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Abstract 

Reservoir model needs to be constrained by various data, including dynamic production data. Reservoir 

heterogeneities are usually described using geostatistical approaches. Constraining geologicaljgeostatistical 

mode! realizations by dynamic data is generally performed through history matching, which is a complex 

inversion process and requires a parameterization of the geostatistical realizations for model updating. How­

ever, the parameterization techniques are still not very efficient and need to be improved. 

In recent years, the local graduai deformation method has been widely used to parameterize geostatistical 

realizations. The domain deformation technique has also been developed to improve the history matching 

efficiency. Both methods can smoothly modify mode! realizations while conserving spatial geostatistical 

properties. The first one consists in locally combining two or more realizations while the second one allows 

the optimization process to ebange the mode! realization via the variation of the shape of geometrical 

domains. In this paper, we generalize the local graduai deformation method by adding the possibility to 

change the geometry of local zones through the domain deformation. This generalization provides a greater 

flexibility in the definition of the local domains for the local graduai deformation method. In addition, we 

propose a new way to initialize the realization which guaranties a good initial point for the optimization and 

potentially improves the efficiency of history matching. 

K eywords: History mat ching, Geostatistical realizations, Parameterization, Graduai deformation, Domain 

deformation 

1. Introduction 

A reservoir model is built based on both static and dynamic data. Static data represent the data obtained 

from experiments carried out on cores extracted from wells or measurements of welllogs such as porosity or 

permeability. Dynamic data are generally the weil production data such as weil pressure, oil rate, etc .. The 

integration of dynamic data in the reservoir model is generally performed through history matching. 

• Benjamin Marteau 
Email address: benjamin.marteauhfpen.fr (Benjamin Marteau) 

?reprint submitted to Journal November 21, 2014 



Reservoir heterogeneities are described using geological/ geostatistical approach. The uncertainty of a 

model realization is linked to the geological scheme, to the sedimentary concept, to the nature of the reservoir 

rocks, their extent, and to their properties. Ignoring the uncertainties in the reservoir lithology would lead 

to underestimating the complexity of the reservoir between wells, resulting in over or under-estimating the 

10 connected reservoir pore volumes. Integration of dynamic data to constrain the geostatistical realization 

can reduce greatly model uncertainties. Although reservoir heterogeneities are commonly generated using 

geostatistical models, random realizations cannot generally match observed dynamic data. To constrain 

mode! realizations to reproduce measured dynamic data, an optimization procedure may be applied in an 

attempt to minimize an objective function. Such history matching methods require a parameterization of 

15 the geostatistical model to allow the updating of an initial model realization. 

To parameterize the geostatistical model, several methods were introduced. For example, the pilot 

point method (Marsily et aL, 1984), the graduai deformation method (Roggero & Hu, 1998), the domain 

deformation method (Ding & Roggero, 2010) and the probability perturbation method (Hoffman & Caers, 

2003) were all proposed to continuously deform the models. All these methods allow the modification of a 

>o geostatistical realization by preserving its spatial variability. 

In recent years, the local graduai deformation method has been increasingly used (Roggero et al., 2007, 

Al-akhdar et aL, 2012). In that method, the deformation zones are fixed and cannot be changed during 

history matching. If these zones are not suitably defined, it is difficult to decrease the objective function 

for history matching and to find an optimal realization. The choice of deformation zones is a critical point 

25 for the successful history matching of geostatistical realizations. In this paper, we propose a generalization 

of the local graduai deformation method, which can optimize the deformation zones through the domain 

deformation technique during a history matching process. This method allows the graduai deformation in 

varying domains and find more efficiently an optimal geostatistical realization. 

Another issue in history matching is the selection of the initial model realization for the local graduai 

Jo deformation. The batchwork method, which combines locally different realizations according to the matching 

results on the wells (Reis et al., 2000), is sometimes used to define an initial model. But this method does 

not always work well, and sometimes gives very bad results. Using the domain deformation technique alone 

may provide a suitable approach to define a convenient initial model. 

In this paper, we will first briefly review the graduai deformation and the domain deformation methods, 

Js then present a generalization of the graduai deformation method by combining with the domain deformation 

technique to modify the shapes and sizes of the domains. We will also show how to get a convenient initial 

model for history matching by using the domain deformation technique. Examples are presented to show 

sorne promising results with the new technique. 
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2. A generalized local graduai deformation technique 

•a 2.1. Graduai deformation method 

Sorne geostatistical methods such as the Fast Fourier Transform Moving Average (FFT-MA) (Le Ravalee 

et al., 2000) allow us to uncouple uncorrelated random realizations from structured information (mean, 

variance, correlation length, etc). With such methods, a model realization M is linked to a standard 

Gaussian white noise Z by an operator G: 

M = G(Z) (1) 

The graduai deformation method (Gervais et al., 2007, Hu, 2002, Roggero & Hu, 1998) consists in 

combining two or more Gaussian white noises to modify the model realization. More precisely, it uses the 

fact that if (Z0 , ... , ZN) areN+ 1 independent standard Gaussian white noises and (a0 , ... , aN) areN+ 1 

real numbers such that I:i a; = 1, then Z = L:i aiZi is still a standard Gaussian white noise. Then, if 

the ai depend on a set of parameters p = (p1 , ... , pN) th at guaranties th at for all p, L:i a; (p) = 1, we can 

generate new model realizations for all p. Moreover, a continuous variation of the set of parameters p gives 

a continuous variation of the spatial properties of the mode! realization as illustrated in Fig.l. For example, 

.. 1 

.. 

.. 

1 
.. 

Figure 1: Model variation with the variation of a local graduai deformation parameter p1 

if we want to combine two independent Gaussian white noises Z0 and Z1 , we can introduce a parameter p1 

and choose Z(p1
) such as: 

(2) 
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To combine N + 1 Gaussian white noises (Z0 , ... , ZN), we introduce N parameters p = (p1
, ... , pN). The 

graduai deformation is then given by: 

N N -1 N 

Z =II cos(/)Zo + L sin(pi) II cos(/)Zi + sin(pN)zN (3) 
i = l i = l 

For local graduai deformation, we group the mode! grid cells in zones and locally combine several Gaussian 

white noises inside these zones. For example: if the mode! is divided into 2 zones and 3 standard Gaussian 

white noises are available: 

we can defi ne Z (p) by : 

Zo,zone 1 l [ z l [ z l Z 
_ l,zone 1 d Z _ 2,zone 1 

1- an z-
' Z1,zon e2 Z2,zone2 Zo,zone2 

Z(p) = [ cos(p
1
)Zo,zone 1 +sin(p

1
)Zl,zone,] 

cos(p2 )Zo,zone2 + sin(p2 )Zz,zone2 

(4) 

(5) 

with p = (p1 , p2 ). Z(p) is still a standard Gaussian white noise and can thus stilllegitimately be used to 

generate a model realization through the operator G. In this case, Z0 and Z 1 are combined in the domain 

zone 1 and Z0 and Z2 are combined in the domain zonez. This approach allows us to independently modify 

45 realizations in severa! regions of the model. 

50 

2. 2. Do mains deformation method 

The domain deformation method (Ding & Roggero, 2010) has sorne similarities to the local gradua! 

deformation method. The mode! is divided into different zones (not necessarily delimited by grid cells) and 

a standard Gaussian white noise is restrained to each zone. The geostatistical model realization is then 

modified by deforming the shapes and sizes of the zones. Fig.2 shows an example of a reservoir mode! 

divided into two domains R 1 and R 2 • We build the model realization with a standard Gaussian white noise 

associated to Z1 inside R1 and to Z2 inside R 2 . However, the random value is not clearly defined on grid 

cells that are partially on severa! domains. Let's consider the grid cell X of the Fig.2 which is not entirely 

inside any domain. To ensure the mode! continuity, we choose for this grid cell a combination of the two 

Gaussian white noises Z1 and Z2 as follows: 

(6) 

where a 1 and a2 depend on the shape and the size of the domains, which can be parameterized. As for the 

local graduai deformation method, Z is a standard Gaussian white noise if ai + a~ = 1. We can choose, for 

example, ai proportional to the proportion of the grid cell inside the domain i. 
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Figure 2: Reservoir mode! divided into 2 zones R1 and R2 

The new model realization therefore depends on the parameters which define the shapes and sizes of 

the domains. In general, to limit the number of parameters, we choose simple shapes for the domains that 

depend only on a small number of parameters. For example, choosing circles with fixed centers allows us to 

determine each domain with only one parameter: their radius . 

This method can be extended to the case of M domains to deform with N + 1 Gaussian white noises. Let 

ti = (t1 , ... , tq) be the set of parameters determining the shape of the domain R; and t = (t1 , ... ,tAI) contain 

all the domain parameters, we can combine the Gaussian white noises: 

M 

Z(X, t) = L ai(X, ti)ZJ('i)(X) (7) 
i=O 

where ai(X, ti) depends on the shape of the domain Ri, J(i) E [0, ... , N] is the index of the Gaussian white 

noise associated to the domain Ri and J(O) = O. The new standard Gaussian white noise is parameterized 

with t. 

&o The advantage of this parameterization technique compared to the local graduai deformation is that it 

is not very dependent on the initial domain selections, since their shapes and sizes can be modified. ln 

fact, a bad definition of the zones in the local graduai deformation method could greatly deteriorate the 

potential diminution of the objective function. This is well illustrated in Fig.3 which was presented by Ding 

& Roggero (2010) to compare the potential of the domain deformation method and the graduai deformation 
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&s method on a history matching problem. In this figure, the pink curve presents the variations of the objective 

function with the size of the domains, while the blue curve presents the optimal results using the local graduai 

deformation technique with fixed domains sizes. In this particular case, when the domain size (radius) is 

fixed, the contribution of the local graduai deformation is relatively limited while changing the domain size 

can rapidely reduce the objective function. This example shows that in certain cases, choosing weil suited 

domains can be critical to the performance of the graduai deformation method. 

70 

250 

-+-local graduai defonnalion 

· • domain para meterization 

- --- - optimal solution with domain 
parameterization 

100~----------~----------~----------~--------~ 

0 200 400 600 800 

equivalent distance r (m) 

Figure 3: Comparison between the domain deformation method and the local graduai deformation method on a synthetic case 

2.3. Generalization of the gradual deformation method 

2.3.1. Another way to wr-ite the domain deformation technique 

To be able to combine the graduai deformation and the domain deformation methods, we write them in 

a similar form. We present here a variant of the domain deformation method. Let's start by a simple case 

•• with only one zone and two model realizations. 

One zone and two standard Gaussian white noises. 

Let's Consider one zone R 1 parameterized by the set of parameters t 1 = (t 1 , ... , tq) and two independent 

model realizations associated to two Gaussian white noises Z0 and Z1 . For a given grid cell X, we define 

V1 (X, ii) by the volume of the domain R 1 inside X and V0 (X, tl) = vol(X- RI) its complementary. Let a 1 

be: 

(x )
- Vt(X,tl) 

a 1 ' t 1 - --------'-------'------.,-
V1 (X, tt) + Vo(X, tt) 

(8) 

A new gaussian white noise Z(X) can be built with: 

(9) 
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This Gaussian white noise associates Z1 to the inside of the domain R1 and Zo to the outside. It is a 

combination of the two on the grid cells partial! y occupied by the zone. The new mode! realization G( Z) is 

dependent on the shape and size of R1 which is parameterized with h-

oo Generalization: Nf zones and M + 1 Gaussian white noises. 

We can generalize the ab ove formula to the case of M zones ( R1 , ... , RM). If we have at our disposal M + 1 

Ga.ussian white noises (Z0 , ... , ZM) and a set t = (t1 , ... , tM) that parameterizes the shapes of ail the zones, 

we can associate one mode! reaiization to each zone and the last one to the outside of every zone. As in the 

previous example, for a given grid cel! X, we define Vi(X, ti)= vol(X n Ri), Vo(X, t) = vol(X- u1R1) and 

·(X ) _ Vi(X, ti) a:, ,t - -M~...:...._--'-----

Lj=O Vj(X, tj) 
(10) 

For the sake of simplicity, we decided to associate foriE {1, ... , M} the Gaussian white noise Zi to the zone 

~ and Zo to the outside every zone. The new standard Gaussian white noise can be built using: 

(11) 

We therefore have a mode! realization G(Z) dependent on the shapes and sizes of the domains Ri built by 

associating one Gaussian white noise to one domain. With this formula, the domain deformation parameters 

are easier to manipulate. If a grid cell is entirely inside the zone~ (o:i = 1 and for all j '1- i, o:1 = 0) we 

have Z(X) = Zi(X). 

a• 2.3.2. Combination of the local gradua[ deformation and the domain deformation 

Both the local gradua! deformation rnethod and domain deformation rnethod previously described present 

sorne drawbacks. On one hand, it is not easy to define suitable zones for the local graduai deformation method 

to ensure a potential diminition of the objective function. On the other hand, the domain deformation does 

not allow the combination of Gaussian white noises inside the zones and therefore limits the possibilities 

oo of the optimization process. We propose in this section a new method that generalizes the local graduai 

deformation by allowing to deforrn the domains in which the mode! realizations are combined. 

A simple example : One zone and two Gaussian white noises. 

Let's start with a simple example where we have two Gaussian white noises (Zo, Z1 ) and one zone R 1 

defined in a reservoir mode!. We propose a new Gaussian white noise that depends on two parameters with 

t 1 controling the domain R 1 and p1 the gradua! deformation. 

(12) 

where o:1 (X, t 1 ) is given by Eq.(8). 
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Depending on the position of the grid cell X in the reservoir model and the value of the graduai deformation 

es parameter, we have: 

• If X is entirely outside R 1 then a 1 = 0 and Z(X) = Z0 (X). 

• If X is entirely inside R1 then a 1 = 1 and 

(13) 

which corresponds to the graduai deformation technique. 

• If X is partially inside R 1 , Z(X) is a combination of Z0 (X) and Z1 (X). In this case, both the graduai 

deformation method and the domain deformation method are applied simultaneously. 

100 • If the gradual deformation is set to a constant p1 = ~. then Z(X) =cos( ~ai)Zo(X) +sin( ~a1 )Z1 (X), 

which corresponds to the domain deformation method described in section 2.3.1 (Eq.(9)). 

One domain and N + 1 Gaussian white noise. 

We can extend the previous case by adding the possibility to combine N + 1 independent standard Gaussian 

white noises (Zo, ... ,ZN) inside the zone R 1 . t 1 still parameterizes the shape of R 1 and we introduce N 

graduai deformation parameters (p1 , ... , pN). The new Gaussian white noise proposed is then: 

(14) 

We have: 

1oa • If X is outside R1 , then a 1 = 0 and Z(X) = Zo(X). 

• If X is entirely inside R1 , then a 1 = 1 and 

N N ( N ) 
Z(X) = D cos(7rpi)Zo(X) + j; sin(7r2pi) kLL cos(7r2pk) Z1(X) (15) 

which corresponds to the formula of the graduai deformation method described in Eq.(3). 

• If X is partiaily inside R 1 , Z (X) is a combination of Zo (X) and Z 1 (X) created by both the domain 

deformation and the graduai deformation techniques. 
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uo Extension to the case of N + 1 madel realizations and M domains. 

We now extend the method to the general case where we have at our disposai N + 1 independent Gaussian 

white noises (Zo, ... , ZN) and M domains (R1 , ... , RM) defined on a reservoir madel. For each zone Ri, let 

ai be defined by Eq.(10) and for each couple "zone"j"Gaussian white noise" Ri/Zj, we introduce a graduai 

deformation parameter p{. We propose the generalized formula : 

N M N M N M 

Z(X) = II cos(1r 2:::: aip{)Zo(X) + 2:::: sin(1r 2:::: aip{) II cos(1r L aip7)Zj(X) (16) 
j=l i=l j=l i=l k=J+l i=l 

This is indeed a way to do a graduai deformation of ali mode! realizations in every varying zone but this 

generalized method introduces too many parameters (M * (N + 1)). Fortunately, it is possible to reduce the 

number of parameters just by selecting the "best" mode] realizations to combine in each zone (setting sorne 

of the p~ to 0). 

m Let's analyse sorne cases for a grid cel! X: 

1. Outside every domains 

For each i, ai = O. Thus, Z(X) = Z0 (X). 

2. Suppression of the influence of the realization l in the zone Rq 

Let's set the parameter p~ to O. If the grid cell X is entirely and uniquely inside R 9 , Z(X) become: 

N N N 

Z(X) = II cos(7r~)Zo(X) + 2:::: sin(1r~) II cos(1r~)Zj(X) (17) 
j=l,j#-l j=l,j#-l k=j+l 

The realization l has no more influence in the zone R9 . 

120 3. Domain deformation of the zone q with only the realization l associated to R9 

125 

130 

We want to apply Z1 inside R9 . Let 's set p~ = ~ and for ali j E { 1, ... , l-1, l + 1, ... , N} the parameters 

~ = 0. Then: 

• If X is entirely and uniquely inside R 9 then Z(X) = Z1(X) 

• If X is only partially inside R 9 , then a combination of Z 0 and Zt is applied, as for the domain 

deformation method. 

This case corresponds to the domain deformation method applied on the zone R9 . 

4. Graduai deformation on the zone R9 

If no parameter controlling the shape of Rq is introduced then for any grid cell X, a 9 is constant. This 

ammounts to perform a local graduai deformation inside the zone R 9 • 

This new generalized method offers a great fiexibility concerning the definition of different domains 

and the choice of Gaussian white noises to combine in each one. For example, it is possible to perform a 

local gradual deformation of several mode! realizations in one zone, while in parralel applying the domain 

deformation method to another zone (or any combination of the two methods). 
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13• 3. Initialization of the history matching problem : a patchwork technique 

One of the issues for the history matching problem is its initialization. For the geostatisticallocal param­

eterization techniques described in the previous section, choosing relevant domains and mode! realizations 

is a key issue to have a good decrease of the objective function. It is therefore necessary to have an efficient 

way to initialize the history matching problem. 

140 3.1. Initialization of the history matching problem via patchwork 

By dividing a reservoir mode! into relatively independent zones, it is possible to initialize the history 

matching problem by choosing the "best" realizations in each of these zones. The choice of mode! realizations 

for a zone can be clone by comparing the local value of the objective function and selecting the best one. 

Let's present the patchwork technique (Reis et al., 2000). 

The objective function can be explicited by: 

n 

F= Lf;(xl, .. -,xp) (18) 
·i=O 

141 where f; is the objective function associated to a weil i on which we have data to match, n is the number of 

wells in the reservoir and (x1 , ... , xp) are the parameters to be optimized. For a specifie zone k, if I is the set 

of wells inside the zone k, we cal! local objective function associated to the zone k the function 9k = LiEI k 

A patchwork initialization is performed by the following steps: 

1&0 

155 

1. generate N + 1 madel realizations. 

2. divide the reservoir into M zones. 

3. Name Z0 the Gaussian white noise associated to the mode! realization that presents the lowest objective 

function value. 

4. For each zone k: 

• Sort the values of the local objective function. Name Zj the realization such that 9k(Zj) is 

minimal. 

• If Zj =1- Z0 , apply z1 in the zone k for graduai deformation. 

Fig.4 shows an example of a reservoir mode! divided into 11 relatively independent zones. If the zones are 

independent from one another, the patchwork initialization is expected to give a better objective function 

100 value than Z0 • However, if the local modification of the mode! realization in a zone can affect the behavior 

of the mode! in the other zones, it is not possible to ensure that the patchwork mcthod will not deteriorate 

the mode!. In practice, the independence of different regions is not trivial to be identified and large errors 

could be committed. lt is frequent that a patchwork method increases the value of the objective function. 
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Figure 4: Separation of a reservoir mode! in 11 independent zones 

3.2. Improved patchwork 

1e• With the new parameterization technique or the domain deformation method, it is more flexible to 

170 

175 

initialize local zones since their shapes and sizes can be later modified. The patchwork method is improved 

as follows: 

1. Generate N + 1 model realizations. 

2. Name Z0 the Gaussian white noise associated to the model realization that presents the lowest objective 

function value. 

3. Group the wells into M subsets (h, ... ,lM). As in the previous section, we call 9k = ~iEh fi the local 

objective function associated to the kth group of wells. It is possible to choose only one weil in each 

group. 

4. For each group of wells k: 

• Sort the values of the objective subfunction 9k(Zj)· Name Zj the realization such that gk(Zj) is 

minimal. 

• If Zj f=. Z0 , define a parametrized zone containing the group of wells k and apply Zj inside. Simple 

zones defined with one or two parameters are prefered. 

5. Start a simple optimization process (for instance, with a single parameter) on the sizes of the domains 

1aa to have the best possible starting madel. In the case of circular zones, we can optimize the sizes of the 

zones with a single radius parameter. 
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Comparing to the patchwork proposed by Reis et al. (2000), parameterized domains are defined in Step 4 

and any form of domains can be used instead of a division by regrouping grid cells. Moreover, a simple 

optimization process is applied in Step 5 to improve the zone sizes. As we will see in examples hereafter, 

m Step 5 allows with a very limited cost (a few reservoir simulations) to get a better initial point. 

It is interesting to note that our method leaves a lot of freedom concerning the shape of the zones. Ding 

& Roggero (2010) presented severa! typical domains for history matching. Elliptical domains are suitable 

for anisotropie permeabi!ity correlation media with their two axes proportional to the correlation lengths. 

They are also adapted to investigate connectivities between a couple of injectorfproducer with the foci of 

no the ellipse at the wells. The simplest domain shape is the circle with its center fixed at a well and a radius r 

to be optimized. In the following, we will illustrate sorne examples using radial domains parameterized with 

their radius. 

4. Numerical resulta 

In this section, we tested our new initialization and parameterization techniques on three cases. The first 

1o5 one is a simple synthetic reservoir mode!, the second one is the reservoir mode! PUNQ (Barker et al., 2000) 

and the last one is an adapted Brugge mode! (Chen et al., 2010, Peters et al., 2010, 2012). ln the simple 

synthetic case and the Brugge case, as the correlation lengths are nearly isotropie, we worked with circular 

zones. Anisotropie correlation lengths are present in the PUNQ reservoir, but each layer has a different 

anisotropy and different axis: their azimuths are respectively 30, 0, 45, -30 and 60 degrees from the principal 

2oo axis. As it is difficult to favor a particular layer over the others and we don't want to introduce one new 

parameter per layer around each well, we also chose to work with circular domains for this test. We will 

briefly describe the studied cases before showing the numerical results. 

4 .1. Description of the three studied cases 

Simple synthetic case. The dimensions of the field are 2500m in the x direction, 2500rn in the y direction 

2o5 and 10m in the z direction. lt is discretized uniformly by 50x50x1 grid cells of 50rn in the x direction, 50m in 

the y direction and 10m in the z direction. There are 25 vertical wells containing 12 water injectors and 13 

producers (Fig.5). The reservoir is heterogeous and the correlation length is 150m in the x and y directions. 

The initial reservoir pressure is 250bars and a production data history of 4000 days is known. Weil bottom 

hole pressures are imposed with 320 bars on the injectors and 180 bars on the producers. We consider for 

210 our objective function to be minirnized the water rate on the 12 injectors as weil as the oil rate and the 

water-cut on the 13 producers. 
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Figure 5: Permeability map of the synthetic oil field 

PUNQ. The reservoir PUNQ is a synthetic case which results from a field study conducted by the industrial 

partners of the project PUNQ (Barker et al., 2000). The mode! is constituted of 19x28x5 grid cells of which 

210 1761 are active. Six producing and seven injection wells are present. Fig.6 shows the permeabilty at the top 

layer of the reservoir for a realization of the mode!. Porosity and permeability maps have been generated with 

the geostatistical method FFTMA (Le Ravalee et al., 2000). We have at our disposai a production history 

of 12 years. We use for our objective function the parameters BHFP (Bottom Hole Flowing Pressure), WC 

(Water CUT) and GOR (Gas Oil Ratio) for the producing wells and BHFP on the injecting wells. 

220 Brugge. Brugge is a synthetic reservoir mode! built for the 2008 Applied Technology Workshop (Peters 

et al., 2010, 2012). The original model has 20 millions grid cells with average sizes of 50m x 50m x 0.25m. 

We worked with an upscaled mode! of 60 thousands grid cells. 30 wells are present on the reservoir, 10 are 

injecting wells and 20 are producing wells. In this work, we generated our history data by creating reference 

porosity and permeability maps with the geostatistical method FFTMA (Le Ravalee et al., 2000), and we 

22• compare different optimization techniques to match these history data. Figure 7 shows the permeability map 

of the first layer of the reservoir for the reference realization of the model. The production has a history of 

10 years. We use for our objective function the parameters BHFP (Bottom Hole Flowing Pressure) and WC 

(Water Cut) for the producing wells and BHFP on the injecting wells. 
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Figure 6: Penneability and weil position of the top layer of the PUNQ reservoir 

Figure 7: Permeabilty and well positions on the Brugge reservoir 

4.2. ModeZ initialization 

4500 
1745 
761 
332 
144 
63 
27 
12 

23o Simple synthetic case. We generated 5 sets of 25 random realizations to apply the patchwork method with 

radial domains around the wells. Fig.8 illustrates the new patchwork method: the zones created are the 

circles around the wells. In this figure 16 zones were created, the problem is therefore parameterized with 

16 graduai deformation parameter and 16 domain deformation parameters (radius of the domains). 

Fig.9 shows the values of the objective function in each of our 5 cases for the best realization and the 

14 



Figure 8: Initialization for the new paxameterization method via modified patchwork on a synthetic reservoir mode! 

m realization given by the patchwork technique with fixed a radius r = 300m on all the domains. For the first 4 

cases, the patchwork method is beneficial without any further evaluation of the objective function. However, 

for the last case, the objective function has been increased by the patchwork technique. In consequence, we 

40000 
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lmproved Patchwork -
35000 

c 30000 0 .t 
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2 25000 
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fi 15000 ~ 

0 
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::J 
<ii 10000 > 
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QL-----~·~-~~ -L-~~--~·~----~--~ 
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Figure 9: Value of the objective function for the best realization (in red) and for the realization obtained by patchwork with 

r = 300m(in blue) in 5 cases 
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drew for that case in Fig. lü the value of the objective function after patchwork as a function of the domains 

radius. It is observed that the objective function is deteriorated with the radius r = 300m. However, there is 

a clear minimum on this curve that is inferior to the value of the "best" realization (horizontal bar in blue). 

24o A gradient based optimization method can find this minimum in 5 evaluations of the objective function . 

Radial domains give a better initial model with a radius of r = 206m for the optimization proccess. 
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Figure 10: Objective function after patchwork in respect witb the radius of the zones 

PUNQ. As for the previous example, we generated 11 random model realizations for the PUNQ case. The 

new patchwork technique created 9 effective zones because the local objective functions associated to the 

four other wells are the minimum on the base case (the "best" random realization). Fig.ll shows the value 

245 of the objective function after patchwork with respect to the radius of the zones. The minimum is clearly 

inferior to the value of the objective function given by the "best" realization. We found this minimum with 7 

evaluations of the objective function through a gradient-based optimization method . The objective function 

goes from 649.9 to 502.0 with the new patchwork approach showing a relative gain of 22%. 

>•o To compare with the initial point given by the classical patchwork technique (Reis et al., 2000), we 

251 

divided the grid into zones delimited by grid cells as shawn in Fig.l2. In this example, each zone contains 

one and only one weil. Using this domain division, the objective function increases from 649.9 for the best 

global realization to 851.1. Unfortunately, the classical patchwork method is detrimental to the objective 

function but we have no mean to improve it. 
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Figure 11: Value of the objective function after patchwork in respect with the radius of the zones for the PUNQ case 

Figure 12: An engineering division of the PUNQ reservoir into zones 

It is interesting to note that even in the case where the objective function cannot be improved , the new 

patchwork method is not detrimental. In fact, when ail the radius are reduced to zero, we obtain the ''best" 

realization among ali the random realizations. 

Brugge. For this case, 19 random mode! realizations were generated. The new patchwork technique created 

26o 7 zones around the wells P- 10, P- 13, P- 15, P- 16, P- 19, P- 2 and P- 5. Fig.13 shows the value 
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~65 

of the objective function after patchwork with respect to the radius of the zones. Again, the minimum is 

inferior to the value of the objective function given by the best realization. We could find this minimum in 
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Figure 13: Value of the objective function after patchwork in respect with the radius of the zones for the Brugge case 

only 6 objective function evaluations using a gradient based optimization method for one radius parameter. 

The objective function goes from 68.9 to 17.5 with the patchwork approach, showing a relative gain of over 

74%. 

As for the PUNQ case, we compared our results to the one given by the classical patchwork method 

where we created zones delimited by grid cells around the wells (Fig.14). Using this reservoir division, 

the patchwork technique gives an objective function value of 45.2. In this case, the method improves the 

objective function but is still far from the results given by our method. 

27o 4.3. Numerical results of the generalized gradual deformation method 

We use the mode! obta.ined by patchwork in the previous session as the starting point for the history 

matching. In ali tests, a graduai deformation parameter is introduced on each zone to combine the local best 

realization with the overall best random realization, and a domain parmeter is also introduced to control the 

radius of the zones. 

27• Simple synthetic case. The generalized graduai deformation method is compared to the local graduai defor­

mation. A gradient based optimization approach has been applied in the optimization process. Fig.15 shows 

the decrease of the objective function with respect to the number of evaluations for the five cases. 

In each case, the decrease rate of the objective function with respect to the number of reservoir simulations 

obtained with the generalized graduai deformation method is similar to the one obtained with the classical 
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Figure 14: An engineering division of the Brugge reservoir into zones 

2ao local graduai deformation method, but the generalized graduai deformation method gives a better optimal 

result at the end (respectively 5%, 11% , 20%, 47% and 27% relative gain on the graduai deformation 

method). Even with an increased number of parameters, this new parameterization method gives a better 

result in a similar number of objective function evaluations. These results show the importance of taking 

into account the size of the local zones for history matching for the local gradua! deformation. 
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Figure 15: Comparison of the generalized gra.dual deformation and the gTadual deformation techniques on 5 instances of the 

synthetic case. 

>a• PUNQ. We work in this test with 9 zones (see section 4.2). We start by comparing the performances of our 

generalized method and the local graduai deformation method on an engineering defined zones delimited by 

grid cells (Fig.l2). Only the definition of the zones differs between the two methods : we consider the same 

number of zones and combine the same model realizations inside the zones. Results are shown on Fig.l6. 

The optimization starts with the base realization (best realization among the 10 random ones initially 

>Go generated). The first step on the generalized graduai deformation curve corresponds to the initialization 

technique (section 3) and illustrates that we needed 7 evaluations to find a better initial point by optimizing 
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Figure 16: Optimization of the objective function using the local graduai deformation and the generalized graduai deformation 

on the PUNQ case 

the size of the zones. The generalized graduai deformation method gives a far better result than the classical 

graduai deformation technique (relative gain of over 48%). 

••• To further illustrate our method, we also compared three variant parameterization techniques from the 

best initial point obtained with the improved patchwork: the generalized graduai deformation method (9 

radius parameters as we have 9 zones), the generalized graduai deformation method with one radius pararn­

eter for ali the zones and the local graduai deformation rnethod where the radius are unchanged. For this 

case, a derivative free optimizer (Langouët, 2012) was chosen to minimize our objective function. Results 

•oo are presented in Fig17. 

We can see in this figure that ali the three methods give a sirnilar decrease rate for the objective function. 

However, the methods that allow the sizes of the zones to vary give better final results (about 15% relative 

gain). Moreover, it seerns sufficient to introduce only one parameter to controle the sizes of all the zones in 

this example. These simulations also show that taking into account the sizes of the zones can add a great 

•o• flexibility to the parameterization technique without increasing greatly the cost of the history matching 

process. 
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Figure 17: Optimization of the objective function for the 3 parameterization techniques on the PUNQ case 

Brugge. We work in this test with 7 zones (see section 4.2). We performed two history matching, one 

using the local graduai deformation method on the zones delimited by grid cells (Fig.l4) and one using our 

parameterization method. We show in Fig.l8 the results we obtained. 

c: 
0 
.::; 
u 
c: 
.2 
QJ 
> 
.::; 
u 
QJ 

:c 
0 

70 

60 1 

50 

40 

30 

20 

10 

Generalized graduai deformatoon -­
Graduai deformation - · 

l_ -----
0 ~--~--~--~--~--~--~----~--~--~--~ 

0 10 20 30 40 50 60 70 80 90 100 

Function evaluations 

Figure 18: Optimization of the objective function using the local graduai deformation and the generalized graduai deformation 

on the Brugge case 

llo In this case, the initialization method alone gives a better mode! realization than the local graduai 

deformation method. Our method presents a final relative gain of 60%. It is quite evident that a good 

definition of the zones is crucial to have a fast decrease of the objective function for this test. 

22 



18 
0 radius param~ter --

7 radius parameters ·--

16 

c 
0 

14 
. ., 
u 
c 
~ 
<lJ 12 
> ·;:; 
u 
<lJ 
E 
0 10 

8 

~ 
6 

0 10 20 30 40 50 60 70 80 90 100 

Function evaluations 

Figure 19: Optimization of the objective function for two variant parameterization techniques on the Brugge case 

We also compared two variant parameterization techniques, one with 7 radius parameters and one without 

m radius, from the best point obtained with the improved patchwork. We optimized the history matching 

objective function using the SQA (Langouët, 2012) optimizer. Results are presented on Fig 19. As in the 

previous tests, we were able to get a better model realization with a radius parameter for each zone (relative 

gain of 21%). Taking the size of the zones into account allows for a greater decrease of the objective function. 

5. Conclusion 

>2o We presented in this paper a new parameterization method that remedies one of the biggest fl.aws of 

the local graduai deformation technique in history matching. The quality of the local graduai deformation 

method depends strongly on the initial set of local domains. To overcome this shortcoming, a generalized 

formulation is proposed, which modifies the geostatistical realization with the graduai deformation method 

inside local domains while the shapes and sizes of these domains are also changed by the domain deformation 

m technique. This method allows the history matching optimization algorithm to dynamically modify the sizes 

of the domains and therefore reduces the dependence of the optimal realization on an initia.! expert guess 

for local domains selections. We successfully showed better results with our generalized graduai deformation 

method than those with the standard graduai deformation technique on three history matching problems. 

Therefore we are confident that this new method is a good generalization of the graduai deformation technique 

Jlo and may allow good history matching on a greater number of cases. 
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