ� is the N-dimensional parameter space constrained by the 261

range of each input variable. BOBYQA is a powerful numerical optimization solver for 262

derivative-free nonlinear problems, subject to simple bound constraints (Powell, 2009). 263

In the case studies, optimal hydraulic fracturing design parameters and natural field 264

properties corresponding to the minimal objective function are found on the response 265

surface using BOBYQA optimizer.266

2.5. Implementation267



The proposed approach was implemented in a Python code that couples the hydraulic 268

fracturing simulator GEOS-2D (Fu et al., 2012) with the uncertainty quantification tools 269

contained within the PSUADE code (Tong, 2009). PSUADE (Problem Solving 270

environment for Uncertainty quantification And Design Exploration) is a suite of 271

uncertainty quantification modules capable of addressing high-dimensional sampling, 272

parameter screening, global sensitivity analysis, response surface analysis, uncertainty 273

assessment, numerical calibration, and optimization (Hsieh, 2007; Wemhoff and Hsieh, 274

2007; Sun et al., 2012). The computationally expensive hydraulic fracturing simulations275

for generation of the synthetic training dataset (GEOS-2D) are executed using the high 276

performance computing facilities at Lawrence Livermore National Laboratory. The box-277

counting method for deriving fractal dimension of connected fractures from the post-278

fracturing distribution is implemented in a Fortran code.279

3. Case study: hydraulic fracturing well design optimization280

In this section, the developed surrogate-based approach is applied to optimizing the281

hydraulic fracturing well design (location and length) in a 2-D domain under uncertain 282

natural-system conditions. To reduce the dimensionality of the input parameter space, 283

preliminary simulations are performed to generate a training dataset used to conduct 284

global sensitivity analysis for parameter screening. The input parameter sampling and 285

numerical simulations are presented in Fig. 1 and Table 1. Based on N = 800 observation 286

pairs, Sobol’ total sensitivity indices are derived and parameter importance is ranked 287

(Table 1). Of the Nv = 11 input parameters, two operational ones, working fluid viscosity 288

and injection pressure, are found to be the most important for effective fracturing. The 289

four least sensitive parameters with Sobol’ indices less than 0.01 are screened out. The 290



remaining variables – two parameters related to pre-existing network, fracture orientation 291

and number, and three parameters related to rock mechanical properties, Young’s 292

modulus, minimum principal stress, and stress anisotropy, are included for the 293

optimization experiment described below.294

3.1. Experimental design295

As illustrated in Fig. 2, a horizontal injection well is placed in an experimental 2-D 296

physical domain along its left-most boundary (along the y axis). The pertinent design 297

parameters of interest here include the length of the open (perforated) injection interval 298

(anywhere from 0 to 40 m) and its center lying between y = -20 and 20 m. The design299

parameters, plus the five most important natural-system parameters determined above, 300

are treated as uncertain parameters. A total of 529 input samples are drawn from the301

seven-dimensional parameter space using the LHS sampling method. Two of the seven302

parameters, fracture orientation and the number of fractures in the pre-existing network, 303

are fed into the pre-existing fracture model and the remaining five are applied to the 304

hydraulic fracturing model. Instead of injection pressure, injection rate is used as the 305

source term of the fracturing model. The total injection rate is fixed at 0.25 m3/s, and is 306

averaged over the perforated well length, which is subdivided into 2-m long injection 307

nodes. As a result, the injection rate applied on each injection node decreases linearly 308

with increasing horizontal-well length.309

3.2. Synthetic dataset analysis310

For each of 529 input samples, pre-existing network are generated and GEOS-2D 311

models are executed, and nine snapshots of post-fracturing network distributions are 312

exported in nine sequential time steps from which the fractal dimensions are derived. 313



Mean values of the 529 fractal dimensions increase with the injection time or fluid314

volume (Fig. 3a), suggesting that fracture networks keep growing with the continuous 315

injection of fluid. The time series of the mean fractal dimensions also indicate that their316

growth rates are very high initially, and gradually decreases to nearly zero from 11.4 to 317

51.1 seconds, suggesting the economic benefit of hydraulic fracturing declines with time.  318

The probability distribution of the 529 fractal dimension results in the last snapshot at 319

51.1 seconds shows that most of them are between 1.5 and 1.7, and the value with highest 320

possibility (10%) is around 1.65 (Fig. 3b). The corresponding cumulative probability 321

indicates that about 25% of 529 fractal dimensions are less than 1.5, 50% less than 1.6, 322

and 75% less than 1.65.  Only 10% of these fracture dimension values are above 1.7 and 323

the maximum value is 1.79. The nine sets of 529 observation pairs consisting of the seven324

input variables and the corresponding fractal dimension are served as the training and 325

testing dataset for surrogate models. 326

3.3. Global sensitivity analysis327

All seven input variables are normalized between zero and one, based on their upper 328

and lower bounds. For each input sample, fracture distributions at nine sequential 329

injection time steps were generated, from which the corresponding fractal dimensions are 330

derived. Fig. 4 shows the global sensitivity of nine sets of fractal dimensions to the seven331

input variables sorted by the last set. For all the nine time steps, the variability of fractal 332

dimensions is largely influenced by the initial fracture number and well length (Sobol’333

indices > 0.5), and moderately by the other 5 input variables, indicating that the initial 334

fracture number is the key uncertain parameter influencing post-fracturing conditions.335

Injection lengths (and the corresponding averaged injection rate) are the key contributors336



to the variability of fractal dimensions at the earlier injection stages, while initial fracture 337

number becomes the key contributor at the later stages. Well center location strongly 338

affects the fractal dimension (Sobol’ indices = 0.4), while becoming marginally important339

(Sobol’ indices = 0.1) as injection proceeds. Overall, two stress parameters, minimum 340

principal stress, stress anisotropy, and fracture set orientation, influence the objective 341

somewhat more than does Young’s modulus. The sensitivity information inferred above 342

is used to rank variable prioritization to be included in PRG models below.343

3.4. Surrogate models evaluation344

Non-parametric MARS, parametric GSP and 11 PRG models with various parameters 345

and orders are constructed for the nine snapshots, each using 529 observation pairs (input 346

parameters vs. fractal dimension). Table 2 shows the comparison of MARS, GSP and 11 347

PRG models constructed for the post-fracturing distribution (i.e., the last snapshot). The 348

natural-system parameters included in PRG models are determined according to the 349

importance ranking by Sobol’ indices (Fig. 3). For examples, minimum principal stress is 350

dropped off for the 6-parameter PRG model, and Young’s modulus is further excluded 351

from the 5-parameter PRG model, because the two parameters are ranked as least 352

important for fracturing at the final timestep.  In terms of fitting error, the more 353

coefficients that are included, the higher the accuracy of PRG models becomes. In fact, 354

when the number of coefficients is greater than 125, PRG models fit the training dataset355

better than the MARS model does. Nevertheless, the predictive ability, tested against a356

new dataset, will usually get worse as more terms are included, due to over-fitting. As 357

shown in Table 2, the RMSE of cross-validation for each surrogate model confirms that 358

the best fitted PRG model with 461 coefficients turns out to be the worst in prediction359



performance, and the quadratic PRG, with seven variables and just 35 estimated 360

coefficients, had the best prediction performance among 11 PRG models. Finally, the 361

MARS model is selected for optimization due to its better prediction performance than 362

both GSP and the best PRG model.363

To illustrate the surrogate model quality regarding fitting and validation, the scatter 364

plots of fractal dimension simulated by surrogate models versus GEOS-2D from 529 365

sample inputs are compared between MARS model and the best-fitted, but worst-366

validated PRG model (5-order 6-parameter) (Fig. 5).  The closer the points are to the 367

diagonal line, the better the surrogate model matches the physical model.  It is seen that 368

the points are clustered closely along the diagonal line for the PRG model fitting369

(RMSE=0.00805), but are significantly scattered for cross-validation (RMSE=0.401).370

Conversely, points in both the MARS fitting and cross-validation scatter plots are 371

moderately spread with 0.0257 and 0.0410 of RMSE, respectively.372

3.5. Horizontal well design optimization373

The problem of interest is to find the favorable fracture-stimulation well design374

variables, namely, well center y location and the perforation length, in the presence of 375

natural-system uncertainty. To investigate how natural-system uncertainty affects optimal 376

well design, three optimization cases with sequentially decreasing natural-system 377

uncertainty are performed for the last snapshot at an injection time of 51.1 seconds. Case 378

A searches the minimum objective function (maximum fractal dimension) in a 7-D 379

parameter space, with two design variables and with five natural-system variables treated 380

as uncertain. Case B is adapted from case A, with the uncertainty reduced by fixing the 381

fracture orientation and number, which are two parameters describing the pre-existing 382



fracture network.  In case C, only well location and length are allowed to vary within the 383

specified ranges during the optimization process, by further fixing the three384

geomechanical variables affecting fracture propagation, minimal principal stress, stress 385

anisotropy, and Young’s modulus. The objective function to be minimized is the negative 386

fractal dimension. All the three optimization cases are efficiently conducted using 387

surrogate models without rerunning the expensive physics-based GEOS-2D, due to the 388

flexibility of our surrogate-based approach. The BOBYQA optimizer, coupled with the 389

selected MARS models, is executed for the three inverse problems. 390

Fig. 6 depicts the optimization processes, which involves searching the minimal 391

objective function for each of the three cases. It is seen that the number of evaluations of 392

the surrogate model required to satisfy the convergence criteria (10-6) is 337, 269 and 994, 393

respectively. Each of the optimizations requires hundreds of model evaluations and can 394

be completed in less than a minute, while a single realization conducted with the GEOS-395

2D code costs tens of hours. Moreover, a physics-based model is usually not as smooth as 396

its surrogate, implying that a greater number of model evaluations are required for 397

convergence than required by surrogate-based optimization. As a result, the high-efficient398

surrogate-based optimization approach can make the otherwise computationally 399

prohibitive procedure practically achievable. An example of an expensive procedure is 400

Bayesian stochastic joint inversion modeling using hard (borehole core) and soft data 401

(geophysical survey), which usually entails expensive Markov Chain Monte Carlo 402

sampling. Another advantage of the surrogate-based approach is its high degree of 403

flexibility. Once the training data is generated from the expensive physics-model 404



simulations, numerous surrogate models can be constructed and validated for 405

optimization within a very short time.406

The optimal values of the parameter sets corresponding to the minimum objectives407

are listed in Table 3. Case A represents a scenario in which the hydraulic fracturing 408

treatment is designed with minimal knowledge of the targeted field; thus, a wide range of 409

the natural-system properties must be accounted for. The optimal location of the well 410

center is found to be 4.31 m on the y axis, and the optimal well length is 0.08 m. This 411

indicates that, to obtain a maximum fractal dimension, the fluid should be injected in just 412

one injection node at y = 4 m, and at the rate of 0.25 m3/s, if fracturing is to be optimized413

for this level of natural-system uncertainty. With the entire injection rate concentrated at 414

one node, the maximum possible hydraulic pressure is achieved, which confirms our 415

intuition about what will maximize the growth of the fracture network.  416

Case B assumes both the fracture orientation and fracture number of the pre-existing 417

network are already determined to be 1o and 250, respectively, on the basis of borehole 418

core data or other geophysical measurements. The optimal well design parameters 419

(position and length) are found to be 5.09 m and 21.3 m, which corresponds to a 420

hydraulic fracturing scheme where fluid is injected into 11 nodes, centered at y = 5 m,421

with each injected at a rate of 0.25/11 = 0.0227 m3/s. Unlike case A, where all of the fluid 422

injection (and pressurization) is concentrated in one node, pressurization in case B is 423

distributed along 11 nodes, suggesting that both the distribution and magnitude of 424

pressure are important for creating a favorable fracturing network, and must be traded off 425

given the limited total injection volume. The maximum fractal dimension is 1.622, which 426

has been significantly reduced from 1.872 in case A, demonstrating the importance of 427



considering uncertainty of the pre-existing fracture network for optimizing the hydraulic 428

fracturing treatment. Sensitivity analysis has shown that the fractal dimension is highly 429

sensitive to the initial fracture number (Fig. 3), so it is reasonable to conclude that the 430

large decrease of fractal dimension from case A to B results from the large reduction of 431

the initial fracture number from 486 to 250. It is also seen that fracture orientation and 432

Young’s modulus differ a lot from case A to B, but since they were found not to strongly 433

affect fractal dimension, they are not likely to be the main contributors to its decrement. 434

Case C is designed to investigate the optimal well injection scheme given full 435

knowledge of the natural system, with all five natural-system properties fixed as listed in 436

Table 3. The optimized well injection design parameters turn out to be similar to those in 437

case B, suggesting that uncertainty of the three rock mechanical parameters has a small438

influence on the optimization results. On the other hand, the comparison with case A 439

shows that the uncertainties of the two input variables for pre-existing fracture network 440

can lead to a big difference in the optimization results. These findings demonstrate the 441

importance of addressing uncertainty of the pre-existing fracture network, rather than 442

addressing that of the rock geomechanical properties in optimizing hydraulic-fracturing 443

treatments, which was lacking in previous studies. The moderate decrement of maximal444

fractal dimension from case B to C is believed primarily caused by the increment of 445

stress anisotropy from 1.0 to 1.2, based on the fact of its relatively small sensitivity to the 446

other varied rock properties (Fig. 3). The 2-D response surface for case C is shown in Fig. 447

7. Apparently, multiple local minimal objective functions exist, with the global minimum 448

being found using the BOBYQA optimizer.449



Fig. 8 plots the three post-fracturing distributions simulated using the corresponding 450

optimal input parameter sets. It is apparent that the network connected by fluid injection 451

for case A sweeps a larger area than the other 2 cases, demonstrating that the fractal 452

dimension of opened fracture network is an appropriate indicator of the potential energy 453

sweep efficiency in the target field. The fractures in case C propagate mainly along x axis 454

(maximum principal stress direction) since the stress field is moderately anisotropic while 455

the stresses in case A and B are almost isotropic.456

4. Summary and conclusion457

A surrogate-based optimization approach involving high-dimensional parameter 458

space sampling, numerical physics-model simulations, objective-function derivation, 459

surrogate-model construction and validation, with the coupled execution of the optimizer 460

and surrogate models, is proposed and implemented for optimizing hydraulic-fracturing 461

treatments. For a strongly non-linear process, such as hydraulic fracturing considered in 462

this study, the surrogate model constructed by the non-parametric MARS method is 463

demonstrated to have the best prediction performance according to the cross-validation, 464

and hence was selected for optimizing the hydraulic fracturing treatment. The 3 465

optimization cases, each requiring hundreds of surrogate model evaluations to meet 466

convergence tolerance, are completed in less than one minute, demonstrating the high 467

efficiency of the approach. A comparison study of 3 optimization cases is conducted by 468

varying the dimensionality of the parameter space without rerunning expensive physics-469

model simulations. Moreover, additional optimizations using surrogate models can be 470

performed quickly and easily for particular purposes if necessary, for example, reducing 471

the uncertainty of an input variable by narrowing its range.472



The comparison study shows the optimization results depend on the degree of473

uncertainty of the pre-existing fracture networks. This indicates the importance of 474

incorporating information about pre-existing fracture networks into the process of 475

optimizing hydraulic fracturing treatment, which has been largely overlooked by previous 476

optimization studies in the literature. In contrast, the influence of uncertainty in rock 477

geomechanical properties on the optimal injection scheme is found to be less important. 478

These findings suggest that the pre-existing fracture network, rather than the 479

geomechanical properties, should be the top priority to be characterized before designing 480

a hydraulic fracturing treatment.481

The statistical analysis of the training data and fracture networks for the three 482

optimized hydraulic-fracturing cases indicates that fractal dimension is a useful metric for483

quantifying the density and connectivity of a fracture network. Furthermore, the scale-484

invariant nature of the fractal makes it a universal indicator for the fracture network 485

across wide range of spatial scales, from core through outcrop to aerial image scale. The 486

successful incorporation of fractal dimension into the efficient surrogate-based approach 487

in this study provides a useful solution for other inverse problems that suffer from the 488

heavy computational burden and multi-scale measurements, such as the stochastic joint 489

inversion problem.490

The decreasing growth rate of the mean fractal dimension with injection time implies 491

the diminishing value of continuing the hydraulic fracturing operation. Therefore, there 492

exists a cost-efficient time to stop the fracturing operation, that is, the injection time and 493

the rate need to be optimized for economic objective. Although this paper is focused on 494

incorporating uncertainty of the natural system into optimization and hence only 495



considers the physical criterion as the objective function, the presented surrogate-based 496

optimization approach, can be modified to find optimal injection rate and time by 497

integrating an energy production model and economic model to derive both physical and 498

economic criteria as the objective function. 499
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Table 1. Preliminary experiment: parameter importance ranking for the fractal 650
dimensions of opened fractures in post-fracking networks according to Sobol’ total 651

sensitivity indices652
Parameter name PDF 1 Min Max Sample#1 Indices Rank

11.Fluid viscosity (Pa-s) Log-U 0.0001 0.001 0.00025 0.51 1
6.Injection pressure / σh U 1 2 1.7 0.43 2
1.Fracture orientation (degree) U 0 135 25 0.050 3
2.Initial fracture numbers U 50 500 250 0.031 4
7.Young's modulus (GPa) U 5 50 31 0.026 5
4.Minimum principal stress σh (MPa) U 10 15 10.1 0.022 6
5.Stress anisotropy (σH/σh) U 1 2 1.3 0.014 7
9.Poisson's ratio U 0.1 0.5 0.2 0.0024 8
3.Fracture power law exponent U 1 3 1.8 0.001 9
8.Joint friction coefficient U 0.5 1.2 0.7 0.0 10
10.Fracture toughness (MPa-m0.5) U 0.2 2.0 1.0 0.0 11

1 U and Log-U denote uniform and log-uniform distribution.653
654

Table 2. Evaluation of surrogate models for fracture network at final time.655

Construction method
Estimated

Coefficients

RMSE

Fitting Validation

MARS - 0.0257 0.0410
GSP - 0.0278 0.0428
1-order 7-parameter PRG 7 0.0473 0.0483
2-order 6-parameter PRG 27 0.0390 0.0458
2-order 7-parameter PRG 35 0.0378 0.0436
3-order 5-parameter PRG 55 0.0326 0.0452
3-order 6-parameter PRG 83 0.0300 0.0458
3-order 7-parameter PRG 119 0.0283 0.0462
4-order 5-parameter PRG 125 0.0258 0.0506
4-order 6-parameter PRG 209 0.0221 0.0589
5-order 5-parameter PRG 251 0.0184 0.0568
4-order 7-parameter PRG 329 0.0169 0.0865
5-order 6-parameter PRG 461 0.00805 0.401

656
Table 3. Optimization of well center location and length for fracture network at final 657

time.658

Input sample space
Case A: 7-D Case B: 5-D Case C: 2-D

Range Opt. Range Opt. Range Opt.

Fracture orientation 0 - 135 121 1 - 1 -
Initial fracture number 50 - 500 486 250 - 250 -
Minimum principal stress σh (MPa) 10 - 15 13.02 10 - 15 13.27 12.5 -
Stress anisotropy (σH/σh) 1.0 - 1.5 1.07 1.0 - 1.5 1.00 1.2 -
Young's modulus (GPa) 5 - 50 38.33 5 - 50 48.65 25 -
Injection well center  on y axis (m) -20 - 20 4.31 -20 - 20 5.09 -20 - 20 5.09
Injection well length (m) 0 - 40 0.08 0 - 40 21.3 0 - 40 21.9

Maximum fractal dimension 1.872 1.622 1.547
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Fig. 1. Surrogate-based modeling approach for simulated hydraulic fracturing
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660

Fig. 2. An example of a horizontal well (center at y = 0 m and length=40 m) placed in a 661

pre-existing network (orientation =0o and number =250). The red solid line is horizontal 662

injection well with uncertain location and length along left y axis. The pre-existing 663

fracture orientation and number of natural network are also uncertain. The maximum 664

and minimum principal stress are assumed x and y direction respectively.665

Horizontal Injection well



666

Fig. 3. Global sensitivity of fractal dimension to the 7 input parameters for 9 sequential 667

injection time steps. The 9 parameter sequences are ordered according to the last one.668



669

670

Fig. 4. Statistics of 529 derived fractal dimensions: (a) mean for 9 injection time or 671

volumes, (b) PDF and CDF at finial time( 51.1 seconds or 12.8 m3 injected fluid volume).672
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675

Fig. 5. Scatter plots of fractal dimension simulated using surrogate model data versus 676

physical model from 529 input samples: the comparison of fitting (red dots) and cross-677

validation (blue dots) between MARS and 5-order 6-parameter PRG surrogate models. 678

The tighter the points clustered along diagonal, the closer the surrogate model data 679

match the physical model data.680

681



682

Fig. 6. Minimal objective searching curve for optimization case with (a) 7 uncertain 683

parameters, (b) 5 uncertain parameters, and (c) 2 uncertain parameters. The optimal 684

parameter values for the 3 cases are proved in Table 3.  685



686

687

Fig. 7. The visualized response surface with 2 uncertain design parameters, i.e., 688

horizontal well center at y axis and well length.689

690



691
Fig. 8. The post-fracking network corresponding to the optimal parameter set (values 692

provided in Table 3) with (a) 7 uncertain parameters, (b) 5 uncertain parameters, and (c) 693

2 uncertain parameters.  The optimal parameters for the 3 cases are provided in Table 3.694

The color of the fractures is based on the hydro-pressure. Red indicates the maximum 695

pressure, while blue denotes zero pressure, meaning closed fractures which are not 696

included in fractal dimension calculation.697
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