N

N

A fast two-step algorithm for invasion percolation with

trapping
Yder J. Masson

» To cite this version:

Yder J. Masson. A fast two-step algorithm for invasion percolation with trapping. Computers &
Geosciences, 2016, 90, pp.41 - 48. 10.1016/j.cageo.2016.02.003 . hal-01653933

HAL Id: hal-01653933
https://hal.science/hal-01653933
Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01653933
https://hal.archives-ouvertes.fr

Computers & Geosciences 90 (2016) 41-48

Contents lists available at ScienceDirect

PUTET

GEOSCIENCES

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

—

® CrossMark

A fast two-step algorithm for invasion percolation with trapping

Yder Masson

Institut de Physique du Globe de Paris, 1 rue Jussieu, 75005, Paris, France

ARTICLE INFO ABSTRACT

Article history:

Received 22 September 2015
Received in revised form

2 February 2016

Accepted 3 February 2016

I present a fast algorithm for modeling invasion percolation (IP) with trapping (TIP). IP is a numerical
algorithm that models quasi-static (i.e. slow) fluid invasion in porous media. Trapping occurs when the
invading fluid (that is injected) forms continuous surfaces surrounding patches of the displaced fluid
(that is assumed incompressible and originally saturates the invaded medium). In TIP, the invading fluid
is not allowed to enter the trapped patches. | demonstrate that TIP can be modeled in two steps: (1) Run
an IP simulation without trapping (NTIP). (2) Identify the sites that invaded trapped regions and remove

Keywor ds:) them from the chronological list of sites invaded in NTIP. Fast algorithms exist for solving NTIP. The focus
Invasion percolation of this paper is to propose an efficient solution for step (2). I show that it can be solved using a disjoint
gispg:fabenng set data structure and going backward in time, i.e. by un-invading all sites invaded in NTIP in reverse
Algorithm order. Time reversal of the invasion greatly reduces the computational complexity for the identification

of trapped sites as one only needs to investigate sites neighbor to the latest invaded/un-invaded site. This
differs from traditional approaches where trapping is performed in real time, i.e. as the IP simulation is
running, and where it is sometimes necessary to investigate the whole lattice to identify newly trapped
regions. With the proposed algorithm, the total computational time for the identification and the re-

Hoshen Kopelman
Two phase flow

moval of trapped sites goes as O(N), where N is the total number of sites in the lattice.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Invasion percolation (IP) is an algorithmic model introduced by
Wilkinson and Willemsen (1983) to model biphasic fluid migra-
tion in porous materials. IP considers the scenario of two im-
miscible fluids. The first fluid is slowly injected inside a random
porous medium and displaces the second fluid that originally sa-
turates the pore space. This process occurs naturally in various
contexts, for example, when oil, water or gas migrate through
reservoir rocks. In IP, the pore space is modeled as a lattice of sites
that corresponds to larger interstitial spaces or pores between
grains, connected by bonds, that represent smaller throats con-
necting neighboring pores. The invasion proceeds by invading the
sites one by one. As the invasion goes, it may happen that some
clusters formed by the defending fluid become completely sur-
rounded by the invading fluid, this is called trapping. There are
two IP model variants: invasion percolation without trapping
(NTIP), where trapped sites are allowed to be invaded, and, inva-
sion percolation with trapping (TIP), where the defending fluid is
assumed incompressible and sites belonging to trapped clusters
cannot be invaded. From an algorithmic point of view, trapping
brings additional complexity to the IP procedure as it requires
extra operations to search for trapped clusters. The focus of this

E-mail address: yder.masson@cal.berkeley.edu

http://dx.doi.org/10.1016/j.cageo.2016.02.003
0098-3004/© 2016 Elsevier Ltd. All rights reserved.

paper is to propose an efficient algorithm for identifying the
trapped sites in TIP.

Regardless of trapping, one often distinguishes between site IP
and bond IP that intend to model two different types of dis-
placement named drainage and imbibition (e.g. Lenormand and
Bories, 1980; Chandler et al., 1982). Site IP intends to model im-
bibition where a wetting fluid (e.g. water) is invading a medium
originally saturated by a non-wetting fluid (e.g. oil). Bond IP in-
tends to model the opposite situation called drainage where a
non-wetting fluid is invading a medium originally saturated by a
wetting fluid. In practice, IP models have mainly been used for
slow drainage in porous and fractured media, this is because the
use of the IP for imbibition is not well justifiable, due to additional
physical mechanisms (e.g., film flow and snap-off) which often
accompany imbibition and are not taken into account in IP. I refer
the reader to Lgvoll et al. (2005) and Toussaint et al. (2005, 2012)
for extensive discussions of various invasion scenarios. From an
algorithmic point of view, there is no difference between bond IP
and site IP and they can be modeled using a unique IP algorithm
on appropriate lattices (e.g. Patzek et al, 2001). For the sake of
clarity, I only consider site IP in the present study.

The site TIP procedure (Wilkinson and Willemsen, 1983) con-
sists of the following steps:

1. Define a lattice of sites connected by bonds, injection sites (i.e.
sites at which the invading fluid is injected), sink sites (i.e. sites

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.02.003
http://dx.doi.org/10.1016/j.cageo.2016.02.003
http://dx.doi.org/10.1016/j.cageo.2016.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.02.003&domain=pdf
mailto:yder.masson@cal.berkeley.edu
http://dx.doi.org/10.1016/j.cageo.2016.02.003

42 Y. Masson / Computers & Geosciences 90 (2016) 41-48

at which the defending fluid is free to escape), and set all sites
to invadable.

2. To all sites in the lattice, assign an invasion potential (e.g.
Wilkinson, 1984; Meakin et al., 1992; Glass and Yarrington,
1996)

_ 20 cos(b;)
= 7@

P; - Apg (L - z)

(1
where q; is the effective radius of site i, 6. is the equilibrium
contact angle between the wetting fluid and the solid, Ap is the
density contrast between the two fluids, g is the acceleration of
gravity, L is the height of the system to be invaded, and z; is the
elevation of site i. Practically, the radii a; are chosen randomly
from a given probability distribution.

3. Invade the sites one by one until the invading fluid percolates,
i.e. repeat the following three steps until the invading fluid
reaches a sink site:

(a) Identify the trapped clusters formed by the defending fluid
that are not connected to a sink and set all sites belonging to
these clusters to un-invadable.

(b) Among all invadable sites, find the site that is neighbor to the
invading fluid and that has the maximum invasion potential.

(c) Invade that site.

The site NTIP procedure is similar to the TIP procedure except

that step 3(a) in the above sequence is not performed.

The NTIP problem can be solved efficiently using a binary tree
data structure (e.g. Knuth, 1998) that maintains an up-to-date list
of sites that neighbor the invader. This data structure permits us to
find the site with the largest invasion potential in O(1) operation
and to insert new neighbor sites in O(log(n)) operations, where
n < N is the number of active sites in the list (e.g. Schwarzer et al.,
1999; Sheppard et al,, 1999; Masson and Pride, 2014). I refer to
Masson and Pride (2014) for a detailed implementation of NTIP
using a perfectly balanced binary tree that strictly guarantees
O(M log M) execution time, where M is the number of sites in-
vaded at percolation time.

Algorithms for TIP can be constructed by modifying existing
fast algorithms that solve the NTIP problem. A classic approach is
to identify the trapped clusters formed by the defender at each
time step. The trapped sites are then flagged to prevent further
invasion (i.e. step 3(a) in the above procedure). This can be done
using cluster labeling algorithms such as the classic (Hoshen and
Kopelman, 1976) algorithm, or a similar but more generic disjoint-
set data structure (e.g. Knuth, 1998; Cormen et al., 2001). A nice
analysis of algorithms that label isolated clusters is given by Ba-
balievski (1998). Labeling clusters at each time step is however
highly inefficient because it requires to scan the entire lattice M
times which gives a computation time of O(MN) for the trapping
part of TIP, where N is the total number of sites in the lattice. A
better approach is to first investigate the neighbors of each newly
invaded site to check for trapping which is ruled out in most cases.
If trapping is possible, a different algorithm is used to update the
cluster labeling as necessary (e.g. Schwarzer et al., 1999; Sheppard
et al.,, 1999; Meakin, 1991). In this work, I propose an alternative
approach where clusters are labeled only once at the end of the IP
invasion.

The aim of this paper is to detail a comprehensive and com-
putationally efficient algorithm for solving the TIP problem. A
search through the recent literature (Chen et al., 2012; Yang et al.,
2013) shows that less efficient algorithms with execution time O
(MN) are still widely used, further, I found no study that provides
the reader with a detailed fast TIP algorithm that can easily be
turned into code. The present paper together with Masson and
Pride (2014) should allow the graduate student or people less fa-
miliar with IP to get started quickly with adequate algorithms. The

solution I propose for TIP is based on the simple observation that
trapping can be treated a posteriori through time-reversal of the
invasion sequence obtained in NTIP. Surprisingly, to my knowl-
edge, this simple and efficient approach has not been reported in
the literature. Numerical results show better performance than
previously proposed algorithms.

2. The proposed TIP algorithm

In this section, I first show that TIP can be solved by post-
processing the NTIP solution. Then, I detail an efficient two-steps
algorithm for solving TIP. Finally I analyze the performance of the
proposed algorithm.

2.1. Algorithm principle

Consider a NTIP sequence as illustrated in Fig. 1 and imagine a
site belonging to a trapped region is invaded, e.g. as in Fig. 1b. We
observe that the interface between the two fluids outside the
trapped region (i.e. which encloses the newly invaded site) is not
modified by this invasion. Therefore, this will not affect the way
sites will be invaded outside this trapped region, i.e. which one of
these sites will be invaded and in what order. In other words, the
sites invaded in NTIP are the same as those invaded in TIP plus
some extra sites belonging to trapped regions at invasion time.
Based on this observation, | formulate the following proposition:

Proposition 1. Given two IP simulations, a NTIP simulation Sy and
a TIP simulation St, both performed using the exact same setup (i.e.
lattice, realization of invasion potentials, injection sites, sink sites, and
boundary conditions), let Lt be the list of sites invaded in St sorted by
increasing invasion time and Lyt be the list of sites invaded in Syt
sorted by increasing invasion time. When removing the sites that
invaded trapped regions from Lyr, we obtain Ly.

It follows from Proposition 1 that the TIP problem can be de-
composed into two sub-problems that can be solved sequentially:
(1) Solve the NTIP problem. (2) Identify and remove the sites that
invaded trapped regions in NTIP.

One inefficient way to obtain the TIP invasion sequence
knowing the NTIP solution is to proceed as for traditional TIP. That
is, redo the invasion and, at each invasion step, check whether or
not the newly invaded site belongs to a trapped region. A simple
improvement to this procedure is to identify all clusters connected
to a sink at the end of NTIP. In this case, all sites connected to a
sink do not need to be re-investigated when searching for trapped
clusters. I now show that further improvement can be achieved
through time-reversal of the NTIP simulation.

Consider the situation where a new site is invaded in NTIP.
There are three and only three possible scenarios regarding the
evolution of the clusters formed by the defending fluid:

1. The number of clusters stays the same (see e.g. Fig. 1a).
2. One cluster of size one is suppressed (see e.g. Fig. 1d).
3. One cluster is split into multiple clusters (see e.g. Fig. 1e).

Now imagine the opposite situation where we go backward in
time and un-invade a site, there are again three possible scenarios:

1. The number of cluster stays the same (see e.g. Fig. 1a).
2. A new cluster of size one is created (see e.g. Fig. 1d).
3. Multiple clusters are merged together (see e.g. Fig. 1e).

Notice the important difference between the two situations (i.e.
going forward in time and going backward in time): on the one

Y. Masson / Computers & Geosciences 90 (2016) 41-48 43

(D)

Fig. 1. Snapshots showing the last six invasion steps of a 2D site invasion percolation simulation without trapping (NTIP) on a square lattice. The sites filled with the invading
fluid are pictured in black. The remaining sites are occupied by the defending fluid. The invading fluid is injected from the bottom side and periodic boundary conditions are
used in the horizontal direction. The defending fluid forms multiple clusters that are labelled with distinct numbers and represented in colors. The fluid contained in the
white cluster labelled with the value one is free to escape from the top of the domain (i.e the sink). The remaining clusters are trapped by the invading fluid. At each one of
the invasion steps (a, b, ¢, d, e and f) a single site is invaded and it is marked by a white cross. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this paper.)

hand, when un-invading a site, it is possible to determine which
one of the three scenarios occurred by simply looking at the
neighbors to the newly un-invaded site. This is because when
connecting multiple patches, we are sure that they are effectively
merged to form a unique cluster. On the other hand, when in-
vading a site, we may need to investigate the whole lattice to label
the cluster formed by the defending fluid. This is because, when
the defending fluid is locally split into multiple patches, there is no
guarantee that these patches are not still connected far away from
the newly invaded site. Therefore, an efficient way to identify sites
that invaded trapped region in NTIP is to undo the invasion se-
quence, i.e. un-invade all sites in reverse order while bookkeeping
the cluster evolution. As an example, consider what happens when
undoing the invasion sequence in Fig. 1, i.e. starting with Fig. 1f
and ending with Fig. 1a:

In Fig. 1f, the site marked by a cross has two neighbors be-
longing to cluster 1. (Notice that all sites in the lattice have four
neighbors: up, down, left and right.) When un-invaded, this site is
added to cluster 1 that is connected to a sink. Therefore, this site
would have been invaded in TIP.

In Fig. 1e, the site marked by a cross has two neighbors belonging
to cluster 2 and cluster 5. Un-invading this site effectively merges the
two clusters. Their union gives cluster 2 in Fig. 1d that is a trapped
cluster. This means that the site would have not been invaded in TIP.

In Fig. 1d, the site marked by a cross has no neighbors filled
with the defending fluid. Un-invading this site creates a new
cluster, i.e. cluster 4 in Fig. 1c. Cluster 4 is a trapped cluster so the
site would have not been invaded in TIP.

in Fig. 1c, the site marked by a cross has two neighbors be-
longing to cluster 1 and cluster 4. When this site is un-invaded, the
two clusters are merged into cluster 1 in Fig. 1b. Cluster 1 is
connected to a sink so the site would have been invaded in TIP.

In Fig. 1b the site marked by a cross has three neighbors be-
longing to cluster 2 which is trapped. Hence, the site would have
not been invaded in TIP.

In Fig. 1a the site marked by a cross has three neighbors be-
longing to cluster 1 that is connected to a sink. Therefore, the site
would have been invaded in TIP.

This process goes on and on up until all sites have been un-
invaded. We can verify that when ignoring the invasions in Fig. 1b,
d and e, we obtain the invasion sequence corresponding to TIP
pictured in Fig. 2. In the next section, I detail an algorithm that
follows this procedure and applies to arbitrary lattices.

2.2. Practical implementation

The procedure described in the previous section can be im-
plemented using a disjoint set data structure (see e.g. Cormen

44 Y. Masson / Computers & Geosciences 90 (2016) 41-48

Fig. 2. Snapshots showing the last three invasion steps of a 2D site invasion percolation simulation with trapping (TIP) on a square lattice. The random realization of invasion
potentials, the injection area and the boundary conditions are assumed to be similar to those in Fig. 1. Note that the sites invaded in (a), (b) and (c) are invaded in the same
order as the sites invaded in Fig. 1(a), (c) and (f), respectively. The sites invaded in Fig. 1(b), (d) and (d) are not invaded here as they belong to trapped clusters.

et al., 2001) that is well known from computer scientist and de-
tailed in Appendix A for completeness. I propose the following
algorithm for solving the TIP problem:

1. Setup the TIP simulation: Define a lattice consisting of N sites
connected by bonds. Assign a unique index i to all sites in the
lattice. Define injection sites at which the invading fluid is in-
jected and sink sites at which the defending fluid is free to es-
cape the system. Initially, all sites are filled with the defending
fluid. Initialize the number of sites My=0 invaded in the TIP
simulation and define a one-dimensional array Li(t) that will
contain the indices of the sites invaded during the TIP
simulation.

2. Solve the NTIP problem: Using the same setup as for the TIP si-
mulation, run a NTIP simulation and recast the result in a one-
dimensional array Lyy(t) that return the index of the site in-
vaded at time t, where 1 < t < Myy and Mpr is the total number
of sites invaded in the NTIP simulation. I refer to Masson and
Pride (2014) for a detailed algorithm solving the NTIP problem.

3. Label the clusters formed by the defending fluid: Define a one-
dimensional label array [(i) of dimension N. At first, no sites
have a label, i.e. I(i) = no_label Vi. Initialize the number of
clusters N.=0. For all pairs of neighbor sites (i,j) where both i
and j are filled with defending fluid (at the end of the NTIP si-
mulation) do:

If site i has a label and site j has a label Then
1(j) = UNION((D), 1(j))

If site i has a label and site j has no label Then
1(j) = FIND((i))

If site i has no label and site j has a label Then
1(i) = FIND((j))

Else
1(i) = 1(j) = CREATE_CLUSTER(N,)

End If

and, for all isolated sites j filled with defending fluid and that have
no neighbors filled with defending fluid do:

1(j) = CREATE_CLUSTER(Nc).

Once this is done, all sites i filled with defending fluid have a label I

(i), and, FIND (I (i)) returns the label of the cluster that contains site i.

4. Assign a unique label to all clusters connected to a sink: That is,
create a label

I, = CREATE_CLUSTER(N,)

for the sink cluster, and then, merge all clusters connected to a
sink. That is, for all sink sites j do:

I; = UNION(;, 1(j)).

From now on, if we have FIND((i)) = I, it means that site i is

connected to a sink.

5. Un-invade all sites one by one in reverse order: For all sites stored
in Lyy, starting with site i = Lyy(Myr) and ending with site
i = Lyr(1), at each step t when un-invading site i = Lyy(t), do:

If site i has no neighbor labeled Then
I(i) = CREATE_CLUSTER(N¢)
Else If site i has unique neighbor j labeled Then
1(i) = FIND((j))
Else If site i has n neighbors ji, j,, ...
For k=1 to n — 1 Do
1) = UNION((), L(is1))
End For
End If

, J, 1abeled Then

then, check whether or not the newly un-invaded site i is con-
nected to a sink. If it is connected to a sink, add it to the TIP list Ly:

If FIND((i)) = FIND(l;) Then

Mr =My + 1
Lr(Mr) =i
End if

6. Flip the array L(t), i.e., put its elements in reverse order so it
contains the TIP sequence of invaded sites sorted by chron-
ological invasion time.

2.3. Efficiency

Time consuming operations for the algorithm presented in
Section 2.2 lie in steps 2, 3 and 5.

When using fast algorithms (e.g. Sheppard et al., 1999; Masson
and Pride, 2014) for solving the NTIP problem in step 2, the CPU
time to percolation for systems having N total sites and Myr in-
vaded sites at percolation is at most O (Mt log(Mnr)).

Using the disjoint set data structure (or the equivalent Hoshen-

Y. Masson / Computers & Geosciences 90 (2016) 41-48 45

(a)

CPU Time for NTIP ,

CPU Time for Trapping

(b) (©)

CPU Time for TIP

10>

10

10 . : :
| o square lattice : : | .
10 | + cubic lattice Y 10 |

square lattice : : .
+ cubic lattice :

square lattice

101 -+ cubic lattice -
1.084 : ;

3 —_OM,_logM 3) _
g 100 CINT ST g £ 100 g g 100 . O(Mles)
8 g i 3 = O,
2,10 2,10 L, 10-1
Q 2 Q) 1
£ 10 Eo £ 17
" " =
Q 4 : Q 4 O 10
10 10 4| 4
10° X 107 5 10 X

10 10° 10" 10° 10° 10
cluster size 1\/[NT

10° 10* 10° 10° 107 10
system size N

10> 10° 10* 10° 10° 10
cluster size MT

Fig. 3. (a) Observed (symbols) and predicted (solid lines) CPU time for NTIP plotted as a function of the observed cluster size Myr. (b) Observed (symbols) and predicted
(solid lines) CPU time for the identification and removal of the trapped sites plotted as a function of the total number of sites in the lattice N. (c) Observed (symbols) CPU time
for TIP plotted as a function of the cluster size Mr. The solid lines correspond to power law least square fits, the CPU time for TIP on a 2D square lattice goes as O(M}-084) and

the CPU time for TIP on a 3D cubic lattice goes as 0(M}-10%).

Kopelman Algorithm) to label the clusters formed by the defend-
ing fluid in step 3, the CPU time scales linearly with the total
number of sites filled with the defending fluid, i.e. O(N — Myr) (see
e.g. Hoshen and Kopelman, 1976). In step 5, the CPU time needed
to un-invade all sites is proportional to the total number of sites in
the invading cluster and goes as O (Mnr).

Combining these results shows that, in the worse case, the
total CPU time for solving the TIP problem goes as
O (Mnr log(Mnr)) + O(N).

In Fig. 3a and b, I compare the observed CPU times to the pre-
dicted values. To assess the CPU time scaling of the algorithm, I
performed a total of 10® TIP simulations on both 3D cubic lattices and
2D square lattices of dimension N = [4-1x 2L, with N ranging from
10° to 10®, where d is problem dimension and L is the number of sites
in a given direction. For better statistics, I used a varying number of
simulations n ranging from n = 108 for systems of size N =103 to
n =102 for system of size N = 108. The estimated coefficient of
variation for the measurements varies between 500 (for the smallest
systems) and 10~ ! (for the largest systems). | measured both the
average CPU time for solving the NTIP problem (i.e. steps 1 and 2 in
the algorithm of Section 2.2) and for the treatment of trapping (i.e.
steps 3-6 in the algorithm of Section 2.2). Measurements were per-
formed using the fortran intrinsic timing routine CPU_TIME. For big
enough systems (say N > 105), I observe a very good agreement
between the predicted CPU times and the numerical estimates. In
Fig. 3¢, | present the total CPU time needed to model TIP as a function
of the cluster size My (that is the total number of sites invaded once
the trapped sites have been removed). In the worse case (i.e. for 3D
cubic lattices), I observe execution times of O (M!195) which is faster
than the O(M!2?4) reported by Sheppard et al. (1999) for systems of
comparable sizes. Schwarzer et al. (1999) report an execution time of
20 000 sites per second for NTIP and 250 s to grow clusters with
M=500 000 in TIP, which means that their implementation of TIP is
roughly ten times slower than their implementation of NTIP (for
M=500 000). Using my implementation of the algorithm in Section
2.2, I observe that TIP is only two (in 2D) to four (in 3D) times slower
than NTIP, regardless of the system size.

3. Numerical examples

To illustrate outputs produced by the algorithm in Section 2.2,
present some examples of site IP simulations in 2D and 3D. An

advantage of the proposed algorithm is that the results for both
TIP and NTIP are available at the end of the simulations. This
permits easy comparison at no extra cost. Fig. 4 shows 2D clusters
at percolation time for square lattices of size 128 x 256 and illus-
trates the influence of gravity on trapping. Notice that all panels
present results obtained for both NTIP and TIP. Taken together, the
light gray and the dark red sites give the ensemble of sites invaded
in NTIP, while, the dark red sites taken alone are the sites invaded
in TIP. When the invasion is occurring from lower to higher in the
gravity field, and, when the invading fluid is buoyant (i.e. lighter
than the defending fluid), we observe the emergence of a finger of
invading fluid. This is because, as the invading fluid rises, the
buoyancy-induced pressure drops AP, = Apgd, where d is the
height of the site, gets larger than the capillary pressure drops
AP = o/a at the menisci. Such finger like instabilities as observed
in Fig. 4d, e and f occur when

AP, Bod

= —>

TN

' @

where By = Apga?/s is the dimensionless Bond number. When B,
gets small enough, as in Fig. 4a, (b) and (c), gravity tends to sta-
bilize the invading front which results in an increased density of
invaded sites in NTIP, and, in an increased occurrence of trapping
in TIP.

In Fig. 5, I model fluid migration through an idealized 3D geological
structure. The 3D model consists of a cubic lattice with dimensions
512 x 256 x 256 where the pore size distribution (i.e. g; in Eq. (1)) has
been constructed as follows: (1) To mimic sedimentary rock bedding, I
computed a random medium with gaussian correlation function (e.g.
Klimes, 2002) where the correlation lengths a, and a, in the two
horizontal directions are a lot larger than the one a, in the vertical
direction. (2) I created stratification by shifting the mean values of the
random medium within seven horizontal layers. (3) I added a reali-
zation of the white noise to the resulting medium so the pore size
distribution is locally random. (4) I modeled geological deformation by
first folding the entire medium and then by shifting two blocks apart
from a fault plane. (5) I increased the pore size along the fault plane to
mimmic higher permeability. The invading fluid is injected from a
point centered in the bottom layer and is lighter than the defending
fluid. The following values have been used to compute the invasion
potential in Eq. (1): 6 =0.0728] m™2, .=z, 100°m < a; < 10~4m,

46

Y. Masson / Computers & Geosciences 90 (2016) 41-48

A Eh

.ru % «t
L Tl ¥
N

d ik ra
b A i

B

o4
(d) By =0.0001

1
%
e,

Sl L,)

B =

(e) Bp =0.001 (f) Bp=0.01

Fig. 4. Result of various 2D IP simulations with and without trapping and varying the influence of gravity. The sites in red represent the sites invaded when modeling TIP. The
sites in grey represent the sites that invaded trapped region when simulating NTIP. Taken together the red and grey sites give the set of sites invaded when modeling NTIP.
The number By at the bottom of each panel is the Bond number, a negative value of By is used to signify that the direction of the gravity field is reversed. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)

£2=981ms2 Ap=02kgm3, and z = k; (m), where k; is the indicate the time at which the sites have been invaded. As time
vertical index of site i in the lattice.
Fig. 5 a shows a 3D view of the cluster formed by the invading When the upfront finger of invading fluid reaches a layer with
fluid at percolation time, i.e. when the invader reaches the side larger than average invasion potentials, the invading fluid spreads
wall to the left. Fig. 5b corresponds to a 2D projection of the same toward the sides. Because the layers are dipping down, the inva-
cluster onto the xz plane. In Fig. 5a and b, the rainbow colors sion potentials in the layers are decreasing toward the sides and

goes, we observe that the invading fluid is rising due to gravity.

Y. Masson / Computers & Geosciences 90 (2016) 41-48 47

(a) 3D view of the invading cluster

Pore Radius
Invasion Time [
0 0.5 1 10° 10

(b) 2D projection of the invading cluster

(c) 2D projection of the trapped clusters

Fig. 5. Migration and accumulation of oil through an idealized anticline re-
servoir. The simulation is performed on a cubic lattice with dimension
512 x 256 x 256. The invading fluid (i.e. oil) is injected from a point in the
bottom layer and the defending fluid (i.e. water) is free to escape from the side
walls (i.e. to the right and to the left in this figure). Periodic boundaries are
applied in the y direction perpendicular to the projection plane xz. The rain-
bow colors represent the time at which the sites have been invaded (top and
middle panels) or trapped (bottom panel). (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version
of this paper.)

gravity eventually blocks the invasion. When the side invasion
fronts get blocked, the invasion starts again at higher altitude
where sites have a larger invasion potential due to the buoyancy
induced pressure gradient. This process occurs many time until the
invading fluid reaches the fault plane where sites have larger than
average invasion potentials. The invading fluid then migrates along
the fault plane until it reaches a layer with very low invasion
potential that acts as an anticline trap. Finally, the invading front
moves downward, spreads, and the invading fluid progressively
fills the anticline. The simulation stops when the invading fluid
finds an escape, i.e. when it reaches the left wall in this case.

Fig. 5 c shows a 2D projection of the trapped clusters at per-
colation time. The rainbow colors represent the time at which the
sites got trapped. We observe that trapping is marginal when the
fluid in rising freely but gets very significant when the invading
front is blocked and the fluid accumulates. It is well known that in
the absence of gravity trapping occurs only in 2D and is very
marginal in 3D. However the present example clearly indicates
that trapping needs to be accounted for in 3D when gravity is
acting.

4. Conclusions

I proposed a two steps algorithm for a fast solution of the TIP
problem. The first step consists of solving the NTIP problem and
execution time scales as O (M log M) when using a binary tree data
structure (e.g. Masson and Pride, 2014). The second step consists of
identifying trapped sites a posteriori and execution time goes as
O(N). I measured better performance than previously proposed
algorithms (Schwarzer et al., 1999; Sheppard et al., 1999). My al-
gorithm has the advantage that both TIP and NTIP are modeled
which allow for comparison at no additional cost. Readers inter-
ested in getting an implementation of the proposed algorithm
written in fortran 2003 may contact me via email.

Acknowledgments

The research leading to these results has received funding from
the European Research Council under the European Community's
Seventh Framework Programme (FP7-IDEAS-ERC)/ERC Advanced
Grant (WAVETOMO). Readers interested in getting a program
based on the proposed algorithm and written in fortran 2003 may
contact me via email at the following address: yder.masson@cal.
berkeley.edu.

Appendix A. UNION/FIND (disjoint set data structure)

In this appendix, I detail a possible implementation of the
disjoint-set data structure used in Section 2.2 for labeling the
cluster formed by the defending fluid. Further information can be
found in e.g. Knuth (1998) and Cormen et al. (2001).

In IP, the sites filled with defending fluid form multiple clusters.
The objective is to define a data structure to store the assignment
of sites to clusters. The data structure needs to support the fol-
lowing three operations:
® CREATE_CLUSTER: Define a new cluster.

e FIND: Find the cluster that contains a given site.
o UNION: Merge two clusters.

To create this data structure, each site i is given a cluster label I(i)
and one defines a one-dimensional array L of dimension N, where
N, is the current number of cluster labels. Each cluster with label |

48 Y. Masson / Computers & Geosciences 90 (2016) 41-48

Function: CREATE_CLUSTER(N,)
N.=N.+1
L(N) = N,
Return: N,

End Function: CREATE_CLUSTER

Function: FIND({) Function: UNION (I,m)

While L(l) #1 u = FIND(!)
l=1L(l) v =FIND(m)

End While L(u)=v

Return: 1 Return: v

End Function: FIND End Function: UNION

Fig. Al1. A basic implementation of the disjoint set procedures. The CREATE_-
CLUSTER procedure defines a new cluster or class with label | = N; + 1. The FIND
procedure returns the canonical cluster label associated with the input label (/). The
UNION procedure sets an equivalence between the two input labels (I,m) which
effectively merges two clusters.

Function: CREATE_CLUSTER(N,)

Ne=N.+1
L(N.) = N,
r(Ne) =1
Return: N,
End Function: CREATE _CLUSTER
Function: UNION(,m)
u = FIND(I)
Function: FIND(/)
v = FIND(m)
m =1
If r(u) =r(v) Then
While L(m)#m
r(u) =r(u) +1
m = L(m)
L(v) =u
End While
Return: u
While L(l) # 1
Else If r(u) > r(v) Then
n=L(l)
L(v)=u
L(l)y=m
Return: u
m=n
Else
End While
L(u) =wv
Return: m
Return: v
End Function: FIND
End If
End Function: UNION

Fig. A2. An optimized implementation of the disjoint set procedures. The modified
FIND procedure performs path compression while the modified UNION procedure
uses weighted union. These procedures should be used instead of their simpler
counterpart in Fig. Al.

points to a parent cluster with label L(l). It is possible for some
clusters named root clusters to be their own parent, i.e. we have
I = L(). This data structure effectively creates trees of cluster la-
bels. Using this data structure, the CREATE_CLUSTER, FIND and
UNION procedures can be implemented very simply as shown in
Fig. Al. Invoking (i) = CREATE_CLUSTER(N,) effectively creates a
new cluster with label I = N, + 1 containing site i and sets it up as a

root cluster. For a given cluster label [, FIND(I) simply follows the L
(1) links up until it reaches the root cluster label and returns it.
FIND([(i)) returns the label of the cluster containing site i. UNION(/,
m) points [to m, effectively merging the two clusters. For a pair of
site i and j, UNION(I(i),I(j)) merges the cluster that contains site i
with the cluster that contains site j.

The FIND and UNION procedures as implemented in Fig. A1 are
slow, they scale linearly with the depth of the label trees (i.e. the
number of label L(l) we need to investigate to reach the root label).
They can be improved in two different ways. A first improvement
called “path compression” is to allow the procedure FIND to collapse
the tree of labels. A second improvement called “weighted union” or
“union by rank” consists of modifying the UNION procedure so that
the label trees are merged based on their rank. This has for effect to
keep the tree's depth small and this requires an extra area (i) storing
the rank of the label trees. Optimized procedures using path com-
pression and union by rank are given in Fig. A2.

References

Babalievski, F.,, 1998. Cluster counting: the Hoshen-Kopelman algorithm versus
spanning tree approaches. Int. J. Mod. Phys. C 9 (01), 43-60.

Chandler, R., Koplik, J., Lerman, K., Willemsen, J.F., 1982. Capillary displacement and
percolation in porous media. J. Fluid Mech. 119, 249-267.

Chen, F, Shinosky, M., Aitken,]., Yang, C.-C., Edelstein, D., 2012. Invasion percolation
model for abnormal time-dependent dielectric breakdown characteristic of
low-k dielectrics due to massive metallic diffusion. Appl. Phys. Lett. 101 (24),
242904.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al., 2001. Introduction to Al-
gorithms vol. 2. MIT Press, Cambridge.

Glass, R., Yarrington, L., 1996. Simulation of gravity fingering in porous media using
a modified invasion percolation model. Geoderma 70 (2), 231-252.

Hoshen,]., Kopelman, R., 1976. Percolation and cluster distribution. I. Cluster
multiple labeling technique and critical concentration algorithm. Phys. Rev. B
14 (8), 3438-3445.

Klimes, L., 2002. Correlation functions of random media. Pure Appl. Geophys. 159,
1811-1831.

Knuth, D.E., 1998. The Art of Computer Programming: Sorting and Searching vol. 3.
Pearson Education.

Lenormand, R., Bories, S., 1980. Description d'un mecanisme de connexion de
liaision destine a I'etude du drainage avec piegeage en milieu poreux. CR Acad.
Sci. 291, 279-282.

Lovoll, G., Méheust, Y., Malay, KJ., Aker, E., Schmittbuhl, J., 2005. Competition of
gravity, capillary and viscous forces during drainage in a two-dimensional
porous medium, a pore scale study. Energy 30 (6), 861-872.

Masson, Y., Pride, S.R., 2014. A fast algorithm for invasion percolation. Transp.
Porous Media 102 (2), 301-312.

Meakin, P., 1991. Invasion percolation on substrates with correlated disorder.
Physica A: Stat. Mech. Appl. 173 (3), 305-324.

Meakin, P, Feder,]., Frette, V., Jo, T., et al., 1992. Invasion percolation in a destabi-
lizing gradient. Phys. Rev. A 46 (6), 3357.

Patzek, TW., et al., 2001. Verification of a complete pore network simulator of
drainage and imbibition. SPE J. 6 (02), 144-156.

Schwarzer, S., Havlin, S., Bunde, A., 1999. Structural properties of invasion perco-
lation with and without trapping: shortest path and distributions. Phys. Rev. E
59 (3), 3262.

Sheppard, A.P., Knackstedt, M.A., Pinczewski, W., Sahimi, M., 1999. Invasion per-
colation: new algorithms and universality classes. J. Phys. A: Math. Gen. 32 (49),
L521.

Toussaint, R., Lavoll, G., Méheust, Y., Malgy, KJ., Schmittbuhl,]J., 2005. Influence of
pore-scale disorder on viscous fingering during drainage. Europhys. Lett. 71 (4),
583.

Toussaint, R., Malay, KJ., Méheust, Y., Lavoll, G., Jankov, M., Schéfer, G., Schmittbuhl,
J., 2012. Two-phase flow: structure, upscaling, and consequences for macro-
scopic transport properties. Vadose Zone J. 11, 3.

Wilkinson, D., 1984. Percolation model of immiscible displacement in the presence
of buoyancy forces. Phys. Rev. A 30 (1), 520.

Wilkinson, D., Willemsen,].F., 1983. Invasion percolation: a new form of percolation
theory. J. Phys. A: Math. Gen. 16, 3365.

Yang, Z., Niemi, A., Fagerlund, F, Illangasekare, T., 2013. Two-phase flow in rough-
walled fractures: comparison of continuum and invasion-percolation models.
Water Resour. Res. 49 (2), 993-1002.

http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref1
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref1
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref1
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref2
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref2
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref2
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref3
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref3
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref3
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref3
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref4
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref4
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref5
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref5
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref5
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref6
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref6
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref6
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref6
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref7
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref7
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref7
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref8
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref8
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref9
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref9
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref9
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref9
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref10
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref10
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref10
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref10
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref11
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref11
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref11
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref12
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref12
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref12
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref13
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref13
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref14
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref14
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref14
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref15
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref15
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref15
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref16
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref16
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref16
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref17
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref17
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref17
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref18
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref18
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref18
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref19
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref19
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref20
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref20
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref21
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref21
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref21
http://refhub.elsevier.com/S0098-3004(16)30027-9/sbref21

	A fast two-step algorithm for invasion percolation with trapping
	Introduction
	The proposed TIP algorithm
	Algorithm principle
	Practical implementation
	Efficiency

	Numerical examples
	Conclusions
	Acknowledgments
	UNION/FIND (disjoint set data structure)
	References

