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Abstract: 1 

In the present study, we applied a novel mesh-free method to solve acoustic wave equation.  2 

Although the conventional finite difference methods determine the coefficients of its operator 3 

based on the regular grid alignment, the mesh-free method is not restricted to regular 4 

arrangements of calculation points.  We derive the mesh-free approach using the 5 

multivariable Taylor expansion.  The methodology can use arbitrary-order accuracy scheme 6 

in space by expanding the influence domain which controls the number of neighboring 7 

calculation points.  The unique point of the method is that the approach calculates the 8 

approximation of derivatives using the differences of spatial variables without parameters as 9 

e.g. the weighting functions, basis functions.  Dispersion analysis using a plane wave reveals 10 

that the choice of the higher-order scheme improves the dispersion property of the method 11 

although the scheme for the irregular distribution of the calculation points is more dispersive 12 

than that of the regular alignment.  In numerical experiments, a model of irregular 13 

distribution of the calculation points reproduces acoustic wave propagation in a homogeneous 14 

medium same as that of a regular lattice.  In an inhomogeneous model which includes low 15 

velocity anomalies, partially fine arrangement improves the effectiveness of computational 16 

cost without suffering from accuracy reduction.  Our result indicates that the method would 17 

provide accurate and efficient solutions for acoustic wave propagation using adaptive 18 
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distribution of the calculation points. 1 

 2 
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1. INTRODUCTION 1 

Forward modeling techniques of wave propagation are indispensable tools for the 2 

implementation of reverse time migration (RTM) and full waveform inversion (FWI) 3 

(Tarantola, 1984; Virieux et al., 2011).  Recently, more complex models like salt dome 4 

model (e.g. BP model), which include large velocity contrasts, become a target of FWI (Cha 5 

and Shin, 2010).  Since the most computationally expensive part of these numerical schemes 6 

is the forward modeling, the computational efficiency is recognized as one of the keys to 7 

improve the effectiveness of the schemes.  For the calculation of full-waveform synthetic 8 

seismic traces in inhomogeneous models, numerical simulation methods such as finite 9 

difference (FD) and finite element (FE) have often been used.  FD method has been widely 10 

used for many years as a simulator of acoustic wave propagation, and highly accurate and 11 

efficient FD operators developed by many researchers (e.g. Virieux, 1986; Chu and Stoffa, 12 

2012; Liu et al., 2014a; Liu et al., 2014b; Tan and Huang, 2014) are available. These schemes 13 

are compared to each other in terms of the numerical accuracy and computational efficiency 14 

(e.g. Liang et al., 2014).  In many cases, the coefficients of FD operators are derived based 15 

on the regular lattice grids.  To overcome problems that may arise to handle arbitrary shaped 16 

anomalies or topographies using the regular lattice grids, curvilinear schemes for modeling 17 

wave propagation have been developed (e.g. Tarrass et al., 2011).  Although these schemes 18 
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can handle arbitrary shaped topography, arrangement of optimal grid for complex velocity 1 

models is not straightforward.  On the other hand, FE method uses numerical meshes to 2 

build arbitrary shaped models.  The method provides the flexibility and the accuracy in the 3 

calculation through the mesh generation process, which is computationally costly.  It is 4 

meaningful to have other methods that could deal with non-flat surface or interfaces with less 5 

computational load than FE method. 6 

Some novel approaches based on a mesh-free concept have also been developed.  This 7 

class of numerical methods can discretize models of analysis, which include complex 8 

topography and/or complex velocity structure, without any mesh structure or regular lattice 9 

grids, and use a set of calculation points surrounding each target point for the discretization 10 

(e.g. Lee et al., 2003).  Wittke and Tezkan (2014) presented a new approach for 11 

magnetotelluric modeling using the Meshless Local Petrov–Galerkin method.  Wenterodt 12 

and Estorff (2009) investigated the dispersion property of the meshfree radial point 13 

interpolation method (RPIM) for the Helmholtz equation, and showed a significant reduction 14 

of the dispersion error compared with the FE method.  The method, however, requires 15 

background meshes to conduct the numerical integration.  Furthermore, we need to define 16 

not only the radius of the influence domain but also the weighting and basis functions.  17 

These miscellaneous parameters lead to the complexity in the choice of optimal combination 18 
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for minimizing the dispersion error (Wenterodt and Estorff, 2011). 1 

O’Brien and Bean (2011) developed an irregular lattice method for elastic wave 2 

propagation based on an elastic lattice method (Monette and Anderson, 1994; Toomey and 3 

Bean, 2000; O’Brien and Bean, 2004).  They overcame the restrictions on the regular lattice 4 

through the augmentation in the number of the nearest neighbor points.  Takekawa et al. 5 

(2012) proposed a particle method to simulate seismic wave propagation induced by 6 

earthquakes.  The method can introduce free-surface condition just by removing or ignoring 7 

any particles above the surfaces, and could be applied to computational rock physics problems 8 

(Takekawa et al., 2014a).  These methods do not require the background meshes for the 9 

numerical integration, and could be classified as true mesh-free methods.  However, the 10 

methods do not improve the order of the accuracy in space even if the number of neighbors is 11 

increased (Takekawa et al., 2014b; Takekawa et al., 2014c).  For the utilization of mesh-free 12 

models in the forward simulation, the accuracy of methods to apply to the models needs to be 13 

revisited. 14 

In this study, we present a mesh-free method for solving acoustic wave propagation that 15 

could provide the accuracy of arbitrary order based on the multivariable Taylor expansion 16 

(Tamai et al., 2013).  The method was originally developed for solving incompressible fluid 17 

flow with the free surface, and provided arbitrary-order accuracy in space (Tamai et al., 2013).  18 
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The high-order scheme could be applied to irregular distributions of particles successfully 1 

without any background meshes, i.e. it is also a true mesh-free method.  Since the method 2 

was originally designed as a general method for solving partial differential equations, we are 3 

able to extend the method to solve the acoustic wave equation.  The feature of the method is 4 

that the approximation of derivatives is calculated by using the differences of spatial variables 5 

without parameters as e.g. the weighting functions, basis functions.  In other words, the 6 

method is a mesh-free FD method.  This feature of the method eliminates the complicated 7 

process of parameter optimization (Wenterodt and Estorff, 2011). 8 

In the present study, we first introduce the basic concept of the method followed by the 9 

verification of the dispersion property for both regular and irregular arrangements of 10 

calculation points.  We then calculate acoustic wave propagation using a homogeneous 11 

model with random distribution of calculation points.  Finally, we demonstrate the 12 

effectiveness of the method using an inhomogeneous model and confirm that our method 13 

would be a true mesh-free method where the accuracy can be quantitatively measured. 14 

 15 

2. METHOD 16 

In this chapter, we explain the basic concept of the mesh-free method based on the 17 

multivariable Taylor expansion.  The multivariable Taylor expansion of a scalar function 18 
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f(𝐫𝐫) to M-th order at position 𝐫𝐫i is expressed as follows; 1 

 2 
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 5 

where ri and 𝐫𝐫i + ∆𝐫𝐫 are the position vectors of calculation point i and its neighboring point j, 6 

d is the number of spatial dimension.  In many cases related to wave propagation, d may be 2 7 

or 3.  ∆𝐫𝐫 is the relative position vector between points i and j.  ∆rd means d-th component 8 

of vector ∆𝐫𝐫  (in two-dimensional case, ∆𝐫𝐫 = (∆r1,∆r2) )..  We replace f(𝐫𝐫i)  and 9 

f(𝐫𝐫i + ∆𝐫𝐫) into fi �= f(𝐫𝐫i)� and fj  �= f�𝐫𝐫j� = f(𝐫𝐫i + ∆𝐫𝐫)�, respectively. 10 

Here, we define vectors P and δ as follows; 11 

 12 

𝐏𝐏 = �∆r1,⋯ ,∆rd, 1
2!
∆r12,∆r1∆r2,⋯ , 1

2!
∆rd2,⋯ , 1

(M−1)!1!
∆rd−1∆rdM−1, 1

M!
∆rdM�

T
 (2) 13 

𝛅𝛅 = � ∂
∂r1

,⋯ , ∂
∂rd

, ∂
2

∂r12
, ∂2

∂r1 ∂r2
,⋯ , ∂

2

∂rd
2 ,⋯ , ∂M

∂rd−1 ∂rd
M−1 , ∂

M

∂rd
M�

T
. (3) 14 

 15 

Vectors P and δ include coefficients and derivatives, respectively.  Using Eq.(2) and (3), we 16 

transform Eq.(1) as follows; 17 
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 1 

{(𝐏𝐏 ∙ 𝛅𝛅)f}𝐫𝐫=𝐫𝐫i = ∆fij + O(‖∆𝐫𝐫‖M+1) (4) 2 

 3 

where ∆fij = fj − fi.  Multiplying both sides of Eq.(4) by P, we obtain; 4 

 5 

{(𝐏𝐏 ∙ 𝛅𝛅)(𝐏𝐏f)}𝐫𝐫=𝐫𝐫i = 𝐏𝐏∆fij + 𝐏𝐏 ∙ O(‖∆𝐫𝐫‖M+1)  6 

⇒ (𝐏𝐏⨂𝐏𝐏) ∙ (𝛅𝛅f)𝐫𝐫=𝐫𝐫i = 𝐏𝐏∆fij + 𝐏𝐏 ∙ O(‖∆𝐫𝐫‖M+1). (5) 7 

 8 

Where 𝐚𝐚⨂𝐛𝐛 means the tensor product of vectors a and b. 9 

Here, we introduce an influence domain which supports a finite region around 𝐫𝐫 = 𝐫𝐫i.  10 

This domain controls the number of neighboring calculation points.  Wider range of the 11 

influence domain contains larger number of calculation points.  The effect of the influence 12 

domain on the accuracy and calculation time is investigated in the following section.  We 13 

calculate the sum of both sides of Eq.(5) inside the influence domain. 14 

 15 

�∑ (𝐏𝐏⨂𝐏𝐏)n
j � ∙ (𝛅𝛅f)𝐫𝐫=𝐫𝐫i = ∑ �𝐏𝐏∆fij�n

j + ∑ 𝐏𝐏 ∙ O(‖∆𝐫𝐫‖M+1)n
j  (6) 16 

(𝛅𝛅f)𝐫𝐫=𝐫𝐫i ≈ �∑ (𝐏𝐏⨂𝐏𝐏)n
j �

−1
∙ �∑ �𝐏𝐏∆fij�n

j � (7) 17 
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 1 

n is the number of neighboring calculation points inside the influence domain.  Vector (δf) in 2 

Eq.(7) includes derivatives of f(𝐫𝐫) at 𝐫𝐫 = 𝐫𝐫i.  The size of the matrix 𝐏𝐏⨂𝐏𝐏 depends only 3 

on the order of accuracy M.  For example, in two-dimensional case, the size are 5 × 5 and 4 

14 × 14 for M = 2 and 4, respectively.  Since the value of each component of the matrix 5 

depends only on the relative positions between point i and neighboring points j, the inverse of 6 

the matrix can be calculated before starting time steps.  Once the inverse at each calculation 7 

point is fixed, we continue to use it during the calculation.  This means that solving inverse 8 

matrices, which is a challenging procedure, can be excluded from the time loop. 9 

Since Eq.(7) is derived under assumption of arbitrary arrangement of the position of j, we 10 

can estimate the derivatives of f(𝐫𝐫) at 𝐫𝐫 = 𝐫𝐫i in a mesh-free framework.  The calculation 11 

only requires the positions of calculation points and the differences between fi and fj, i.e. it is a 12 

true mesh-free method.  It is noted that the matrix 𝐏𝐏⨂𝐏𝐏 should be a regular matrix so that 13 

the inverse matrix in Eq.(7) can be solved. 14 

 15 

det�∑ (𝐏𝐏⨂𝐏𝐏)n
j � ≠ 0 (8) 16 

 17 

In order to achieve this, the influence domain needs to support larger number of neighboring 18 
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calculation points than the number of terms in Eq.(2) and (3).  The minimum radii of the 1 

influence domain for the regular lattice alignment with different M are shown in Fig.1.  It is 2 

also noted that particular distributions of neighboring points (e.g. in two-dimensional case, 3 

neighbors line up in a linear arrangement) do not satisfy Eq.(8) even if the number of 4 

neighboring points is sufficient. 5 

The solution vector 𝛅𝛅f includes from first order to M-th order derivatives of  f(𝐫𝐫) at 𝐫𝐫 =6 

𝐫𝐫i .  These components can be obtained by solving Eq.(7).  However, it is needed to 7 

calculate only second derivatives of  f(𝐫𝐫) for solving the acoustic wave equation (in the 8 

two-dimensional case, ∂2f(𝐫𝐫) ∂r12⁄  and ∂2f(𝐫𝐫) ∂r22⁄ ).  We only have to calculate the 9 

required components for solving acoustic wave equation in Eq.(7). 10 

Here we refer to the boundary conditions (Dirichlet and Neumann).  Dirichlet condition, 11 

for example a free boundary condition in acoustics, is implemented at the free surface (e.g. 12 

sea surface) directly.  Thus, the pressure of calculation points at the free surface is set to zero.  13 

This type of boundary condition is simply applied to arbitrary shaped surface.  The 14 

implementation of Neumann condition, however, is not straightforward because determination 15 

of a vector normal to boundaries for arbitrary shaped surface takes a little ingenuity (e.g. 16 

Nomura et al., 2001).  Although it is simple to implement Neumann condition using known 17 

normal vectors because the first derivation is also calculated by Eq.(7), tackling this problem 18 
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is beyond to our purpose of this study. 1 

FD schemes with high-order in time have also been proposed (e.g. Chen, 2011).  However, 2 

we use only second-order in time because the purpose of this study focus on the development 3 

of the mesh-free approach in the space.  Applying the second-order scheme in time to the 4 

acoustic wave equation and considering two-dimensional in space, we can obtain the 5 

following equation; 6 

 7 

pi
t+1−2pi

t+pi
t−1

∆t2
= v(𝐫𝐫i)2 �

∂2

∂r12
pt + ∂2

∂r22
pt�

𝐫𝐫=𝐫𝐫i
 (9) 8 

 9 

where p is the pressure, subscript i and superscript t mean the indices of calculation point and 10 

the time step, respectively, v is the velocity, ∆t is the time spacing.  The spatial derivatives 11 

in the right-hand side of Eq.(9) can be calculated by using Eq.(7).  The pressure can be 12 

updated as follows; 13 

 14 

pit+1 = 2pit − pit−1 + v(𝐫𝐫i)2∆t2 � ∂
2

∂r12
pt + ∂2

∂r22
pt�

𝐫𝐫=𝐫𝐫i
 (10) 15 

 16 

Here, we refer to the spatial order of accuracy of the mesh-free method.  In Eq.(6), the 17 
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order of the truncation error is O�‖∆𝐫𝐫‖M−k+1�, where M and k mean the order of accuracy 1 

and order of spatial derivatives, respectively.  So, the truncation error of the final equation 2 

Eq.(10) is also O�‖∆𝐫𝐫‖M−k+1� for arbitrary distributions of calculation points. 3 

 4 

3. DISPERSION ANALYSIS 5 

We conduct a dispersion analysis to investigate the dispersion property of the method.  In 6 

this section, we assume regular and irregular lattice arrangement of the calculation points.  7 

To make an irregular arrangement, calculation points are migrated using a uniform 8 

pseudorandom number from the regular lattice as shown in Fig.2.  The spacing of the regular 9 

lattice is l0.  The migration distance Δl0 and angle θ are decided in a random manner 10 

while the source and receiver positions are fixed.  The maximum migration distance is l0 4⁄ .  11 

This means that the minimum and maximum spacing of calculation points are 0.5 × l0 and 12 

1.5 × l0 , respectively.  We consider a plane wave of the form p = p0exp(−iωt + ikx) 13 

propagating along the x-axis with wavenumber k and frequency ω.  The model is assigned a 14 

P-wave velocity of 3500 m s⁄  with the regular spacing set to 10 m.  For the second-order 15 

time derivative term in the acoustic wave equation, first we apply the analytic solution as 16 

follows; 17 

 18 
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∂2p
∂t2

= −ω2p0exp(−iωt + ikx). (11) 1 

 2 

The effect of approximation of time derivative is investigated in the following.  Substituting 3 

the plane wave equation into Eq.(10) derives the dispersion property of the method (details 4 

are shown in Appendix A). 5 

Fig.3. shows the relationships between k and ω for the case of M = 2, 4, 6 and 8 using the 6 

regular lattice.  The number of calculation points in the influence domain for each case is 7 

same as shown in Fig.1.  The dispersion curves are in absolute agreement with those from 8 

FD operators derived from the Taylor expansion (e.g. Chu and Stoffa, 2012) if we use the 9 

regular arrangement. 10 

Fig.4 shows the dispersion curves for the irregular arrangement in case of M = 2 and 4.  11 

We show some curves for different sizes of the influence domain.  In other words, we use 12 

different number n in Eq.(7) for calculating the spatial derivatives without changing the order 13 

of accuracy M.  For the irregular arrangement, the case for smaller number of calculation 14 

points induces large misfit (n = 8 in Fig.4 (a) and n = 20 in Fig.4 (b)).  The misfit decreases 15 

with increasing the number of calculation points (n = 12 and 20 in Fig.4 (a) and n = 28 and 36 16 

in Fig.4 (b)).  We can see little change in the dispersion curves if the radius of the influence 17 

domain reaches a certain size.  The above results suggest that sufficient large size of the 18 
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influence domain is recommended to avoid numerical dispersion whereas oversized domain 1 

should be avoided because the large number of calculation points increases the computational 2 

cost.  Calculation time is strongly dependent on the number of neighboring points.  For 3 

effective calculations, adequate number of neighboring points is needed especially in 4 

three-dimensional cases.  We will investigate the calculation time in terms of the number of 5 

neighboring points in the following section.  Comparing the dispersion curve for the regular 6 

arrangement with the irregular arrangement, it is more dispersive for the same number of 7 

calculation points per wavelength.  If we use higher order scheme (i.e. larger number of M in 8 

Eq.(2) and (3)), the dispersion property can be improved for both regular and irregular 9 

arrangements. 10 

We next investigate the effect of the time step on the dispersion property.  The second 11 

order finite difference approximation is used for time derivative instead of Eq.(11). 12 

 13 

∂2p
∂t2

≈ p(t+∆t)−2p(t)+p(t−∆t)
∆t2

. (12) 14 

 15 

Fig.5 shows the dispersion curves with different time steps in case of M = 4.  The time 16 

step is normalized by a maximum CFL parameter αmax (= v ∙ ∆tmax ∆x⁄ ).  ∆tmax means 17 

the maximum time step which satisfies the stability condition derived in the next chapter.  18 
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The result shows that the time step has the influence on the dispersion property same as other 1 

numerical simulators.  Although the errors of each curve differ from each other especially in 2 

small number of calculation points per a wave length, there is little difference in small wave 3 

number region. 4 

 5 

4. STABILITY CONDITION 6 

In the acoustic modeling, fine spatial grid or coarse time step may trigger exponential 7 

increment of the amplitude.  Grid spacing and time step should be determined so that 8 

schemes can avoid the unstable condition.  In this chapter, we investigate the stability 9 

condition of the mesh-free method.  Following the previous study about stability discussions 10 

for the scalar wave equation (e.g. Wu et al., 1996; Lines et al., 1999), we derive the maximum 11 

time step for the stable calculation using the CFL parameter α (= v ∙ Δt ∆x⁄ ).  v is the 12 

maximum velocity in the model.  Δx is the minimum spacing between the calculation 13 

points. 14 

Fig.6 (a) shows the maximum allowed number α for the mesh-free method with different 15 

order M.  The number of neighboring calculation points is the same as Fig.1.  On the other 16 

hand, Fig.6 (b) shows the result with the different number of calculation points n in case of M 17 

= 2.  Vertical axis shows the maximum CFL parameter αmax for the stable calculation.  18 
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The stability condition becomes less stringent with increasing the order of accuracy, whereas 1 

larger number of calculation points can relax the stability condition. 2 

To confirm this result, we conduct two numerical experiments with different time steps, i.e. 3 

a) ∆t = ∆tmax, b) ∆t = 1.01 × ∆tmax.  We set to v = 2000 m/s, ∆x = 10 m, M = 2 and n 4 

= 8.  In this condition, ∆tmax equals to 0.005.  Fig.7 shows snapshots with different ∆t 5 

after 200 time steps.  An artificial wave field as sort of checkerboard pattern can be observed 6 

only in Fig.7 (b).  It should be noted that the scale of contour are quite different from each 7 

other.  Before reaching three-hundredth time step, the calculation was terminated in case b).  8 

This result indicates that the numerical condition changed from stability to instability in ∆t =9 

1.01 × ∆tmax. 10 

 11 

5. NUMERICAL EXAMPLES 12 

5.1 Effect of spatial order 13 

We investigate the accuracy of our method comparing it with an analytical solution using a 14 

two-dimensional homogeneous medium which has a P-wave velocity of 2000 m/s.  The 15 

model consists of a regular lattice alignment of calculation points with a constant spacing of 16 

10 m.  The source is set at the center of the model.  The waveform of the source is the 17 

Ricker wavelet with a central frequency of 18 Hz.  In this condition, the number of 18 
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calculation points in a minimum wavelength is about 4.04.  A receiver with the offset 1 

distance of about 2263 m is selected.  This means that the receiver is located at 2 

approximately 56 times the minimum wavelength.  We calculate acoustic wave propagation 3 

using our method with different-order schemes. 4 

Fig.8 shows the snapshots calculated by the schemes of M = 2, 4, 6 and 8 after 1.75 s.  A 5 

circle and a triangle represent the source and receiver positions.  In the case of M = 2, severe 6 

numerical dispersion can be observed.  The scheme of M = 4 represents a great improvement 7 

compared with M = 2 while a minor degree of dispersion still remains.  For schemes of M = 8 

6 and 8, the dispersion is suppressed almost completely.  Since the number of calculation 9 

points per minimum wavelength is about 4.04 (i.e. ∆x λ⁄  ≈ 0.25), the result has good 10 

agreement with the result from the dispersion analysis in the previous.  Fig.9 shows the 11 

waveforms observed at the receiver positions.  We also show an analytical solution obtained 12 

as follows (e.g. Chen, 2013). 13 

 14 

p(x, z, t) = iπF−1 �H0
(2)(kR)F�f(t)�� (13) 15 

 16 

where F(∙) and F−1(∙) represent forward and inverse Fourier transformations, respectively, 17 

f(t) is time series of the source, H0
(2)(∙) is the second Hankel function of order zero, k is the 18 
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wavenumber (= ω v⁄ ), and R is the distance between the source and the receiver.  It is 1 

observed that the high-order scheme can suppress the spurious oscillation and has a good 2 

agreement with the analytical solution.  In this way, our scheme can select arbitrary-order 3 

accuracy depending on the numerical conditions (e.g. source frequency, spatial resolution, 4 

etc.). 5 

 6 

5.2 Effect of irregular arrangement 7 

We next simulate acoustic wave propagation using regular and irregular distributions of 8 

calculation points to investigate the validity of our mesh-free method.  The irregular 9 

arrangement is generated by the same procedure shown in Fig.2.  The P-wave velocity and 10 

the spacing of the calculation points are the same as the previous section.  The waveform of 11 

the source is a Ricker wavelet with a central frequency of 5 Hz.  In this case, the number of 12 

calculation points per minimum wavelength is about 14.4.  Four receivers are set with an 13 

offset distance of about 566 m.  In this section, we use the scheme of M = 4 in space.  The 14 

radius of the influence domain is set to 3.6 × l0 to support sufficient number of calculation 15 

points.  The average number of calculation points in the influence domain is about 36.  We 16 

also simulate acoustic wave propagation using the regular lattice alignment for comparison. 17 

Fig.10 (a) shows the snapshot of the pressure field after 1.75 s using the irregular 18 
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arrangement.  A circle and triangles represent the source and receivers, respectively.  Fig.10 1 

(b) shows the close-up figure around the acoustic wave front marked with a dotted square in 2 

Fig.10 (a).  It can be observed that the pressure field is reproduced smoothly by the irregular 3 

arrangement.  Fig.11 shows the waveforms recorded at the receiver positions with different 4 

offsets.  Solid gray and dotted black lines represent waveforms calculated by the regular and 5 

irregular arrangements, respectively.  Since both waveforms have good agreement with each 6 

other, the validity of our mesh-free method for irregular arrangement is ensured. 7 

 8 

5.3 Wave propagation in an inhomogeneous medium 9 

Finally, we demonstrate the effectiveness of the method using a simple inhomogeneous 10 

model as shown in Fig.12.  A low velocity anomaly exists at the center of the model.  The 11 

velocity of the anomaly is half of the surrounding area.  The source is located at the left side 12 

of the anomaly.  The four receivers are set with 400 m intervals.  The second and third 13 

receivers are located inside the anomaly.  We calculate wave propagation using three 14 

different arrangements, a) fine arrangement, b) coarse arrangement, and c) partially fine 15 

arrangement (Fig.13).  In the partially fine arrangement case, the finer calculation points are 16 

used only around the low velocity anomaly. 17 

In FD method, we can introduce partially fine resolution using the discontinuous grids on 18 
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the boundary of the spatial resolution (e.g. Aoi and Fujiwara, 1999).  However, this requires 1 

some special treatment when waves propagate through small and large grids.  This 2 

complexifies the application of it on arbitrary velocity structures.  In FE methods, we need a 3 

re-meshing which includes a time consuming process especially for complex velocity models.  4 

On the other hand, in the mesh-free method, we do not require the implementation of the 5 

discontinuous grids or a re-meshing process. 6 

The waveform of the source is the Ricker wavelet with a central frequency of 9 Hz.  In 7 

this case, the number of calculation points in a minimum wavelength is about 8.08 or 4.04 for 8 

the fine and course arrangements, respectively. 9 

If we use the same radius of the influence domain for fine and coarse regions, the number 10 

of calculation points increases uneconomically in the fine region, i.e. increasing 11 

computational burden.  Therefore, the radius is determined by the grid spacing of each 12 

region so that each domain supports minimal number of neighbors as shown in Fig.1.  This 13 

means that the radius in the fine region is half of that in the coarse region.  At the interface 14 

of the different spatial resolution, the radius of the influence domain is determined by the 15 

averaged spacing (Eq. (2) and (3) in Takekawa et al., 2012). 16 

Fig.14 shows the snapshots of the pressure field after 1 and 1.25 s using different 17 

arrangements.  If we use the coarse arrangement (Fig.14 (b) and (e)), the numerical 18 
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dispersion is occurred as indicated by arrows.  On the other hand, for the fine and partially 1 

fine arrangements, the dispersion cannot be observed.  Fig.15 shows the waveforms 2 

observed at the receivers.  The results are compared with that from FEM which can 3 

reproduce curved surfaces accurately.  The waveforms calculated by the fine and partially 4 

fine arrangements have good agreement with that from FEM whereas the waveform 5 

calculated by the coarse ones are quite different from the reference waveforms due to 6 

numerical dispersion.  If we use the coarse arrangement, the number of calculation points per 7 

minimum wavelength inside the anomaly is same as that in section 4.1.  In Fig.8 and 9, we 8 

can observe a slight dispersion for the scheme of M = 4.  This means that the number of 9 

calculation points of the coarse arrangement was not sufficient to resolve the low velocity 10 

anomaly. 11 

The above results indicate that the partially fine arrangement can provide accurate results 12 

in an efficient manner by introducing appropriate spacing of the calculation points which is 13 

suitable for arbitrary velocity structures.  Since the method is based on the mesh-free 14 

concept, the procedure for the implementation of discontinuous grids or re-meshing is not 15 

required.  This advantage would improve the numerical accuracy and efficiency in a simple 16 

manner, and reduce time for pre-processing. 17 

 18 
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6. CALCULATION TIME 1 

We compare the calculation time of the mesh-free method with that of the conventional 2 

FDM (e.g. Chu and Stoffa, 2012).  The numerical model, which consists of 400 ×  400 3 

grids or calculation points, is homogeneous with a P-wave velocity of 2000 m/s.  In the 4 

mesh-free method, a regular lattice alignment is used.  2nd, 4th, 6th and 8th order schemes for 5 

FDM and M = 2, 4, 6 and 8 for the mesh-free method are tested.  Fig.16 (a) shows the 6 

calculation time normalized by that from the 2nd order FDM.  In each order of accuracy, the 7 

present method costs two to three times more than FDM as is the case in other mesh-free 8 

methods.  This indicates that FDM has an advantage in the calculation time over the 9 

mesh-free method if the numerical model is homogeneous or smooth.  On the other hand, the 10 

mesh-free method would gain an edge on structured grids if models include large velocity 11 

contrast like shown in Fig.12. 12 

Fig.16 (b) shows the effect of the number of calculation points on the calculation time.  13 

The order of accuracy M is fixed to 4.  This result indicates that the calculation time strongly 14 

depends on the number of calculation points in the influence domain.  It is suggested that the 15 

oversized domain should be avoided for efficient implementation. 16 

The superiority of the mesh-free method depends on the model complexity.  Therefore, 17 

the method used should be selected for individual cases.  The mesh-free method would work 18 
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well for models with large velocity contrast, especially in three-dimensional cases.  The 1 

comparison of the calculation time in Fig.16 provides an indication of the selection of the 2 

method. 3 

 4 

7. CONCLUSIONS AND PERSPECTIVES 5 

We presented a mesh-free method with arbitrary-order accuracy for solving acoustic wave 6 

equation derived from the multivariable Taylor expansion.  We quantified the dispersion 7 

using a plane wave analysis.  The dispersion property of the method with the regular lattice 8 

alignment is in absolute agreement with that of FD operator based on the Taylor expansion.  9 

The irregular arrangement of calculation points degrades the dispersion property especially in 10 

the case of a small number of neighbors.  The dispersion curve becomes stable with 11 

increasing number of neighbors.  This required that the influence domain should be large 12 

enough to include sufficient number of calculation points.  In numerical experiments for a 13 

homogeneous model, we used regularly and irregularly distributed calculation points.  The 14 

numerical results calculated from both the distributions showed good agreement with each 15 

other.  In the inhomogeneous case, we demonstrated the effectiveness of the method using 16 

different resolutions i) fine resolution, ii) coarse resolution, and iii) partially fine resolution.  17 

The coarse resolution model showed numerical dispersion in a low velocity anomaly zone.  18 
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On the other hand, the partially fine resolution model could suppress the dispersion.  The 1 

computational time of the method is two or three times expensive than FDM.  However, we 2 

believe that the method can be an alternative of the conventional method if the model includes 3 

large velocity contrasts. 4 

Since the present method is a general method for solving partial differential equations, not 5 

only acoustic wave propagation but also elastic wave propagation could be solved.  In the 6 

elastic case, variables (e.g. velocity and stress) are often placed alternately.  In our method, 7 

the calculation of derivatives needs to be given at the position of the variables for which we 8 

evaluate the derivatives.  Therefore, some sort of invention is required to implement our 9 

method to the staggered arrangement of variables. 10 

The advantage of the method is that there is no restriction on the arrangement of the 11 

calculation points for achieving arbitrary-order accuracy by simply expanding the influence 12 

domain (i.e. increasing the number of neighbors).  This would enable us to adopt appropriate 13 

spatial resolution corresponding to complex velocity structures in arbitrary and simple 14 

manners.  This advantage could be exploited in not only FWI for complex velocity models 15 

(e.g. salt dome models) but also rock physics problems which include complex 16 

microstructures and high contrast in the physical properties. 17 

 18 
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APPENDIX A 1 

We derive the dispersion relation of the mesh-free method.  For simplicity, the case of M 2 

= 2 and n = 8 is considered.  We consider a plane wave of the form p = p0exp(−iωt + ikx) 3 

propagating along the x-direction with wavenumber k and frequency ω. p0 is the amplitude 4 

of the plane wave.  The target point i and neighboring points j (j = 1 ~ 8) are difined as 5 

shown in Fig.A.1.  In this case, vectors P in Eq.(2) is shown as follows; 6 

 7 

𝐏𝐏1 = �−l,−l, 1
2

l2, l2, 1
2

l2�
T
 (A.1a) 8 

𝐏𝐏2 = �−l, 0, 1
2

l2, 0,0�
T
 (A.1b) 9 

𝐏𝐏3 = �−l, l, 1
2

l2,−l2, 1
2

l2�
T
 (A.1c) 10 

𝐏𝐏4 = �0,−l, 0,0,0, 1
2

l2�
T

 (A.1d) 11 

𝐏𝐏5 = �0, l, 0,0,0, 1
2

l2�
T
 (A.1e) 12 

𝐏𝐏6 = �l,− l, 1
2

l2,−l2, 1
2

l2�
T
 (A.1f) 13 

𝐏𝐏7 = �l, 0,0, 1
2

l2, 0,0�
T
 (A.1g) 14 

𝐏𝐏8 = �l, l, 1
2

l2, l2, 1
2

l2�
T
 (A.1h) 15 

 16 

where l is the spacing between calculation points as shown in Fig.A.1.  Subscript is index for 17 
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neighboring calculation points.  Using Eqs.(A-1), we can calculate 𝐏𝐏j⨂𝐏𝐏j and the sum of 1 

them. 2 

 3 

∑ �𝐏𝐏j⨂𝐏𝐏j�8
j=1 =

⎩
⎪
⎨

⎪
⎧6l2 0 0 0 0

0 6l2 0 0 0
0 0 3

2
l2 0 l4

0 0 0 4l4 0
0 0 l4 0 3

2
l2⎭
⎪
⎬

⎪
⎫

 (A.2) 4 

 5 

We also calculate the inverse of Eq.(A.2) as follows. 6 

 7 

�∑ �𝐏𝐏j⨂𝐏𝐏j�8
j=1 �

−1
=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

1
6l2

0 0 0 0

0 1
6l2

0 0 0

0 0 6
5l4

0 − 4
5l4

0 0 0 1
4l4

0

0 0 − 4
5l4

0 6
5l4 ⎭

⎪
⎪
⎬

⎪
⎪
⎫

 (A.3) 8 

 9 

Differences of pressure between the calculation point i and neighboring points j are 10 

calculated using a plane wave equation. 11 

 12 

p1 − pi = {exp(−ikl) − 1}p0exp(−iωt + ikx) (A.4a) 13 
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p2 − pi = {exp(−ikl) − 1}p0exp(−iωt + ikx) (A.4b) 1 

p3 − pi = {exp(−ikl) − 1}p0exp(−iωt + ikx) (A.4c) 2 

p4 − pi = 0 (A.4d) 3 

p5 − pi = 0 (A.4e) 4 

p6 − pi = {exp(ikl) − 1}p0exp(−iωt + ikx) (A.4f) 5 

p7 − pi = {exp(ikl) − 1}p0exp(−iωt + ikx) (A.4g) 6 

p8 − pi = {exp(ikl) − 1}p0exp(−iωt + ikx) (A.4h) 7 

 8 

Using Eqs. (A.1), (A.3), (A.4) and (7), we can calculate spatial derivatives at the position of 9 

target point i. 10 

 11 

∂2p
∂r12

= 1
l2

(exp(−ikl) + exp(ikl) − 2)p0exp(−iωt + ikx) (A.5) 12 

∂2p
∂r22

= 0 (A.6) 13 

 14 

Using Eqs.(A.5) and (A.6), we can derive the dispersion relation of the mesh-free method in 15 

case of M = 2 and n = 8. 16 
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 1 

−ω2 = v2

l2
{exp(−ikl) + exp(ikl) − 2}  2 

= −4 v2

l2
sin2 �kl

2
� (A.7) 3 

ω = 2 v
l

sin �kl
2
� (A.8) 4 

 5 

The dispersion relations for different order and number of neighboring points can be derived 6 

in a similar manner. 7 

  8 
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FIGURES 1 

 2 

Figure 1. The choice of the influence domain for regular lattice alignment.  Open solid circle 3 

is the focusing point.  Filled solid and open dotted circles represent calculation points inside 4 

and outside the influence domain, respectively.  Broken circle represents the influence 5 

domain.  The number of neighboring points is 8, 20, 28 and 48 for M = 2, 4, 6 and 8, 6 

respectively. 7 

  8 
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 1 

Figure 2. An example of irregular distribution of the calculation points.  Each point is 2 

migrated in a random manner. 3 

  4 
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 1 

Figure 3. Dispersion curves for the regular arrangement with different order schemes. 2 

  3 
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 1 

 2 

Figure 4. Dispersion curves for irregular arrangements with different number of neighbors.  3 

(a) M = 2, (b) M = 4.  4 
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 1 

Figure 5. Dispersion curves with different time steps for M = 4.  α means the maximum 2 

CFL number for stable calculations. 3 

  4 
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 1 

 2 

Figure 7. Stability condition of the mesh-free method with (a) different M, and (b) different n.  3 

Vertical axis shows the maximum CFL number for stable calculation. 4 
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 1 

Figure 8. Snapshots of the pressure field with different order schemes after 1.75 s.  A circle 2 

and triangles represent source and receivers, respectively. 3 

  4 
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 1 

Figure 9. Waveforms observed at the receivers with different order schemes.  Gray solid and 2 

black dotted lines represent analytical and numerical waveforms, respectively. 3 
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 1 

 2 

Figure 10. (a) A snapshot of the pressure field for an irregular arrangement.  Open circle and 3 

triangles represent source and receivers, respectively.  (b) Close-up figure around the wave 4 

front. 5 
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 1 

Figure 11. Waveforms obtained at the receivers with different offsets.  Gray solid and black 2 

dotted lines represent waveforms from regular and irregular arrangement, respectively. 3 

  4 
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 1 

Figure 12. A schematic figure of an inhomogeneous model.  A circular velocity anomaly, 2 

whose diameter is 800 m, is set at the center of the model.  An open circle and triangles 3 

represent the source and receivers.  Four receivers are set with a constant offset of 400 m. 4 

  5 
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 1 

 2 

 3 

Figure 13. Schematic figures of the distribution of calculation points around the interface of 4 

the different spatial resolution.  Open and filled circles represent the calculation points 5 

belong to the anomaly and surrounding area, respectively. Dotted curve represents the 6 

boundary between the anomaly and surrounding area, i.e. the lower and upper parts of the 7 

dotted line are inside and outside of the anomaly, respectively.  (a) fine arrangement, (b) 8 

coarse arrangement, (c) partially fine arrangement.  9 
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 1 

Figure 14. Snapshots of the pressure field after (a)-(c) 1 s and (d)-(f) 1.25 s.  (a) and (d) are 2 

calculated by fine arrangement.  (b) and (e) are calculated by coarse arrangement.  (c) and 3 

(f) are calculated by partially fine arrangement. 4 

  5 
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 1 

Figure 15. Waveforms obtained by different arrangement of calculation points compared with 2 

FEM.  Upper, middle and lower figures show the comparison between the fine, coarse, 3 

partially fine arrangements and FEM, respectively. 4 
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 1 

 2 

Figure 16. (a) Comparison of the calculation times of the mesh-free method with those of the 3 

conventional FDM.  (b) The effect of the number of calculation points on the neighboring 4 

points for M = 4. 5 
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 1 

Figure A.1. Configuration of the target point i and neighboring points j (j = 1 – 8).  l means 2 

the spacing of the regular lattice. 3 
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