
Acceleration of the Geostatistical Software Library (GSLIB) by

Code Optimization and Hybrid Parallel Programming

Oscar Peredo ∗† Julián M. Ortiz† ‡ José R. Herrero §

December 2015

Abstract

The Geostatistical Software Library (GSLIB) has been used in the geostatistical community for more
than thirty years. It was designed as a bundle of sequential Fortran codes, and today it is still in use
by many practitioners and researchers. Despite its widespread use, few attempts have been reported in
order to bring this package to the multi-core era. Using all CPU resources, GSLIB algorithms can handle
large datasets and grids, where tasks are compute and memory intensive. In this work, a methodology
is presented to accelerate GSLIB applications using code optimization and hybrid parallel processing,
specifically for compute-intensive applications. Minimal code modifications are added decreasing as
much as possible the elapsed time of execution of the studied routines. If multi-core processing is
available, the user can activate OpenMP directives to speed up the execution using all resources of the
CPU. If multi-node processing is available, the execution is enhanced using MPI messages between the
compute nodes. Four case studies are presented: experimental variogram calculation, kriging estimation,
sequential gaussian and indicator simulation. For each application, three scenarios (small, large and
extra large) are tested using a desktop environment with 4 CPU-cores and a multi-node server with 128
CPU-nodes. Elapsed times, speedup and efficiency results are shown.

1 Introduction

The Geostatistical Software Library (GSLIB), originally presented by Deutsch and Journel [1], has been
used in the geostatistical community for more than thirty years. It contains plotting utilities (histograms,
probability plots, Q-Q/P-P plots, scatter plots, location maps), data transformation utilities, measures for
spatial continuity (variograms), kriging estimation and stochastic simulation applications. Among these
components, estimation and simulation are two of the most used, and can be executed with large data sets
and estimation/simulation grids. Large scenarios require several minutes/hours of elapsed time to finish, due
to the heavy computations involved and their sequential implementation. Since their original development,
these routines have helped many researchers and practitioners in their studies, mainly due to the accuracy
and performance delivered by this package. Many efforts have been proposed to accelerate or enhance the
scope of the original package, WinGslib [2], SGeMS [3] and HPGL [4] being the most relevant efforts. SGeMS
and HPGL moves away from Fortran and implements Python and C/C++ code in conventional and new
algorithms. Although there is a significant gain with this change, for many practitioners and researchers,
the simplicity of Fortran code and the availability of an extensive pool of modified GSLIB-based programs
makes it hard to abandon this package.

According to the authors’ knowledge, few efforts have been reported in order to accelerate the GSLIB
package by itself: analyzing, optimizing and accelerating the original Fortran routines. In this work we
present case studies of accelerations performed on original GSLIB routines (in their Fortran 90 versions),
using code optimization and multi-core programming techniques. We explain our methodology, in which a
performance profile is obtained from the original routine, with the aim of identifying overhead sources in

∗Advanced Laboratory for Geostatistical Computing (ALGES), University of Chile., (Chile.) operedo@alges.cl
†Advanced Mining Technology Center (AMTC), University of Chile., (Chile)
‡Department of Mining Engineering, University of Chile., (Chile) jortiz@ing.uchile.cl
§Computer Architecture Dept., Universitat Politècnica de Catalunya (UPC) - BarcelonaTech, (Spain). josepr@ac.upc.edu.

1

the code. After that, incremental modifications are applied to the code in order to accelerate the execution.
OpenMP [5] directives and MPI [6] instructions are added in the most time consuming parts of the routines.
Similar experiences in other geostatistical codes have been reported in [7] and [8].

2 GSLIB structure

According to GSLIB documentation [1], the software package is composed by a set of utility routines,
compiled and wrapped as a static library named gslib.a, and a set of applications that call some of the
wrapped routines. We will refer to these two sets as utilities and applications. Typically, a main program and
two subroutines compose an application (Fig. 1). The first subroutine is in charge of reading the parameters
from the input files, and the second subroutine executes the main computation and writes out the results
using predefined output formats. Additionally, two structures of static and dynamic variables are used by
the main program and each subroutine: an include file and a geostat module. The include file contains
static variable declarations, like constant parameters, fixed length arrays and common blocks of variables.
The geostat module contains dynamic array declarations, which will be allocated in some of the subroutines
with the allocate instruction. A utility is self-contained allowing sharing variables with other utilities and
applications through common block variable declarations.

The above-mentioned structure is common to many applications and has advantages and disadvantages.
The user/programmer can easily identify each part of the code and where the main computations are occur-
ring. However, the use of implicit typing and module/include variable declarations in the applications and
utilities makes it difficult to set up a data-flow analysis [9] of all the variables in any state of the execution.
With this kind of analysis, the user/programmer can estimate the state of the variables in different parts
of the code, being able to know if a variable is alive or dead at some point of execution. From a final user
perspective, this information can be seen as irrelevant. However, from a programmer’s perspective, who
intends to re-design some parts of the code or accelerate the overall execution, the data-flow analysis is the
first step into its journey.

With these concepts in mind, in the next sections we show how to apply a methodology to accelerate
GSLIB applications and utilities.

3 Methodology

Re-design: First we have to re-design the application/utility code to identify the state of each variable, array
or common block during the execution. This step is necessary to enable the user/programmer to identify the
scope of each variable (data-flow analysis), in order to insert OpenMP directives into the code in a smooth
and easy way.

Profiling and code optimization: After re-design, we have to study the run-time behavior of the application
using a profiler tool. In our case we choose the Linux-based tools gprof [10], strace/ltrace [11] and
Oprofile [12]. These tools can deliver several statistics, among the most important are: elapsed time per
routine or line of code, number of system/library calls, number of calls per routine, number of L1/L2 cache
misses per line of code and number of misspredicted branches per line of code. Each of these statistics will
be described in further sections. With this information, we can identify which lines of the application or
used utilities are generating overhead. We can modify some parts of the code using the profiled information.
For each modification, we must re-measure the elapsed time and statistics, in order to accept or reject the
modification. In this work, only hardware-independent optimizations will be included, because of portability
issues.

OpenMP parallelization: Once an optimized sequential version of the application is released, we can add
OpenMP directives in the most time consuming parts of the code, for example in simulation-based loops or
grid-based loops. Each directive defines a parallel region, which will be executed by several threads, with
a maximum defined by the user. For each directive the user/programmer must study the data-flow of the
variables inside the parallel region, and specify if the variables will be shared or private. If original GSLIB
unmodified routines are parallelized, this analysis can be very tedious and error prone. For this reason, the
first step of the methodology is fundamental in order to facilitate this analysis. Further examples of common
problems if the re-design is not applied will be detailed in the next sections.

2

MPI parallelization: After single-node multi-thread processing has been defined, multi-node MPI process-
ing can be added in a straightforward way once the data-flow of variables has been studied. As for OpenMP
directives, the most time consuming parts of the code can be even more parallelized among distributed
parallel processes.

At last, we must re-optimize the application in order to exploit efficiently all resources (memory, I/O,
CPU and network) running multiple threads of execution distributed among multiple compute nodes. When
using several threads in a multi-node system, new bottlenecks and sources of overhead can arise. For this
reason we must repeat the second step of the methodology, using multi-node multi-thread profiling tools
([13], [14]) whenever is possible.

application

1 module geostat

2 integer,allocatable :: ...

3 ...

4 end module

5

6 program main

7 use geostat

8 include ’application.inc’

9 call readparm(...)

10 call application(...)

11 stop

12 end

Figure 1: Original main program for gamv, kt3d, sgsim and sisim applications.

4 Case study

The proposed methodology was applied to accelerate four GSLIB applications: gamv, kt3d, sgsim and
sisim. We tested the final versions of the applications in two Linux-based systems: the Server, running
SUSE operating system with multiple nodes of 2x8-cores Intel Xeon CPU E52670 2.60GHz interconnected
through a fast Infiniband FDR10 network, and the Desktop, running openSUSE operating system with a
single node of 1x4-cores Intel Xeon CPU E31225 3.10GHz. All programs were compiled using GCC gfortran

version 4.7 and Open MPI mpif90 version 1.8.1, supporting OpenMP version 3.0, with the option -O3 in all
cases and -fopenmp in the multi-thread executions. All results are the average value of 5 runs, in order to
reduce external factors in the measurement.

In the first application, gamv, synthetic 2D and 3D datasets of normal scored Gaussian random fields
are used as base dataset. In the other three applications a real mining 3D dataset of copper grades (2376
samples) is used as base dataset. In this 3D dataset, the lithology of the samples corresponds to Granodiorite
(15%), Diorite (69%) and Breccia (16%).

Through all this section, we use the notation defined in [1], where the basic entities are random functions or
fields (RF) which are sets of continuous location-dependent random variables (RV), such as {Z(u) : u ∈ Ω}.
For each application we include a brief description of the main mathematical formulas required by the
underlying algorithm.

4.1 gamv

The measurement of the spatial variability/continuity of a variable in the geographic region of study is a
key tool in any geostatistical analysis. The gamv application calculates several of these measures, in an
experimental way, using the available dataset as source. Available measures to be calculated are: semi-
variogram, cross-semivariogram, covariance, correlogram, general relative semivariogram, pairwise relative
semivariogram, semivariogram of logarithms, semimadogram and indicator semivariogram. The description
of each measure can be found in [1] (III.1). Among the most used, we can mention the semivariogram, which

3

is defined as

γ(h) =
1

2N(h)

N(h)∑
i=1

(Z(ui)− Z(ui + h))2 (1)

where h is the separation vector, N(h) is the number of pairs separated by h (with certain tolerance), Z(ui)
is the value at the start of the vector (tail) and Z(ui+h) is the corresponding end (head). In Algorithm 1 we
can see the main steps of the algorithm implemented in gamv application. We can observe that the steps in
this algorithm are essentially the same regardless of the measure to be calculated. For example, to calculate
the semivariogram (eq. 1) using just one variable, one direction h and 10 lags with separation h = 1.0, first
we iterate through all pairs of points in the domain Ω (loops of lines 2 and 3 of Algorithm 1), then we have
ten iterations in the next loops (line 4 with ndir = 1, nvarg = 1 and nlag = 10). In each iteration, we
must check if some geometrical tolerances are satisfied by the current pair of points (first condition of line 6)
and then we must check if the separation vector between the points, (pi − pj), is similar to the separation
vector h multiplied by the current lag ilag and the separation lag (h = 1.0). If both conditions are fulfilled,
the pseudo-routine save statistics saves the values of the variables in study into array β. In this case,
only one variable is being queried (hiv == tiv). For each type of variogram, the variables Vi,hiv

and Vj,hiv

may be transformed using different algebraic expressions. In the case of the semivariogram, we must save
(Vi,hiv −Vj,hiv)2. Finally, using the statistics stored in β, the pseudo-routine build variogram saves the
final variogram values in vector γ, which is stored in file output.txt.

Input: (V,Ω): sample data base values V ∈ R|Ω|×m defined in a 3D domain Ω; nvar: number of
variables in study (nvar ≤ m); nlag: number of lags; h: lag separation distance; ndir:
number of directions; h1, . . . ,hndir: directions; τ1, . . . , τndir: geometrical tolerance parameters
(azimuth and dip); nvarg: number of variograms;
(type1, t1, h1), . . . , (typenvarg, tnvarg, hnvarg): variogram types, tail and head variables;

1 β ← zeros(nvar × nlag × ndir × nvarg);
2 for i ∈ {1, . . . , |Ω|} do
3 for j ∈ {i, . . . , |Ω|} do
4 for (id, iv, il) ∈ {1, . . . , ndir} × {1, . . . , nvarg} × {1, . . . , nlag} do
5 (pi,pj)← ((xi, yi, zi), (xj , yj , zj)) ∈ Ω× Ω;
6 if (pi,pj) satisfy tolerances τid ∧ ||(pi − pj)− hid × il × h‖ ≈ 0 then
7 β ←save statistics(Vi,hiv ,Vi,tiv , Vj,hiv ,Vj,tiv ,typeiv);
8 end

9 end

10 end

11 end
12 γ ← build variogram(β);
13 write(output.txt,γ);

Output: Output file with γ values

Algorithm 1: Pseudo-code of gamv, measurement of spatial variability/continuity (single-thread algo-
rithm)

The small test scenario consists in calculating semivariogram values of 30 lags with separation h = 4.0
using the north direction in the XY plane (h = (0, 1, 0)), with a regularly spaced 2D dataset of 256×256×1
(65,536) nodes. The large and extra large test scenarios use 20 lags with separation h = 2.0, the east
direction in the XY plane (h = (1, 0, 0)) and a regularly spaced 3D dataset of 50 × 50 × 50 (125,000)
and 100 × 100 × 100 (1,000,000) nodes respectively. All datasets correspond to a Gaussian random field
with exponential covariance model. Even though a special version of gamv is available for regularly spaced
datasets, called gam, we have decided to test the scalability of the optimization and parallelization using the
general application gamv, which can also be applied without loss of generality in regular or irregular grids.
In Figures 2 and 3 we can see the small and large datasets with their corresponding semivariogram plots.

4

Figure 2: Input dataset (left) and output (right) of gamv application using a small scenario.

Figure 3: Input dataset (top-left, top-right and bottom-left) and output (bottom-right) of gamv application
using a large scenario.

5

Re-design: Applying the first step of the methodology to the original gamv code of Figure 1, a slight
acceleration is observed, with a speedup of 1.09x/1.11x/1.12x for the small/large/extra large scenarios. All
variable declarations inside of geostat module were relocated at the beginning of the main program. After
that, the routines readparm, gamv and writeout were manually inlined. Finally all internal routine calls
were redesigned allowing only argument-based communication between the caller and the callee. No global
variables which are modified at run-time are allowed through the usage of include files or module variables.
Additionally, whenever is possible, the usage of the statement implicit none is mandatory.

Profiling and code optimization: In the second step of the methodology we are interested in observing the
outputs of all tools that can extract information during execution. In Table 1 we can see the output of ltrace
for the small scenario (the large and extra large scenarios deliver the same information). The tools gprof

and strace do not give us any useful information about possible bottlenecks or overhead sources during
execution in any scenario. gprof accounts for subroutines execution timing, but in this case all the code is
self contained in gamv. strace accounts for system calls during the execution and since only small scale I/O
operations are performed at the begining and end of the execution, no significant information is collected.
The output of ltrace is reporting a large usage of the internal library function gfortran transfer real.
This function belongs to the native GCC Fortran library libgfortran, and performs casting functions among
single and double precision floating-point numbers. Although a major source of overhead is added by this
native function, optimizing this library function is not straightforward and requires critical modifications of
internal library routines. Examining gamv code we infer that most of this type casting is used in critical parts
where numerical accuracy is mandatory, like double-precision square roots and trigonometric functions. For
this reason we decided to skip it and focus our efforts in other high-level overhead sources. If we inspect the
implemented algorithm, we can observe that almost all work is done in loops of lines 2 and 3 of Algorithm
1. Instrumenting the re-designed code with system clock calls before and after these loops, approximately
99.767% of the elapsed time is spent on them.

% time (ltrace, small) seconds calls name

77.87 112.12 2400020 gfortran transfer real

12.40 17.85 480031 gfortran st read

9.69 13.95 480031 gfortran st read done

0.04 - - other routines

Table 1: Output of ltrace tool applied to gamv application (small scenario) running in Desktop system.
Large and extra large scenarios deliver the same information. Timing column (”seconds”) of ltrace may
not show accurate measurements and must be taken only as an approximation reference.

Other profiling tool at our disposal is Oprofile. Different hardware events can be queried with this tool,
such as the number of branch instructions, number of miss-predicted branches, number of unhalted CPU
cycles and number of L1/L2 data cache events (loads, stores, cache misses and evictions). For a complete
description of each hardware event and architecture details about performance-monitoring counters in Intel
based architectures, see [15]. After extracting several line-by-line profiles with this tool, the most influential
event in the overall execution time is the number of miss-predicted branch instructions. More that 50% of
this event is measured in a few lines of code. In Figure 4 we can see the original and optimized lines of code.
After the proposed optimization, a speedup of 6.01x/2.86x/2.76x was reached (Table 2). In addition, the
results delivered by the optimized application match exactly with the results of the original application.

6

1 ...

2 do ilag=2,nlag+2

3 if(h.ge.(xlag*real(ilag-2)-xltol).and.

4 + h.le.(xlag*real(ilag-2)+xltol)) then

5 if(lagbeg.lt.0) lagbeg = ilag

6 lagend = ilag

7 end if

8 end do

9 ...

1 ...

2 xlaginv=1.0/xlag

3 liminf=(ceiling((h-xltol)*xlaginv)+2)

4 limsup=(floor((h+xltol)*xlaginv)+2)

5 if(lagbeg.lt.0) then

6 do ilag=liminf,limsup

7 lagbeg = ilag

8 lagend = ilag

9 end do

10 else

11 do ilag=liminf,limsup

12 lagend = ilag

13 end do

14 end if

15 ...

Figure 4: Original (left) and optimized (right) gamv code. In the original code, we can see a source of
miss-predicted branches in lines 3-4. Pre-computing the limits of the loop in line 2 and hoisting out a
static condition in line 5 of original code, we can obtain an optimized version with 50% less miss-predicted
branches.

Optimization Small Large Extra large

Baseline 1.00x 1.00x 1.00x
Re-design 1.09x 1.11x 1.12x

Reduction of miss-predicted branches 6.01x 2.86x 2.76x

Table 2: Summary of code optimizations in gamv application running in Desktop system.

OpenMP parallelization: For the third step of the methodology, we add the OpenMP parallel for

pragma before the loop of line 2 in Algorithm 1, using a run-time defined schedule for loop splitting.
MPI parallelization: The fourth step consists in a blocked partition of the same loop of line 2, using a

block size defined by the user. The main steps of the multi-thread multi-node algorithm are depicted in
Algorithm 2. The parallelization of the optimized application still delivers similar results to the original
gamv application, allowing some tolerance up to the 5th or 6th decimal number (non-commutativity of
floating-point operations).

In line 8 of this algorithm, we define a thread-local statistics container βithread, with the same dimensions
as the global container β. This local container stores the statistics measured by each thread. After finishing
the process of each local chunk of iterations from istart to iend, we merge the statistics into the global
container, as shown in line 21. Finally, in lines 26 and 27 the master thread builds the variogram values
with the global statistics collected by all threads. As mentioned before, the fourth step of the methodology
is applied splitting the same loop of line 2 from Algorithm 1 using a block size B defined by the user. In
line 3 of Algorithm 2 the value K indicates the number of blocks in which the total number of iterations |Ω|
can be divided. Additionally in Algorithm 2 an outer block-based loop is defined in line 4, where each MPI
task handles a block of iterations that will be divided among the local threads, as shown in lines 5 and 6.
In order to collect all results among different nodes, the MPI instruction MPI Reduce is launched by all MPI
tasks in line 24 of Algorithm 2. With this instruction, all tasks send their local statistics β to the master
task (itask = 0) which adds all of them in the local container βglobal.

A key step is the multi-thread loop splitting. As we can observe, if we split the loop of line 2 of the
single-thread algorithm (Algorithm 1) using the default ”static” schedule, an unbalanced workload will be
performed by all threads (Figure 5-left), since the outer and inner loops in lines 2 and 3 form a triangular
iteration space [16]. For this reason, we allow the user to set the runtime schedule, depending on the size
of the input dataset. In these particular test scenarios, small and large, we have inferred that the optimal
schedules are ”static,32” and ”static,1024” respectively, evaluating all possible schedules in the form
”{static,dynamic,guided},{8,16,...,512,1024}”.

Results: In table 3 we can see the single-node average elapsed time of five executions using the optimal

7

schedules and the corresponding speedup compared against the original GSLIB routine. Using the Server
system, we have achieved a maximum speedup of 69.56x, 60.99x and 37.46x for the small, large and extra
large respectively, using 16 CPU-cores. Using the Desktop system, the maximum achieved speedups with 4
CPU-cores are 22.14x, 11.23x and 9.59x respectively. Using the optimized sequential time as baseline, the
maximum achieved speedups are 10.89x, 13.66x and 13.81x for the small, large and extra large scenarios in
the Server system and 3.67x, 3.91x and 3.47x respectively in the Desktop system. In terms of efficiency,
defined as speedup/#processes, these values represent 68%, 85% and 86% in the Server system and 91%,
97% and 86% in Desktop, for the small, large and extra large scenarios respectively.

The multi-node results can be viewed in table 4, where the maximum achieved speedup is 232.07x for the
extra large scenario with 16 CPU-cores and 8 compute nodes, a total of 128 distributed CPU-cores. Using
the optimized sequential time with one node as baseline, the maximum achieved speedup is 85.54x using
the same distributed 128 CPU-cores. This speedup accomplishes a 66% of efficiency using 128 CPU-cores.
Comparatively, using 64 and 32 distributed CPU-cores and the optimized baseline, the average efficiency
obtained is 79% and 86% respectively. The efficiencies obtained using 64 CPU-cores are 77% with 4 nodes
and 16 threads each, and 81% with 8 nodes and 8 threads each. Using 32 CPU-cores, the efficiencies are 81%
with 2 nodes and 16 threads each, 88% with 4 nodes and 8 threads each, and 90% with 8 nodes, 4 threads
each.

The decay in efficiency observed in these results is related with the overhead added by thread synchro-
nization and contention when the threads are writing to the local-node global container β. This container is
implemented as a two dimensional shared array with size (nvar×nlag×ndir×nvarg, T) where each thread
uses the space β(:, ithread) to save their local results. With this implementation, contention may appear
if nvar× nlag × ndir× nvarg is smaller than the cache line size divided by the size in bytes of β data type
(double-precision float).

Threads Default schedule ”static” Optimal schedule ”static,32”

2

4

8

16

Figure 5: Trace views of number of instructions per cycle (IPC) generated with extrae/paraver applied on
multi-thread version of gamv, small test scenario. Left column: using default schedule. Right column: using
"static,32" schedule. Green color indicates low IPC values, blue color indicates high IPC values.

8

Input: Same inputs as Algorithm 1; P : number of MPI tasks; T : number of execution threads per
MPI task; S: runtime schedule of thread synchronization; B: block size for each MPI task;

1 β ← zeros(nvar × nlag × ndir × nvarg);
2 itask← MPI COMM RANK(...);

3 K ←
⌈
|Ω|−B+1

B

⌉
; // Count the number of blocks of size B that fit in |Ω|

4 for k ∈ {1, . . . ,K} do
5 if itask == (k mod P) then
6 (kstart, kend)← (k ∗B,min{(k + 1) ∗B, |Ω|});

/* omp parallel default(firstprivate) shared(V,Ω) */

7 foreach ithread ∈ {1, . . . , T} do
8 βithread ← zeros(nvar × nlag × ndir × nvarg);
9 (istart, iend)← loop split(ithread, kstart, kend, S, T);

10 for i ∈ {istart, . . . , iend} do
11 for j ∈ {i, . . . , |Ω|} do
12 for (id, iv, il) ∈ {1, . . . , ndir} × {1, . . . , nvarg} × {1, . . . , nlag} do
13 (pi,pj)← ((xi, yi, zi), (xj , yj , zj)) ∈ Ω× Ω;
14 if (pi,pj) satisfy tolerances τid ∧ ||(pi − pj)− hid × il × h‖ ≈ 0 then
15 βithread ←save statistics(Vi,hiv ,Vi,tiv , Vj,hiv ,Vj,tiv ,typeiv);
16 end

17 end

18 end

19 end

20 end
21 β ← merge statistics(β1, . . . ,βT);

22 end

23 end

24 βglobal ← MPI REDUCE(β,target=0);
25 if itask == 0 then
26 γ ← build variogram(βglobal);
27 write(output.txt,γ);

28 end

Output: Output file with γ values

Algorithm 2: Pseudo-code of gamv, measurement of spatial variability/continuity (multi-thread multi-
node algorithm)

4.2 kt3d

The kriging algorithm was introduced to provide minimum error-variance estimates of unsampled locations
using available data. The traditional application of kriging is to provide a regular grid of estimates that
acts as a low-pass filter that tends to smooth out details and extreme values of the original dataset. It is
extensively explained in [1] (IV.1). Different versions of the algorithm are available in the kt3d application.
Simple Kriging (SK), in its stationary version, aims to obtain a linear regression estimator Z∗SK(u) defined
as

Z∗SK(u) =

n∑
α=1

λ(SK)
α (u)Z(uα) +

[
1−

n∑
α=1

λ(SK)
α (u)

]
m (2)

where m = E{Z(u)},∀u is the location-independent (constant) expected value of Z(u) and λ
(SK)
α (u) are

weights given by the solution of the system of normal equations:

n∑
β=1

λ
(SK)
β (u)C(uβ ,uα) = C(u,uα), α = 1, . . . , n (3)

9

Time[s] (Speedup)

#Threads
Server
Small
1 node

Server
Large
1 node

Server
Extra large

1 node

Desktop
Small
1 node

Desktop
Large
1 node

Desktop
Extra large

1 node

1 (base gslib) 121.04 (1.0x) 535.52 (1.0x) 9956.0 (1.0x) 166.28 (1.0x) 508.66 (1.0x) 9159.0 (1.0x)
1 (optimized) 18.96 (6.38x) 119.95 (4.46x) 3670.0 (2.71x) 27.63 (6.01x) 177.35 (2.86x) 3318.0 (2.76x)
2 (optimized) 9.60 (12.60x) 60.12 (8.9x) 1888.35 (5.27x) 13.86 (11.99x) 87.90 (5.78x) 1901.2 (4.81x)
4 (optimized) 5.04 (24.01x) 30.61 (17.49x) 960.96 (10.36x) 7.51 (22.14x) 45.28 (11.23x) 954.88 (9.59x)
8 (optimized) 3.06 (39.55x) 16.03 (33.40x) 497.60 (20.00x) - - -
16 (optimized) 1.74 (69.56x) 8.78 (60.99x) 265.72 (37.46x) - - -

Table 3: Single-node time/Speedup results for gamv. Small scenario: 2D, 30 lags, east direction, 65536
data points, schedule ”static,32”. Large scenario: 3D, 20 lags, north direction, 125000 data points,
schedule ”static,1024”. Extra large scenario: 3D, 20 lags, north direction, 1000000 data points, schedule
”static,1024”

Time[s] (Speedup)

#Threads
Server

Extra Large
2 nodes

Server
Extra Large

4 nodes

Server
Extra Large

8 nodes
1 (optimized) 1854.73 (5.36x) 947.14 (10.51x) 478.54 (20.80x)
2 (optimized) 948.30 (10.49x) 475.70 (20.92x) 243.37 (40.90x)
4 (optimized) 479.91 (20.74x) 244.62 (40.69x) 127.18 (78.28x)
8 (optimized) 251.57 (39.57x) 130.27 (76.42x) 70.05 (142.12x)
16 (optimized) 140.52 (70.85x) 73.82 (134.86x) 42.90 (232.07x)

Table 4: Multi-node time/speedup results for gamv with extra large scenario

with {C(uα,uβ)}α,β=0,1,...,n the covariance matrix adding the sampled data u0 = u. With the stationary
assumption, the covariance can be expressed as a function C(h) = C(u,u + h). Ordinary Kriging (OK)
filters the mean m from the SK estimator of eq. (2), imposing that the sum of weights is equal to one. The
resulting OK estimator is as

Z∗OK(u) =

n∑
α=1

λ(OK)
α (u)Z(uα) (4)

with the weights λ
(OK)
α solution of the extended system:

n∑
β=1

λ
(OK)
β (u)C(uβ − uα) + µ(u) = C(u− uα), α = 1, . . . , n (5)

n∑
β=1

λ
(OK)
β = 1 (6)

with µ(u) a Lagrange parameter associated with the second constraint (6). It can be shown that OK amounts
to re-estimating, at each new location u, the mean m as used in the SK expression. Thus the OK estimator
Z∗OK(u) is, in fact, a simple kriging estimator where the constant mean value m is replaced by the location-
dependent estimate m∗(u) (non-stationary algorithm with varying mean and constant covariance). Other
kriging algorithms available add different trend models in 1, 2 or 3D. These last algorithms are not supported
yet by the multi-thread proposed version of kt3d. The main steps of the kriging algorithms can be viewed
in Algorithm 3. The super block spatial search strategy ([1], II.4) is implemented in order to accelerate
the search of neighbor values in cases where large datasets are available (lines 1 and 3). Once the neighbor
values N are available, the covariance matrix values C(uβ − uα) must be assembled into the matrix A (line
4). Additionally, the right-hand side is composed by the covariance values C(u − uα) and is stored in the
array b (line 5). With the left and right-hand sides A and b already computed, the weight vector λ can be
calculated solving the SK linear system (2) or the OK linear system (5)-(6) (line 6). Finally the estimated
value is computed using the weights λ (line 7) and stored in a file (line 8).

10

Input: (V,Ω): sample data base values defined in a 3D domain Ω; r: radius of search (neighbour of
node to estimate); β: super block strategy parameters; γ: structural variographic models;

1 H←set spatial hash(V,Ω,β,r);
2 for i ∈ {1, . . . , |Ω|} do
3 N←search spatial hash(i,H,V);

/* N ⊂ V, neighbourhood values of node i */

4 A←assemble covariance matrix(N,γ);
5 b←assemble rhs vector(N,γ);
6 λ←solve system(A,b);
7 y ←compute estimation(λ,N);
8 write(output.txt,y);

9 end

Output: Output file output.txt with estimated values for all nodes

Algorithm 3: Pseudo-code of kt3d, kriging 3D estimation (single-thread algorithm)

The small test scenario consists in performing an Ordinary Kriging estimate in a grid of 40×60×12 nodes
(28,800), representing a 3D volume of 400 × 600 × 120[m3] with a search radius of 100[m] and a maximum
of 50 neighbours to include in the local estimation. The large and extra large test scenarios have the same
parameters as the small scenario but using finer grids of 120×180×24 and 120×180×48 nodes (518,400 and
1,036,800 respectively) in the same 3D volume. All estimation grids use the same variographic inputs, which
are a spherical plus an exponential structure, and the same input dataset (2376 copper grade 3D samples).
In Figure 6 we can see slices of the small and large kriging outputs.

Figure 6: Output of kt3d application using a small (left) and large (right) scenarios.

Re-design: Applying the first step of the methodology to the original kt3d code as in the gamv applica-
tion, a slight acceleration is observed, with a speedup of 1.03x/1.03x/1.02x for the small/large/extra large
scenarios.

Profiling and code optimization: For the second step of the methodology, gprof tool delivers information
depicted in Table 5 for the small (top), large (medium) and extra large (bottom) scenarios. All these routines

11

are utilities from the gslib.a library. In the three scenarios, the most called routines are cova3 and sqdist,
where cova3 calculates the covariance value C(u,u + h) according to the variographic model passed as
input, and sqdist calculates a squared anisotropic distance between two points. sortem implements a
sorting algorithm for floating-point single precision arrays in ascending order. srchsupr implements a
spatial search using a super block strategy. ktsol solves a floating-point double precision linear system by
gaussian elimination with partial pivoting. In terms of elapsed time, a predominance of cova3 is observed in
the three scenarios, with 35%, 30% and 27% in each case. The routine srchsupr shows a steady increase of
participation from 4% to 26% of the elapsed time, which is proportional to the scenario size. In Table 6 we
can observe the output of ltrace for the three scenarios. In all of them, the library function expf is executed
by the application several times, however its low-level optimization is out of the scope of this work. The
tool strace does not report any useful information about possible bottlenecks or overhead sources during
execution in all scenarios.

% time (gprof, small) seconds calls name

35.12 1.77 36946936 cova3

30.95 1.56 28798 ktsol

19.25 0.97 85615247 sqdist

5.75 0.29 1 MAIN

4.56 0.23 28800 srchsupr

4.17 0.21 28801 sortem

0.02 - - other routines

% time (gprof, large) seconds calls name

30.82 32.00 665354374 cova3

26.79 27.82 518358 ktsol

16.43 17.06 1485946159 sqdist

16.07 16.69 518400 srchsupr

5.21 5.41 518401 sortem

4.61 4.79 1 MAIN

0.06 - - other routines

% time (gprof, extra large) seconds calls name

27.07 63.96 1330982767 cova3

26.05 61.54 1036800 srchsupr

23.84 56.32 1036728 ktsol

14.18 33.50 2968320694 sqdist

4.52 10.69 1036801 sortem

4.27 10.08 1 MAIN

0.07 - - other routines

Table 5: Output of gprof tool applied to kt3d application (small, large and extra large scenarios) running
in Desktop system. Timing column (”seconds”) may not show accurate measurements and must be taken
only as an approximation reference.

Analyzing Oprofile outputs, we can observe a large amount of branch instructions executed in cova3

routine. A basic optimization applied to the code is to specialize this routine for the input parameters. In
this case, the variographic structures passed as inputs define which branch instructions will be executed.
The first structure is a spherical model and the second is an exponential model. In Figure 7 we can observe
the original and specialized routine cova3, using these two variographic structures as input. A speedup of
1.06x/1.05x/1.05x is obtained after this optimization for the small/large/extra large scenarios. Additionally,
removing dead code not used by the multi-thread version of the application can speed up the execution time.
Using preprocessor directives as #ifdef DEBUG or #ifdef OPENMP allow us to remove all unnecessary code
at compilation time and reduce the number of instruction cache misses. A speedup of 1.11x/1.08x/1.07x
is obtained after this optimization (Table 7). Another easy modification involves the use of a buffer array
to store the estimated results in each grid node, followed by one single write instruction. In line 8 of
Algorithm 3 we can observe that a write call is performed for each grid node. A slight acceleration is
obtained using the buffering technique (1.11x/1.10x/1.09x), however this feature slows down the execution

12

% time (ltrace, small) seconds calls name

97.54 125.14 1992512 expf

1.44 1.84 19046 gfortran transfer real

1.02 - - other routines

% time (ltrace, large) seconds calls name

97.93 125.81 2912965 expf

1.79 2.30 19046 gfortran transfer real

0.28 - - other routines

% time (ltrace, extra large) seconds calls name

99.65 125.51 2675566 expf

0.14 0.17 19046 gfortran transfer real

0.21 - - other routines

Table 6: Output of ltrace tool applied to kt3d application (small, large and extra large scenarios) running in
Desktop system. Timing column (”seconds”) may not show accurate measurements and must be taken only
as an approximation reference. In this case it shows the measurements running the application approximately
by two minutes

using multiple threads. A possible reason for this behaviour might be contention generated by false sharing
[17]. False sharing can happen because the buffer array must be shared among all threads, even if they write
in different memory locations of it. The usage of the shared array adds contention in the CPU-memory
bus, in order to synchronize and manage all threads, for this reason we decide to skip this optimization
and leave the code as it is. In order to accelerate the I/O operations, a binary format in the output file is
adopted, adding the option form=’UNFORMATTED’ in the open instruction. A speedup of 1.12x/1.10x/1.06x
is observed using this modification. Regarding the number of cache misses and evictions in the L1 and L2
cache levels, the routine srchsupr shows the largest number of these events, which is in concordance with
the size of scenario used in the tests. As shown in the previous paragraph with the tool gprof, the elapsed
time of the routine srchsupr becomes larger if the size of the scenario increases. If the estimation grid size
increases, the number of cache misses and eviction events increases proportionally. In order to optimize these
features the access pattern can be improved by using a single container for the contiguous super block offsets
stored in the arrays ixsbtosr(1:N), iysbtosr(1:N) and izsbtosr(1:N). The container can be denoted
ixyzsbtosr(1:3N) and it can store the three values for a particular index i contiguously, following the
access pattern implemented in srchsupr. Although this modification reduces the number of cache misses
and evictions approximately 10% to 15% in the large and extra large scenarios, its effect in the total elapsed
time is negligible. For this reason we decided to skip this optimization and leave the code of the original
routine. Significant effects of this optimization probably can be observed using even larger scenarios, where
the number of cache misses and evictions dominates the bottleneck factors of the execution. As for the gamv

application, the optimized kt3d application delivers the same results as the original kt3d application.

Optimization Small Large Extra large

Baseline 1.00x 1.00x 1.00x
Re-design 1.03x 1.03x 1.02x

Specialization of cova3 1.06x 1.05x 1.05x
Remove dead code 1.11x 1.08x 1.07x

Unbuffered binary writing 1.12x 1.10x 1.06x

Table 7: Summary of code optimizations in kt3d application running in Desktop system.

OpenMP parallelization: For the third step of the methodology, the OpenMP parallel for pragma is
added in the loop of line 2 from Algorithm 3. The default schedule of loop splitting is used.

MPI parallelization: The fourth step of the methodology consists in using MPI to split even more the same
loop. With MPI task-based combined with OpenMP thread-based loop splittings, multi-node processing is
available using all CPU-cores in each compute node. The parallelization of the optimized application still

13

1 ...

2 cova = 0.0

3 do is=1,nst(ivarg)

4 ist = istart + is - 1

5 if(ist.ne.1) then

6 ir = min((irot+is-1),MAXROT)

7 hsqd=sqdist(x1,y1,z1,x2,y2,z2,

8 + ir,MAXROT,rmat)

9 end if

10 h = real(dsqrt(hsqd))

11 if(it(ist).eq.1) then

12 hr = h/aa(ist)

13 if(hr.lt.1.) then

14 cova=cova +

15 + cc(ist)*(1.-hr*(1.5-.5*hr*hr))

16 end if

17 else if(it(ist).eq.2) then

18 cova = cova +

19 + cc(ist)*exp(-3.0*h/aa(ist))

20 else if(it(ist).eq.3) then

21 ...

22 else if(it(ist).eq.4) then

23 ...

24 else if(it(ist).eq.5) then

25 ...

26 endif

27 end do

28 return

29 end

30 ...

1 ...

2 cova = 0.0

3 is=1

4 ist = istart + is - 1

5 h = real(dsqrt(hsqd))

6 hr = h/aa(ist)

7 if(hr.lt.1.) then

8 cova=cova+cc(ist)*(1.-hr*(1.5-.5*hr*hr))

9 end if

10 is=2

11 ist = istart + is - 1

12 ir = min((irot+is-1),MAXROT)

13 hsqd=sqdist(x1,y1,z1,x2,y2,z2,ir,MAXROT,rmat)

14 h = real(dsqrt(hsqd))

15 cova = cova +

16 + cc(ist)*exp(-3.0*h/aa(ist))

17 return

18 end

19 ...

Figure 7: Original (left) and specialized (right) cova3 utility. The specialized code works for two additive
variographic structures (nst(ivarg)=2), spherical (it(1)=1) and exponential (it(2)=1), and performs a
full unroll of the main loop.

delivers similar results to the original GSLIB application, allowing some tolerance up to the 5th or 6th
decimal number (non-commutativity of floating-point operations).

The main steps of the multi-thread multi-node algorithm are depicted in Algorithm 4. In line 3, each
MPI task selects a balanced share of the iterations of loop 2 from Algorithm 3. After that, in line 6 of
Algorithm 4 each local thread opens a file output-itag.txt where it will store the estimated values of each
local chunk of iterations from jstart to jend in the loop of lines 8-15. The value of itag is a unique identifier
of each thread in each compute node. The rest of the algorithm is the same as the single-thread version.

Results: Analyzing the single-node results of table 8, the maximum achieved speedup is 13.87x for the
small scenario, 14.48x for the large scenario and 13.88x for the extra large scenario using 16 CPU-cores
in the Server system. Using the Desktop system, the maximum achieved speedups with 4 CPU-cores are
3.95x, 3.96x and 3.79x respectively. Using the optimized sequential time as baseline, the maximum achieved
speedups are 12.43x, 13.72x and 12.92x for the small, large and extra large scenarios in the Server system
and 3.55x, 3.60x and 3.57x respectively in the Desktop system. In terms of efficiency (speedup/#CPU-cores),
these values represent 77%, 85% and 81% in the Server system and 88%, 90% and 89% in Desktop, for the
small, large and extra large scenarios respectively.

Regarding the multi-node results of table 9, the maximum achieved speedup is 56.78x for the extra large
scenario with 16 CPU-cores and 8 compute nodes, a total of 128 distributed CPU-cores. Using the optimized
sequential single-node time as baseline, the maximum achieved speedup is 52.84x using the same distributed
128 CPU-cores. This speedup accomplishes a 41% of efficiency using 128 CPU-cores. Comparatively, using
64 and 32 distributed CPU-cores and the optimized baseline, the average efficiency obtained is 56% and 71%
respectively. The efficiencies obtained using 64 CPU-cores are 55% with 4 nodes and 16 threads each, and
57% with 8 nodes and 8 threads each. Using 32 CPU-cores, the efficiencies are 69% with 2 nodes and 16
threads each, 71% with 4 nodes and 8 threads each, and 72% with 8 nodes, 4 threads each.

The decay in efficiency observed in these results is related with overhead generated by thread synchro-

14

nization and bus contention when the threads are writing to disk. No further overhead is added by network
contention since no MPI messages are shared between tasks during the main computations. Further tests
are needed in order to check if multiple threads can use the I/O library buffer in a contention-free way, and
also to explore if external OS factors can affect the behaviour of the threads when writing to disk.

Input: Same inputs as Algorithm 3; P : number of MPI tasks; T : number of execution threads per
MPI task; S: runtime schedule of thread synchronization;

1 itask← MPI COMM RANK(...);
2 H←set spatial hash(V,Ω,β,r);
3 (istart, iend)← loop split(itask, 1, |Ω|, "static", P);
/* omp parallel default(firstprivate) shared(H,V,Ω) */

/* omp for schedule(S) , S="static"*/
4 foreach ithread ∈ {1, . . . , T} do
5 itag← ithread + itask× T ;
6 open(output-itag.txt);
7 (jstart, jend)← loop split(ithread, istart, iend, S, T);
8 for j ∈ {jstart, . . . , jend} do
9 N←search spatial hash(j,H,V);

/* N ⊂ V, neighbourhood values of node j */

10 A←assemble covariance matrix(N,γ);
11 b←assemble rhs vector(N,γ);
12 λ←solve system(A,b);
13 y ←compute estimation(λ,N);
14 write(output-itag.txt,y);

15 end

16 end

Output: Output files output-itag.txt with estimate values for all nodes

Algorithm 4: Pseudo-code of kt3d, kriging 3D estimation (multi-thread multi-node algorithm)

Time[s] (Speedup)

#Threads
Server
Small
1 node

Server
Large
1 node

Server
Extra large

1 node

Desktop
Small
1 node

Desktop
Large
1 node

Desktop
Extra large

1 node
1 (base gslib) 5.69 (1.0x) 108.62 (1.0x) 244.74 (1.0x) 5.66(1.0x) 112.27 (1.0x) 246.76 (1.0x)
1 (optimized) 5.10 (1.11x) 102.94 (1.05x) 227.78 (1.07x) 5.08 (1.12x) 102.06 (1.10x) 232.79 (1.06x)
2 (optimized) 2.59 (2.19x) 52.18 (2.08x) 118.03 (2.07x) 2.76 (2.05x) 52.85 (2.12x) 124.03 (1.98x)
4 (optimized) 1.33 (4.27x) 26.64 (4.07x) 60.67 (4.03x) 1.43 (3.95x) 28.30 (3.96x) 65.06 (3.79x)
8 (optimized) 0.71 (8.01x) 13.90 (7.81x) 32.10 (7.62x) - - -
16 (optimized) 0.41 (13.87x) 7.50 (14.48x) 17.62 (13.88x) - - -

Table 8: Single-node time/speedup results for kt3d. Small scenario: 40×60×12 grid nodes. Large scenario:
120× 180× 24 grid nodes. Extra large scenario: 120× 180× 48 grid nodes

15

Time[s] (Speedup)

#Threads
Server

Extra Large
2 nodes

Server
Extra Large

4 nodes

Server
Extra Large

8 nodes
1 (optimized) 123.10 (1.98x) 65.49 (3.73x) 33.55 (7.29x)
2 (optimized) 61.21 (3.99x) 31.99 (7.65x) 17.24 (14.19x)
4 (optimized) 31.75 (7.71x) 17.24 (14.19x) 9.80 (24.97x)
8 (optimized) 17.49 (13.99x) 9.99 (24.49x) 6.15 (39.79x)
16 (optimized) 10.28 (23.80x) 6.47 (37.82x) 4.31 (56.78x)

Table 9: Multi-node time/speedup results for kt3d

4.3 sgsim

The application sgsim implements the sequential gaussian simulation algorithm, as described in [1] (V.2.3).
It is considered as the most straightforward algorithm for generating realizations of a multivariate Gaussian
field. Its main steps can be viewed in Algorithm 5. The first step is to transform the original dataset into a
standard normally distributed dataset (line 1). Then a random path must be generated, visiting all nodes
of the simulation grid, for each simulation to be calculated (line 3). At each location ixyz, a conditional
cumulative distribution function (ccdf) must be estimated by simple or ordinary kriging (eqs. (2) and (5)-
(6)), and then a random variable must be drawn from the generated ccdf (lines 7 and 8). The next step is to
translate the simulated value in the normal distribution to the original distribution of the sample data (line
9). Finally, the back-transformed scalar result is stored in a file output.txt using a system call (write) for
each nodal value (line 10).

Input: (V,Ω): sample data base values defined in a 3D domain; γ: structural variographic models; κ:
kriging parameters (radius, max number of neigbours and others); τ : seed for pseudo-random
number generator; N : number of generated simulations; output.txt: output file

1 Y ← normal score(V);
2 for isim ∈ {1, . . . , N} do
3 P ← create random path(Ω, τ);
4 Ytmp ← zeros(Y);
5 for ixyz ∈ {1, . . . , |Ω|} do
6 index← Pixyz;
7 p← kriging(index, γ, κ);

8 Ytmp
index ← simulate(index, p, τ);

9 Vtmp ← back transform(Ytmp
index);

10 write(output.txt,Vtmp
index);

11 end

12 end

Output: N stochastic simulations stored in file output.txt

Algorithm 5: Pseudo-code of sgsim, sequential gaussian simulation program (single-thread algorithm)

The small test scenario consists in generating 96 realizations using a regular grid of 40× 60× 12 (28800)
nodes, simulating a single variable with three variographic structures (one spherical plus two different ex-
ponentials). The large and extra large test scenarios consist in 96 and 128 realizations respectively, using a
regular grid of 400× 600× 12 (2880000) nodes with the same variographic features. In Figure 8 we can see
a slice in the plane XY at level z = 6 of a simulated realization using the small and large grids. Regarding
the spatial search strategy, in the three scenarios the parameter sstrat is set to 1, which means that the
data are relocated to grid nodes and a spiral search is used, as described in [1] (II.4).

16

Figure 8: Output of sgsim application using a small (left) and large (right) scenarios.

Re-design: Applying the first step of the methodology as in the gamv application, no significant acceler-
ation is observed, only a speedup of 1.01x/1.01x/1.02x for the small/large/extra large scenarios is obtained.

Profiling and code optimization: Regarding the second step, the output report of gprof can be viewed in
Table 10. We can observe that the routines krige (implemented as subroutine in sgsim, inside the pseudo-
routine kriging from Algorithm 5), ksol (utility contained in gslib.a library, launched inside of krige)
and srchnd (utility contained in gslib.a) together consist in approximately 89%, 90% and 91% of the total
elapsed time for the small, large and extra large scenarios. krige assembles the covariance matrix and right-
hand side of the kriging linear system, ksol solves it using a standard gaussian elimination algorithm without
pivot search and srchnd search for nearby simulated grid nodes using the spiral search strategy. Although
not considered in the three test scenarios, the super block search can be activated by setting sstrat=0. This
parameter makes the hard data and previously simulated nodes been searched separately (the hard data are
searched with the super block strategy and previously simulated nodes are searched with the spiral search).
In this case, the average profile in the three scenarios is dominated by the routine srchsupr, as described
in the kt3d application, reaching levels of 27% of the total elapsed time, followed by cova3, sqdist, ksol
and krige. The optimization of sgsim using the parameter sstrat=0, which implies the optimization of the
routine srchsupr, is left as a future work in further versions of the code. In Table 11, the output of ltrace is
depicted. We can see a large number of library write calls (gfortran st write, gfortran st write done

and gfortran transfer real write), executed inside the grid node loop. Additionally, there is a large
number of library calls to mathematical (expf and log). The tool strace does not report any useful
information about possible bottlenecks or overhead sources during execution in all scenarios.

A first optimization is related with code hoisting and dead code removal. A simple inspection in the code
allow us to perform this simple optimization, achieving a speedup of 1.03x/1.02/1.03x. Profiles generated
with Oprofile tool indicate that a large number of branch instructions are executed in ksol. For this reason
we specialize this routine in order to reduce the number of branches executed. In Figure 9 we can observe
the original and specialized ksol routine. This optimization achieves a speedup of 1.05x/1.03x/1.05x. In
order to reduce the number of write calls, we use a buffer array to store each simulation results (Vtmp,
Algorithm 5), and at the end of each grid node loop only one write call is executed. In contrast to kt3d

application, in this case there is no contention by false sharing when each thread stores the simulated values
in the buffer, since each thread has its own local buffer array. Additionally, in order to accelerate the
write call, we use a binary format in the output file, adding the option form=’UNFORMATTED’ in the open

17

instruction. With this modification, a considerable speedup of 1.49x/1.32x/1.36x is achieved. Two further
optimizations are added to accelerate the multi-thread execution. The first is a specialization of the GSLIB
utility sortem, as described previously for kt3d application. The second is a local definition of an array,
denoted ixv, which is stored in a common block used by the GSLIB utility routine acorni. This utility
calculates pseudo-random numbers using a seed as input and storing it in the first element of the array ixv

at the beginning of the execution [18]. In the single-thread version, these optimizations deliver a speedup of
1.53x/1.32x/1.38x, matching the numerical results of the original sgsim application. A summary of all the
optimizations performed can be viewed in Table 12.

% time (gprof, small) seconds calls name

36.05 2.43 2558429 krige

35.61 2.40 2558009 ksol

17.21 1.16 2558592 srchnd

6.23 0.42 5324392 acorni

2.37 0.16 2558592 gauinv

1.63 0.11 1 MAIN

0.90 - - other routines

% time (gprof, large) seconds calls name

34.33 319.07 276255462 krige

29.24 271.73 276258240 srchnd

26.58 247.02 276250404 ksol

3.12 29.00 97 sortem

3.08 28.61 552739240 acorni

2.43 22.56 1 MAIN

1.22 - - other routines

% time (gprof, extra large) seconds calls name

35.36 453.53 368340629 krige

29.37 376.79 368344320 srchnd

25.83 331.36 368333882 ksol

3.01 38.62 129 sortem

3.01 38.56 736985320 acorni

2.31 29.65 1 MAIN

1.11 - - other routines

Table 10: Output of gprof tool applied to sgsim application (small, large and extra large scenario) running
in Desktop system. Timing column (”seconds”) may not show accurate measurements and must be taken
only as an approximation reference.

18

% time (ltrace, small) seconds calls name

24.02 21.36 374902 gfortran st write done

20.05 17.83 374903 gfortran st write

18.60 16.54 374868 gfortran transfer real write

17.30 15.39 373128 log

17.11 15.21 367032 expf

2.76 2.45 28552 gfortran transfer real

0.16 - - other routines

% time (ltrace, large) seconds calls name

46.42 128.82 2877690 log

19.57 54.31 1056004 gfortran transfer real write

17.87 49.58 1056019 gfortran st write done

15.93 44.19 1056020 gfortran st write

0.17 0.46 28538 gfortran transfer real

0.04 - - other routines

% time (ltrace, extra large) seconds calls name

37.48 108.51 2877690 log

24.32 70.41 1333265 gfortran st write

21.06 60.97 1333249 gfortran transfer real write

16.92 48.97 1333265 gfortran st write done

0.16 0.46 28538 gfortran transfer real

0.06 - - other routines

Table 11: Output of ltrace tool applied to sgsim application (small, large and extra large scenario) running
in Desktop system. Timing column (”seconds”) may not show accurate measurements and must be taken
only as an approximation reference. In large and extra large scenarios, it shows the measurements running
the application approximately by two minutes

1 subroutine ksol(nright,neq,nsb,a,r,s,ising)

2 ...

3 nm = nsb*neq

4 ...

5 do k=1,m1

6 ...

7 do iv=1,nright

8 nm1=nm*(iv-1)

9 ii=kk+nn*(iv-1)

10 ...

11 end do

12 end do

13 ijm=ij-nn*(nright-1)

14 ...

15 do iv=1,nright

16 nm1=nm*(iv-1)

17 ij=ijm+nn*(iv-1)

18 ...

19 end do

20 return

21 end

1 subroutine ksolO1(nright,neq,nsb,a,r,s,ising)

2 ...

3 nm = neq

4 ...

5 do k=1,m1

6 ...

7

8 nm1=0

9 ii=kk

10 ...

11

12 end do

13 ijm=ij

14 ...

15

16 nm1=0

17 ij=ijm

18 ...

19

20 return

21 end

Figure 9: Original (left) and specialized (right) ksol utility. The original ksol routine accepts as arguments
several right-hand side vectors (nright> 1 and nsb> 1). However, the sgsim application uses it only with
one right-hand side vector (nright= 1 and nsb= 1). We can specialize this routine if each appearance of
nright and nsb is replaced by 1.

19

Optimization Small Large Extra large

Baseline 1.00x 1.00x 1.00x
Re-design 1.01x 1.01x 1.02x

Code hoisting + remove dead code 1.03x 1.02x 1.03x
Specialization of ksol 1.05x 1.03x 1.05x

Buffered binary writing 1.49x 1.32x 1.36x
Specialization of sortem 1.51x 1.33x 1.39x
Local arrays of acorni 1.53x 1.32x 1.38x

Table 12: Summary of code optimizations in sgsim application running in Desktop system.

OpenMP parallelization: The next step is to add OpenMP pragmas into the source code. According to
[19], there are three levels of parallelization in sequential stochastic simulation algorithms: realization, path
and node level. We choose to parallelize at realization level because it introduces minimal modifications
in the code, which is one of our main objectives. Although the node level is the finest-grained scheme,
we leave this task as a future work to explore with other technologies (accelerators and co-processors),
nested-parallelism with threads or task-based parallelism [20]. The parallel pragma is added in the loop
of line 2 from Algorithm 5. The default static block scheduling is used for loop splitting, since each thread
will perform the same number of iterations, iters(N,T) = d(N − T + 1)/T e, being N the total number of
simulations and T the number of threads.

MPI parallelization: The distribution of load using MPI is performed in a similar way, splitting the loop
of line 2 from Algorithm 5, where each MPI task will perform the same number of iterations iters(N,P),
with P the total number of MPI tasks. In this way, using multiple threads per task, each thread will
perform iters(iters(N,P), T) iterations. As in the previous applications, the parallelization of the optimized
application still delivers similar results to the original GSLIB application, allowing some tolerance up to
the 5th or 6th decimal number (non-commutativity of floating-point operations), and also allowing different
random seeds for each set of realizations obtained by each thread in each node.

The main steps of the multi-thread multi-node algorithm are depicted in Algorithm 6. The random seed
τ can be modified differently in each thread and node, using a function f depending on the thread and task
identifier (line 6). In terms of reproducibility of results, the function f can be defined using a lookup table,
where the values defined for each thread and node correspond the historical values of ixv(1) extracted
from the utility acorni just before the time where the first pseudo-random number was generated in the
corresponding realization of the target reproducible set of simulations. Additionally, the rest of historical
values of the array ixv, namely ixv(2) to ixv(KORDEI+1), must be loaded in the current ixv array in order
to maintain the reproducibility of pseudo-random numbers. In this work, the reproducibility features were
not implemented, leaving this topic for future versions of the code. After the random seed generation step,
each thread opens a binary local file output-itag.bin where it will store the simulated back-transformed
values Vtmp (line 8). The next steps are the same as in the single-thread version, with the only difference
that each thread in each node uses its own random seed τitag and the result is saved to a file after all nodes
have been simulated (line 19).

Results: In table 13 we can see the maximum achieved speedup for the small, large and extra large
scenarios with 16 CPU-cores in the Server system, 15.51x, 15.01x and 14.17x respectively. Using the Desktop
system, the maximum achieved speedups with 4 CPU-cores are 5.66x, 4.70x and 5.02x respectively. Using
the optimized sequential time as baseline, the maximum achieved speedups are 10.13x, 11.16x and 11.38x
for the small, large and extra large scenarios in the Server system and 3.70x, 3.55x and 3.63x respectively in
the Desktop system. In terms of efficiency, these values represent a 63%, 69% and 71% in the Server system
and 92%, 88% and 90% in Desktop, for the small, large and extra large scenarios respectively.

Multi-node results are shown in table 14, with a maximum achieved speedup of 100.57x for the extra large
scenario with 16 CPU-cores per node and 8 compute nodes. Using the optimized sequential time as baseline,
the maximum achieved speedup is 80.76x using the same distributed CPU-cores. This speedup accomplishes
a 63% of efficiency using 128 CPU-cores.Using 64 and 32 distributed CPU-cores and the optimized baseline,
the average efficiency obtained is 72% and 80% respectively. The efficiencies obtained using 64 CPU-cores
are 65% with 4 nodes and 16 threads each, and 79% with 8 nodes and 8 threads each. Using 32 CPU-cores,
the efficiencies are 76% with 2 nodes and 16 threads each, 82% with 4 nodes and 8 threads each, and 83%
with 8 nodes, 4 threads each.

20

As in kt3d, the decay in efficiency observed in these results is related with overhead added by bus
contention when the threads are writing to disk. No additional overhead is added since no contention is
generated by false sharing, thread synchronization or MPI message sharing.

Input: Same inputs as Algorithm 5; P : number of MPI tasks; T : number of execution threads;

1 itask← MPI COMM RANK(...);

2 Nitask ← dN−P+1
P e;

3 Y ← normal score(V);
/* omp parallel default(firstprivate) shared(Y,Ω) */

4 foreach ithread ∈ {1, . . . , T} do
5 itag← ithread + itask× T ;
6 τitag ← τ ∗ f(ithread, itask);

7 Nitag ← dNitask−T+1
T e;

8 open(output-itag.bin);
9 Vtmp ←zeros(|Ω|);

10 for isim ∈ {1, . . . , Nitag} do
11 P ← create random path(Ω, τitag);
12 Ytmp ← zeros(Y);
13 for ixyz ∈ {1, . . . , |Ω|} do
14 index← Pixyz;
15 p← kriging(index, γ, κ);

16 Ytmp
index ← simulate(index, p, τitag);

17 Vtmp
index ← back transform(Ytmp

index);

18 end
19 write(output-itag.bin,Vtmp);

20 end

21 end

Output: N stochastic simulations stored in binary files output-1.bin,. . . ,output-T × P.bin

Algorithm 6: Pseudo-code of sgsim, sequential gaussian simulation program (multi-thread multi-node
algorithm)

21

Time[s] (Speedup)

#Threads
Server
Small
1 node

Server
Large
1 node

Server
Extra large

1 node

Desktop
Small

1 nodee

Desktop
Large
1 node

Desktop
Extra large

1 node
1 (base gslib) 10.24 (1.0x) 1177.52 (1.0x) 1528.76 (1.0x) 10.25 (1.0x) 1268.98 (1.0x) 1807.52 (1.0x)
1 (optimized) 6.69 (1.53x) 875.17 (1.34x) 1227.67 (1.24x) 6.70 (1.53x) 959.73 (1.32x) 1307.87 (1.38x)
2 (optimized) 3.49 (2.93x) 456.48 (2.57x) 640.38 (2.38x) 3.51 (2.92x) 511.9 (2.47x) 685.41 (2.63x)
4 (optimized) 2.08 (4.92x) 245.01 (4.80x) 351.47 (4.34x) 1.81 (5.66x) 269.95 (4.70x) 359.78 (5.02x)
8 (optimized) 0.92 (11.13x) 134.5 (8.75x) 178.18 (8.57x) - - -
16 (optimized) 0.66 (15.51x) 78.42 (15.01x) 107.82 (14.17x) - - -

Table 13: Single-node time/speedup results for sgsim. Small scenario: 40×60×12 grid nodes, 96 realizations.
Large scenario: 400× 600× 12 grid nodes, 96 realizations. Extra large scenario: 400× 600× 12 grid nodes,
128 realizations

Time[s] (Speedup)

#Threads
Server

Extra Large
2 nodes

Server
Extra Large

4 nodes

Server
Extra Large

8 nodes
1 (optimized) 611.77 (2.49x) 309.9 (4.93x) 156.54 (9.76x)
2 (optimized) 309.10 (4.94x) 161.48 (9.46x) 83.05 (18.40x)
4 (optimized) 170.65 (8.95x) 88.55 (17.26x) 45.87 (33.32x)
8 (optimized) 90.73 (16.84x) 46.57 (32.82x) 24.15 (63.30x)
16 (optimized) 50.09 (30.52x) 29.24 (52.28x) 15.20 (100.57x)

Table 14: Multi-node time/speedup results for sgsim

4.4 sisim

The application sisim implements the sequential indicator simulation algorithm, as described in [1] (V.3.1).
Its main steps can be viewed in Algorithm 7. The main steps are analogous to the sequential gaussian
simulation algorithm, implemented by the sgsim application. The differences with Algorithm 5 are the
addition of a category-based loop (line 6) and the usage of the pseudo-routine indicator kriging instead
of the tradidional kriging (line 7). Indicator kriging (IK) is a variant of the traditional simple and ordinary
kriging from eqs. (2) and (5)-(6), which uses a nonlinear transformation of the data Z(u), based in the
indicator function I(Z(u)) = 1 if Z(u) ≤ z and I(Z(u)) = 0 if Z(u) > z. The algorithm provides a
least-squares estimate on the conditional cumulative density function (ccdf) at cutoff zk, defined as

[i(u; zk)]∗ = E{I(u; zk|(n))}∗ = P{Z(u) ≤ zk|(n)} (7)

where (n) is the conditional information available in the neighbourhood of location u. The Simple Kriging
estimator of the indicator transform i(u; z) can be written as

[i(u; zk)]∗SK =

n∑
α=1

λ(ISK)
α (u; z)i(uα; z) +

[
1−

n∑
α=1

λ(ISK)
α (u; z)

]
P{Z(u) ≤ z} (8)

where λ
(ISK)
α (u; z) are the SK weights corresponding to cutoff z. These weights are calculated as the solution

of the following linear system:

n∑
β=1

λ
(ISK)
β (u; z)CI(uβ − uα; z) = CI(u− uα; z), α = 1, . . . , n (9)

with CI(h; z) = C{I(u; z), I(u+h; z)} the indicator covariance at cutoff z. Ordinary Kriging estimator aims
at re-estimating locally the prior cumulative density function P{Z(u) ≤ z}.

The small test scenario consists in generating 96 realizations using a regular grid of 40× 60× 12 (28800)
nodes in a 3D volume of 400× 600× 120[m3], simulating three categories (lithologies) with one variographic

22

Input: (V,Ω): sample data base values defined in a 3D domain; C: number of categories to be
reproduced; γ1, . . . , γC : structural variographic models; κ: local interpolation parameters; τ :
seed for pseudo-random number generator; N : number of generated simulations; output.txt:
output file

1 for isim ∈ {1, . . . , N} do
2 P ← create random path(Ω, τ);
3 Vtmp ← zeros(V);
4 for ixyz ∈ {1, . . . , |Ω|} do
5 index← Pixyz;
6 for icut ∈ {1, . . . , C} do
7 picut ← indicator kriging(index, γicut, κ);
8 end

9 Vtmp
index ← simulate(index, p1, . . . , pC , τ);

10 write(output.txt,Vtmp
index);

11 end

12 end

Output: N stochastic simulations stored in file output.txt

Algorithm 7: Pseudo-code of sisim, sequential indicator simulation program (single-thread algorithm)

structure each (spherical). The large and extra large test scenarios consist in generating 16 and 128 realiza-
tions respectively, using a regular grid of 400× 600× 12 (2880000) nodes with the same 3D volume and the
same variographic features. In Figure 10 we can see a slice in the plane XY at level z = 6 of a simulated
realization using the small and large grid. Regarding the spatial search strategy, in the three scenarios the
parameter sstrat is set to 1, the same parameter used by the sgsim application.

23

Figure 10: Output of sisim application using a small (left) and large (right) scenarios.

Re-design: Applying the first step of the methodology as in the gamv application, we can achieve a
speedup of 1.05x/1.03x/1.01x for the small/large/extra large scenarios.

Profiling and code optimization: In the second step, the gprof output report can be viewed in Table 15.
We can see in this report that the routines krige and ksol together consist in approximately 93%, 89% and
88% of the total elapsed time in the small, large and extra large scenarios. As in the sgsim application, the
three test scenarios can activate the super block strategy for hard data by setting sstrat=0. By changing
this parameter, the average profile in the three scenarios is dominated by the routines ksol and cova3,
together with more than 50% of the total elapsed time, followed by sqdist and krige, all of them with
comparatively balanced weights. The effect of the super block search routine srchsupr is not dominant,
reaching levels between 3% and 7% in the three scenarios. In order to optimize sisim using the parameter
sstrat=0, a specialization of the routine cova3 can be applied, as shown for the kt3d application. However,
the analysis and performance measurement of this task is left as a future work in further versions of the
code.

Additionally, in Table 16 we can see a large number of library write calls (gfortran st write and
gfortran transfer real write) performed inside of the grid node loop. The tool strace does not report

any useful information about possible bottlenecks or overhead sources during execution in all scenarios.

24

% time (gprof, small) seconds calls name

56.96 38.05 7673982 ksol

36.47 24.36 7675245 krige

4.25 2.84 2558592 srchnd

1.26 0.84 1 MAIN

1.06 - - other routines

% time (gprof, large) seconds calls name

55.24 711.83 138125112 ksol

33.73 434.68 138127767 krige

8.73 112.47 46043040 srchnd

1.20 15.50 1 MAIN

1.10 - - other routines

% time (gprof, extra large) seconds calls name

51.69 4896.94 1105001571 ksol

36.64 3471.48 1105022088 krige

9.12 863.74 368344320 srchnd

1.33 126.40 1 MAIN

1.211 - - other routines

Table 15: Output of gprof tool applied to sisim application (small, large and extra large scenarios) running
in Desktop system. Timing column (”seconds”) may not show accurate measurements and must be taken
only as an approximation reference.

% time (ltrace, small) seconds calls name

36.97 114.90 1931004 gfortran transfer real write

32.15 99.90 1931126 gfortran st write

30.02 93.28 1931125 gfortran st write done

0.86 - - other routines

% time (ltrace, large) seconds calls name

42.98 102.56 2017680 gfortran transfer real write

29.60 70.64 2017669 gfortran st write

26.28 62.71 2017668 gfortran st write done

1.14 - - other routines

% time (ltrace, extra large) seconds calls name

35.42 96.16 2024550 gfortran st write

33.26 90.31 2024562 gfortran transfer real write

31.07 84.36 2024550 gfortran st write done

0.25 - - other routines

Table 16: Output of ltrace tool applied to sisim application (small, large and extra large scenarios)
running in Desktop system. Timing column (”seconds”) may not show accurate measurements and must be
taken only as an approximation reference. In this case it shows the measurements running the application
approximately by two minutes

25

Further information can be obtained with Oprofile. After exploring different profiles obtained with this
tool and studying the source code, we inferred that the two main optimizations to be performed in this
application are related with branch instructions reductions of the routines krige and ksol, and library call
reduction using buffered and unformatted writes to disk. Inspecting the source code, we can see several loop-
invariant expressions (if-then-else type) that can be hoisted out of the internal loops of both routines. If we
modify first the krige routine, the optimized code can achieve a speedup of 1.09x/1.04x/1.03x. After that,
the routine ksol is specialized to use fixed arguments (in the original code those arguments never change),
reducing the number of branch instructions executed, allowing us to achieve a speedup of 1.11x/1.06x/1.05x.
In order to reduce the number of library calls, we store each nodal value in a buffer array, and after all nodes
have been simulated successfully, just one write call is performed, writing the buffer array in an unformatted
file previously opened with the option form=’UNFORMATTED’ (same optimization applied before in kt3d and
sgsim). The resulting speedup on the Desktop system is 1.16x/1.12x/1.11x for each scenario, with numerical
results matching the original sisim application.

A summary of the speedups obtained can be viewed in Table 17.

Optimization Small Large Extra large

Baseline 1.00x 1.00x 1.00x
Re-design 1.05x 1.03x 1.01x

Code hoisting + remove dead code 1.09x 1.04x 1.03x
Specialization of ksol 1.11x 1.06x 1.05x

Buffered binary writing 1.16x 1.12x 1.11x

Table 17: Summary of code optimizations in sisim application running in Desktop system.

OpenMP and MPI parallelization: Following the same strategy defined for sgsim, the proposed parallel
implementation is depicted in Algorithm 8. A single parallel pragma was added before the simulation
loop. As for the multi-thread multi-node sequential gaussian simulation, each thread in each node initializes
its own random seed τitag and writes the simulated values in a local binary file.

26

Input: Same inputs as Algorithm 7; P : number of MPI tasks; T : number of execution threads;

1 itask← MPI COMM RANK(...);

2 Nitask ← dN−P+1
P e;

/* omp parallel default(firstprivate) shared(V,Ω) */

3 foreach ithread ∈ {1, . . . , T} do
4 τitag ← τ ∗ f(ithread, itask);

5 Nitag ← dNitask−T+1
T e;

6 open(output-itag.bin);
7 for isim ∈ {1, . . . , Nitag} do
8 P ← create random path(Ω, τitag);
9 Vtmp ← zeros(V);

10 for ixyz ∈ {1, . . . , |Ω|} do
11 index← Pixyz;
12 for icut ∈ {1, . . . , C} do
13 picut ← indicator kriging(index, γicut, κ);
14 end

15 Vtmp
index ← simulate(index, p1, . . . , pC , τitag);

16 end
17 write(output-itag.bin,Vtmp);

18 end

19 end

Output: N stochastic simulations stored in binary files output-1.bin,. . . ,output-T × P.bin

Algorithm 8: Pseudo-code of sisim, sequential indicator simulation program (multi-thread multi-node
algorithm)

Results: Analyzing the single-node results of table 18, the maximum achieved speedup is 15.13x for the
small scenario, 14.34x for the large scenario and 15.07x for the extra large scenario using 16 CPU-cores
in the Server system. Using the Desktop system, the maximum achieved speedups with 4 CPU-cores are
4.28x, 4.07x and 4.04x respectively. Using the optimized sequential time as baseline, the maximum achieved
speedups are 13.16x, 13.17x and 13.81x for the small, large and extra large scenarios in the Server system
and 3.66x, 3.60x and 3.62x respectively in the Desktop system. In terms of efficiency, these values represent
82%, 82% and 86% in the Server system and 91%, 90% and 90% in Desktop, for the small, large and extra
large scenarios respectively.

Multi-node results are shown in table 19, with a maximum achieved speedup of 109.40x for the extra large
scenario with 16 CPU-cores per node and 8 compute nodes. Using the optimized sequential time as baseline,
the maximum achieved speedup is 100.29x using the same distributed CPU-cores. This speedup accomplishes
a 78% of efficiency using 128 CPU-cores.Using 64 and 32 distributed CPU-cores and the optimized baseline,
the average efficiency obtained is 85% and 89% respectively. The efficiencies obtained using 64 CPU-cores
are 80% with 4 nodes and 16 threads each, and 89% with 8 nodes and 8 threads each. Using 32 CPU-cores,
the efficiencies are 83% with 2 nodes and 16 threads each, 91% with 4 nodes and 8 threads each, and 95%
with 8 nodes, 4 threads each.

Although this application is similar to sgsim, the main difference is the amount of computations per-
formed. In sgsim, a small kriging system is solved for each node in the grid. In sisim, C kriging systems
are solved for each node in the grid (in these examples C = 3). For this reason, the effect of contention due
to disk writing has less impact in the parallel efficiency obtained.

27

Time[s] (Speedup)

#Threads
Server
Small
1 node

Server
Large
1 node

Server
Extra large

1 node

Desktop
Small
1 node

Desktop
Large
1 node

Desktop
Extra large

1 node
1 (base gslib) 74.46 (1.0x) 1378.92 (1.0x) 11060 (1.0x) 73.68 (1.0x) 1369.97 (1.0x) 10995.0 (1.0x)
1 (optimized) 64.77 (1.14x) 1266.31 (1.08x) 10130 (1.09x) 63.14 (1.16x) 1213.48 (1.12x) 9854.0 (1.11x)
2 (optimized) 33.93 (2.19x) 641.79 (2.14x) 5100 (2.16x) 33.16 (2.22x) 649.46 (2.11x) 5235.0 (2.10x)
4 (optimized) 16.96 (4.39x) 327.95 (4.20x) 2597 (4.25x) 17.21 (4.28x) 336.76 (4.07x) 2716.72 (4.04x)
8 (optimized) 8.89 (8.37x) 173.03 (7.96x) 1358 (8.14x) - - -
16 (optimized) 4.92 (15.13x) 96.15 (14.34x) 733 (15.07x) - - -

Table 18: Time/Speedup results for sisim. Small scenario: 40× 60× 12 grid nodes, 96 realizations. Large
scenario: 400 × 600 × 12 grid nodes, 16 realizations. Extra large scenario: 400 × 600 × 12 grid nodes, 128
realizations

Time[s] (Speedup)

#Threads
Server

Extra Large
2 nodes

Server
Extra Large

4 nodes

Server
Extra Large

8 nodes
1 (optimized) 5242 (2.10x) 2560 (4.31x) 1273 (8.68x)
2 (optimized) 2556 (4.32x) 1288 (8.58x) 640 (17.27x)
4 (optimized) 1308 (8.45x) 653 (16.91x) 332 (33.29x)
8 (optimized) 697 (15.86x) 345 (31.98x) 176 (62.80x)
16 (optimized) 377 (29.33x) 196 (56.42x) 101 (109.40x)

Table 19: Multi-node time/speedup results for sisim

5 Conclusions and future work

We have shown a methodology to accelerate GSLIB applications and utilities based on code optimizations and
hybrid parallel programming using multi-core and multi-node execution with OpenMP directives and MPI
task distribution. The methodology was tested in four well-known GSLIB applications: gamv, kt3d, sgsim
and sisim. All tests were performed in Linux-based systems. However, no additional external libraries or
intrinsic operating system routines were used, so the code could be compiled and tested in other distributed
systems (Windows and Mac) without further modifications.

Hardware independent code optimizations are applied to the four applications, in order to maintain the
basic portability of the original code. The most critical optimizations are related to reductions of branch
instruction execution, avoidance of miss-predicted branch instructions, specialization of generic routines
and buffering I/O calls. OpenMP parallel loops and regions, as well as MPI instructions, are added to
the optimized codes, with minimal modifications, delivering reasonable speedup results compared to the
performance of original GSLIB applications.

The variogram application gamv reaches a speedup of 69.56x, 60.99x and 37.46x with 16 non-distributed
CPU-cores in the small, large and extra large test scenarios, and 232.07x with 128 distributed CPU-cores
in the extra large scenario. This high speedup value was obtained after applying a small code optimization
which reduces the number of miss-predicted branches during execution. Additionally, a static optimal chunk-
size strategy was set for the run-time scheduling of parallelization. The kriging application kt3d reaches a
speedup of 13.87x, 14.48x and 13.88x with 16 non-distributed CPU-cores in the small, large and extra large
test scenarios, and 56.78x with 128 distributed CPU-cores in the extra large scenario. Code optimizations
were difficult to apply in this application, and some features of the single-thread version have to be eliminated
in the multi-thread version, in order to accelerate the parallel execution. The default schedule was the best
alternative for the run-time scheduling of parallelization. Both sequential simulation applications, sgsim

and sisim, reach speedup levels of 15.51x and 15.13x in the small scenario, 15.01x and 14.34x in the large
scenario, and 14.17x and 15.07x in the extra large scenario using a single node of execution. In the extra
large scenario using 128 distributed CPU-cores, both applications reach a speedup of 100.57x and 109.40x
respectively. The code optimizations that showed successful results were the specialization of routines and
buffering I/O calls. As shown in Algorithms 6 and 8, a parallel region was defined for both applications

28

without using a parallel loop to distribute the workload, reducing the thread synchronization overhead.
Using the current multi-thread multi-node versions of the applications, we can conclude that parallel

sisim is the best candidate to scale and keep the efficiency of the parallel execution using a large number
of CPU-cores. Results showed that using a small and large dataset/grid, sisim delivers a similar efficiency
(82% both) using 16 CPU-cores in a single node. Using the extra large dataset/grid, it improves its efficiency
(86%) using 16 CPU-cores in a single node, without degrading it considerably using up to 128 distributed
CPU-cores (89%, 85% and 78% with 32, 64 and 128 CPU-cores). kt3d showed an increment in efficiency
from the small to large scenarios (77% to 85%) using 16 CPU-cores in a single node. However, with the
extra large scenario a considerable decay is observed (80%). This behaviour is accentuated in the multi-node
tests, reaching even lower levels of average efficiency up to 128 distributed CPU-cores (71%, 56% and 41%
with 32, 64 and 128 CPU-cores). gamv showed an increment in efficiency proportional to the size of dataset,
from small to extra large scenarios (68%, 85% and 86% respectively) using 16 CPU-cores in a single node. In
the multi-node tests, the average efficiency decreases steadily using up to 128 distributed CPU-cores (86%,
79% and 66% with 32, 64 and 128 CPU-cores), without reaching lower levels as in the kt3d application.
sgsim showed the lowest efficiency percentages in the small and large scenarios (63% and 69% respectively)
using 16 CPU-cores in a single node. However, in the extra large scenario the efficiency improved using 16
CPU-cores in a single node (71%) and slightly decreased using up to 128 distributed CPU-cores (80%, 72%
and 63% with 32, 64 and 128 CPU-cores).

According to the single-node results, the efficiency increases as the size of the input dataset and/or
estimation/simulation grid gets larger, which is in concordance with Gustafson’s law [21], a counterpart of
the well-known Amdahl’s law [22]. Gustafson’s law says that computations involving arbitrarily large data
sets can be efficiently parallelized. If larger scenarios are considered in future versions of the applications, we
can expect higher efficiency values. Additionally, extremely large scenarios may benefit from memory-aware
optimizations, such as the improved memory access pattern proposed for the super block strategy srchsupr

in the context of kt3d application.
Our final goal is to apply this methodology to the most important applications and utilities from GSLIB,

setting the compilation scripts as general as possible, so other scientists and practitioners could benefit
from this effort. The addition of new acceleration technologies, like Graphics Processing Units (GPU) [23]
and Many Integrated Cores (MIC) [24], and advanced parallelization techniques, like task-based OpenMP
pragmas [25], are being explored using the present work as base.

6 Acknowledgements

The authors thankfully acknowledge the computer resources, technical expertise and assistance provided
by the Barcelona Supercomputing Center - Centro Nacional de Supercomputación (Spain) which supports
the Marenostrum supercomputer, and the National Laboratory for High Performance Computing (Chile),
which supports the Leftraru supercomputer. Additional thanks are owed to industrial supporters of ALGES
laboratory, in particular Yamana Gold, as well as the Advanced Mining Technology Center (AMTC) and
the whole ALGES team.

7 Source code

The current version of the modified codes can be downloaded from

https://github.com/operedo/gslib-alges.

References

[1] C. V. Deutsch and A. G. Journel, GSLIB: Geostatistical Software Library and User’s Guide. Oxford
University Press, 1998.

[2] Statios LLC, “WinGslib Installation and Getting Started Guide.” Website, 2001. last checked:
04.08.2015.

29

https://github.com/operedo/gslib-alges

[3] N. Remy, A. Boucher, and J. Wu, Applied Geostatistics with SGeMS: A User’s Guide. Cambridge
University Press, 2009.

[4] “High performance geostatistics library, version 0.9.9.” http://hpgl.mit-ufa.com.

[5] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon, Parallel programming in
OpenMP. San Francisco, CA, USA: Morgan Kaufmann Pub. Inc., 2001.

[6] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI-The Complete Reference, Volume
1: The MPI Core. Cambridge, MA, USA: MIT Press, 2nd. (revised) ed., 1998.

[7] J. Straubhaar, A. Walgenwitz, and P. Renard, “Parallel Multiple-Point Statistics Algorithm Based on
List and Tree Structures,” Mathematical Geosciences, vol. 45, no. 2, pp. 131–147, 2013.

[8] O. Peredo, J. M. Ortiz, J. R. Herrero, and C. Samaniego, “Tuning and hybrid parallelization of a
genetic-based multi-point statistics simulation code,” Parallel Computing, vol. 40, no. 56, pp. 144 – 158,
2014.

[9] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison Wesley, August 2006.

[10] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “gprof: A Call Graph Execution Profiler,” SIGPLAN
Not., vol. 17, pp. 120–126, June 1982.

[11] M. K. Johnson and E. W. Troan, Linux Application Development (2nd Edition). Addison-Wesley
Professional, 2004.

[12] Oprofile community, “Oprofile, system-wide profiler for Linux systems.” Website, 2013. last checked:
04.08.2015.

[13] Barcelona Supercomputing Center, “Paraver/Extrae Performance Analysis Tools, Computer Science
Department.” Website, 2013. last checked: 04.08.2015.

[14] ZIH - TU Dresden, “VampirTrace 5.14.4 User Manual.” Website, 2015. last checked: 04.08.2015.

[15] Intel Corporation, “Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3 (3A, 3B
& 3C): System Programming Guide,” September 2014.

[16] C. A. Navarro and N. Hitschfeld, “Improving the GPU space of computation under triangular domain
problems,” Computing Research Repository, arXiv.org, vol. abs/1308.1419, 2013.

[17] D. Culler, J. Singh, and A. Gupta, Parallel Computer Architecture: A Hardware/Software Approach.
Morgan Kaufmann, 1st ed., 1998. The Morgan Kaufmann Series in Computer Architecture and Design.

[18] R. S. Wikramaratna, “ACORN: A New Method for Generating Sequences of Uniformly Distributed
Pseudo-random Numbers,” J. Comput. Phys., vol. 83, pp. 16–31, July 1989.

[19] G. Mariethoz, “A general parallelization strategy for random path based geostatistical simulation meth-
ods,” Computers & Geosciences, vol. 36, no. 7, pp. 953 – 958, 2010.

[20] L. G. Rasera, P. Lopes Machado, and J. F. C. L. Costa, “A conflict-free, path-level parallelization
approach for sequential simulation algorithms,” Computers & Geosciences, vol. 80, pp. 49 – 61, 2015.

[21] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Communications of the ACM, vol. 31, pp. 532–533,
1988.

[22] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale Computing Ca-
pabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS ’67
(Spring), (New York, NY, USA), pp. 483–485, ACM, 1967.

[23] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 2010.

30

http://hpgl.mit-ufa.com

[24] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance Programming. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 2013.

[25] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and
G. Zhang, “The Design of OpenMP Tasks,” IEEE Trans. Parallel Distrib. Syst., vol. 20, pp. 404–418,
Mar. 2009.

31

	Introduction
	GSLIB structure
	Methodology
	Case study
	gamv
	kt3d
	sgsim
	sisim

	Conclusions and future work
	Acknowledgements
	Source code

