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Governments and companies around the world collect point clouds (datasets contain-
ing elevation points) because these are useful for many applications, e.g. to reconstruct
3D city models, to understand and predict the impact of floods, to monitor dikes, etc. We
address in this paper the visualisation of point clouds, which is perhaps the most essen-
tial instrument a practitioner or a scientist has to analyse and understand such datasets.
We argue that it is currently hampered by two main problems: (1) point clouds are of-
ten massive (several billion points); (2) the viewer’s perception of depth and structure
is often lost (because of the sparse and unstructured points). We propose solving both
problems by using the Medial Axis Transform (MAT) and its properties. This allows us
to: (1) smartly simplify a point cloud in a geometry-dependent way (to preserve only sig-
nificant features), and (2) to render splats whose radii are adaptive to the distribution of
points (and thus obtain less “holes” in the surface). Our main contribution is a series of
heuristics that allows us to compute the MAT robustly for noisy real-world LiDAR point
clouds, and to compute the MAT for point clouds that do not fit into the main memory.
We have implemented our algorithms, we report on experiments made with point clouds
(of more than one billion points), and we demonstrate that we are able to render scenes
with much less points than in the original point cloud (we preserve around 10%) while
retaining good depth-perception and a sense of structure at close viewing distances.
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1 Introduction

With recent and ongoing advances in remote
sensing to collect 3D elevation information, e.g.
aerial LIDAR (Mallet and Bretar, 2009) and
dense image matching (Haala and Rothermel,
2012), we are able to acquire samples of the
Earth in unprecedented quantities (up to hun-
dreds of points per square meter) and with very
high accuracy. A prime example is the Dutch
national elevation dataset AHN" which has a to-
tal of over 600 billion points. The collected ele-
vation points represent both natural (e.g. vege-
tation, mountains and valleys) and man-made
(e.g. buildings, dikes and bridges) surfaces—
we refer to such point-based datasets, inde-
pendent of their acquisition technique, as point
clouds. Such geo-referenced point clouds are
currently being collected by many governments
and organisations because they allow us to re-
construct 3D city models (Rottensteiner, 2003),
to better understand and predict the impact of
floods (Fewtrell et al., 2011) or wind (Ujang
et al., 2013), to monitor dikes (Kriiger and
Meinel, 2008), and can help improve several
applications such as precision farming (Koenig
et al., 2015), forest mapping (van Leeuwen and
Nieuwenhuis, 2010) and infrastructure manage-
ment (Snyder, 2013).

We address in this paper the effective visualisa-
tion of massive point clouds, which is perhaps
the most essential instrument a scientist has to
analyse and understand a point cloud. As ar-
gued by Dykes et al. (2005), visualisation can
and should support the entire geoscientific pro-
cess from the intitial data exploration to synthe-
sis, analysis, evaluation and presentation. How-
ever, the visualisation of point clouds is cur-
rently hampered by two main problems: (1) due
to their massive size they fit neither a computer’s
main memory nor a computer’s graphics mem-
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Figure 1: Point cloud rendered with shaded
fixed-sized points. When zoomed in it
is hard to perceive structure and depth,
due to the large screen distances be-
tween points.

ory; and (2) how to achieve a visually pleasing
rendering that strengthens the viewer’s percep-
tion of depth and her sense of structure when
only sparse and unstructured points are ren-
dered. As we further describe in Section 2, it is
indeed possible to visualise point clouds that ex-
ceed the capacity of a computer’s internal mem-
ory through the use of out-of-core spatial index-
ing schemes and by applying methods such as
view-frustum culling and multi-resolution hier-
archies to select a subset of the points (Krey-
los et al., 2008; Wimmer and Scheiblauer, 2006;
Richter and Déllner, 2010). Thus a high frame-
rate can be achieved by limiting the number
of points that is sent to the graphics card of a
computer. We argue that the visual quality is
linked to the spatial distribution of points on
the screen and the applied point rendering tech-
nique. However, current point cloud visuali-
sation methods often use the most basic point
rendering techniques and always apply a regular
grid-based point simplification scheme that fails
to take into account the geometry of the sampled
surface. See for instance Figure 1 that illustrates
how the viewer’s sense of depth and structure is
distorted at closer viewing distances because of
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Figure 2: A splat is defined for each point as a
normal-oriented disk with a radius r.

Usually r is chosen such that there are
no holes.

the large gaps between points.

Furthermore, because the geometry of the sam-
pled surface is not taken into account during
regular grid-based simplification, fine details
can not be adequately represented.

In this paper we solve both problems by using
a point cloud visualisation approach based on
the Medial Axis Transform (MAT), a skeleton-
like representation of shape that we describe
further in Section 3. In Section 4 we demon-
strate how to use the local feature size, a prop-
erty derived from the MAT, to achieve both
a geometry-dependent point cloud simplifica-
tion and a geometry-dependent point render-
ing. The point distribution that we then obtain
is adaptive to the geometry of surface features:
small surface features are represented with rela-
tively more points than large features. To ren-
der points we use surface splatting (see Fig-
ure 2), i.e. a rendering technique were points
are rendered as circular disks (splats) that are
oriented and shaded using the point normals
(see also Gross and Pfister (2011)). By relat-
ing the splat radii to the local feature size, we
are able to draw bigger splats for large features
that do not contain fine details and small splats
for finer geometry with a smaller feature size.
Combined with our geometry-dependent point
simplification, we are able to render scenes with

much less points while retaining the same visual
quality and we achieve good depth-perception
and sense of structure also at close viewing dis-
tances.

Furthermore, to our knowledge we are the first
to robustly estimate the MAT for real-world Li-
DAR point clouds. In Section 3.3 we explain
how we extend an existing algorithm to esti-
mate the MAT (Ma et al., 2012) to deal robustly
with the noise that is typically present in Li-
DAR point clouds. We also show in Section 3.4
that our method to obtain MAT approxima-
tions from point clouds can be scaled to massive
datasets through the application of a simple par-
titioning scheme. Finally, in Section 5, we de-
scribe our experimental results with real-world
datasets containing up to 1.3 billion points.

2 Related Work

We review in this section two main topics re-
lated to the work presented in this paper: 1)
point cloud simplification, and 2) visualisation
approaches for big point clouds.

We do not elaborate on more traditional ap-
proaches of simplification and visualisation that
are based on raster grids or TINs (see for exam-
ple Lee (1989); Garland and Heckbert (1995);
Kraus and Pfeifer (1998)), because these are all
based on the assumption that the area of in-
terest can be adequately represented with a so-
called 2.5D surface or elevation field, i.e. a sur-
face monotone to the horizontal plane (Li et al.,
2005; Kumler, 1994). We believe this assump-
tion does not apply for existing urban point
clouds that contain many inherently 3D objects
such as trees, balconies and even vertical walls
(see Figure 3). By representing these objects in
2.5D, valuable information on their shape is lost.
The resulting misrepresented shapes may sub-
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(a) Actual boundary
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(b) Boundary after 2.5D projection

Figure 3: Profile view of a DSM. Information is lost when the surface must be uniquely projectable

to a horizontal plane.

sequently lead to errors in any follow-up anal-
ysis.

2.1 Point simplification

Pauly et al. (2002) implement and review two
approaches for point cloud simplification of
densely-sampled smooth shapes: clustering and
iterative simplification. Notice, however, that
the point cloud datasets that we consider are
not necessarily smooth and the sampling den-
sity may vary greatly.

Clustering subdivides the point cloud into clus-
ters that are each replaced by one representa-
tive sample. The cluster may be defined by the
non-empty cells of a regular grid that is super-
imposed on the input point cloud, in which case
the clusters are replaced by the center points of
these cells. Grid-based clustering is widely used
for LiDAR point clouds because it is simple to
implement and fast to compute. However, be-
cause of the fixed cell size the resulting points are
uniformly distributed, which makes it impossi-
ble to achieve a sampling density that is adaptive
to the geometry of the sampled surface.

Iterative simplification, which can be consid-
ered a generalization for 3D of the work of Lee
(1989), reduces the number of points based on
an error metric that quantifies the error that re-
sults from the removal of a point. Points are re-

moved in order of increasing error, and every
point removal affects the error of surrounding
points. This is a global algorithm that is difficult
to scale to massive point clouds.

Pauly et al. (2002) use the surface-variation met-
ric to quantify geometric detail for each point
as the variation along the approximated normal
with respect to the tangent plane of a point. They
show that surface-variation closely resembles
curvature, but argue that surface-variation is a
more meaningful metric for point cloud simpli-
fication, because when two surfaces come close
together, i.e. closer than the smallest enclos-
ing sphere of the k-neighborhood of the point
in question, this also leads to a higher surface-
variation. The local feature size metric that we
use in this paper also possesses these favourable
properties.

2.2 Visualisation of massive point clouds

Kreylos et al. (2008) have implemented a multi-
resolution out-of-core octree-based renderer.
Their octree-based downsampling scheme, sim-
ilar to clustering as described in Section 2.1, is
constructed in a pre-processing phase and de-
signed to achieve a uniform point distribution at
every level of detail, so it does not consider the
geometry of the sampled objects in any way. At
any time a subset of the input point cloud is dis-
played and points are rendered as simple fixed-



sized squares with optional shading. While fast
and simple to implement, this results in a dis-
torted sense of depth and structure at closer
viewing distances (see Figure 1). This is due to
the presence of holes in the surface when the dis-
tances between points become too large on the
screen. It is especially a problem for sparsely
sampled areas such as vertical surfaces (walls)
in aerial point clouds. Wand et al. (2008), Wim-
mer and Scheiblauer (2006); Scheiblauer (2014),
Richter and Déllner (2010, 2014) and Elseberg
etal. (2013) all showcase comparable out-of core
octree-based visualisation frameworks for large
point clouds with uniform point downsampling.
Elseberg et al. (2013) visualise coarser level of
details presumably by rendering sets of octree
cells as points located in the cells’ center rather
than using a subset of the original point cloud.

As illustrated by Figure 2, splatting is a point
rendering technique where points are rendered
as surface aligned disks that are parameterised
by some radius r (see also Gross and Pfister
(2011)). Usually r is chosen such that the splats
are overlapping each other so that holes are ab-
sent and the point cloud appears to be a closed
surface on the screen regardless of the viewing
distance, because r is defined in object space (i.e.
in the coordinate system of the point cloud).

Wand et al. (2008) briefly discusses the possi-
bility of using rectangular point splats that are
aligned according to the two greatest principal
components of a k-neighbourhood. Scheiblauer
(2014) and Richter and Doéllner (2014) both
implement a form of point splatting. But
Scheiblauer (2014) does not use normals, and
the size of the splats either depends on the ren-
dered level of detail or on a local point density
estimate.

Kova¢ and Zalik (2010) propose to use a pre-
computed quadtree index that facilitates on-the-
fly point loading and normal computation, but
assumes good spatial coherence and is designed

to work only for 2.5D surfaces. Points are ren-
dered as oriented splats using the approach of
Botsch and Kobbelt (2003). They apply random
subsampling and fixed splat radii, which does
not necessarily result in a hole-free visualisation
of the scene. As the authors themselves note, the
holes are partly caused by inadequate sampling
densities in some parts of the point cloud. In-
deed, vertical and transparent surfaces are often
relatively sparsely sampled in airborne LiDAR
point clouds.

We conclude that many of the described ap-
proaches have solved the issue of managing huge
point clouds using out-of-core spatial indexes,
and that some of the approaches apply splatting,
but none of them takes the geometry of sampled
objects in consideration.

3 Computing the medial axis
transform

3.1 The MAT

The medial axis transform (MAT) is an alterna-
tive representation of shape that explicitly en-
codes a shape’s topology and geometry as a
skeletal structure. The MAT can be computed
from a boundary representation of a shape, and
vice versa, and it can be defined as a set of me-
dial balls. Given a shape boundary S embed-
ded in the three-dimensional Euclidean space
(R?), we define a medial ball as a maximal
ball that touches S on at least two points and
does not contain any points of S on its inte-
rior. The MAT, denoted M[S], is defined as
the set of medial balls (see Figures 4a and 4b
for a 2D example); likewise the medial axis of S
is defined as the set of centers of medial balls.
Consequently, all points of the medial axis of
S are closest to at least two points on S. In
R’ the medial axis is a set of manifolds with



(a) A shape

medial balls.

Figure 4: The Medial Axis Transform for a two-
dimensional shape

boundaries (called sheets) that meet along a set
of Y-intersection curves (see Siddiqi and Pizer
(2008)) and form a skeleton-like structure. The
medial balls in the interior of S form the interior
MAT, and the balls on the exterior of S form the
exterior MAT.

3.2 Approximating the MAT

The exact computation of the MAT is not possi-
ble for all shapes and is computationally infea-
sible in practice, especially for 3D objects (At-
tali et al., 2009). Fortunately, approximations
of the MAT give satisfactory results for most
shapes and are computationally feasible. Var-
ious algorithms exist to approximate the MAT
from either a set of sample points on S, often
using the Voronoi diagram (Attali and Montan-
vert, 1997; Amenta et al., 2001; Dey and Zhao,
2004), or from a voxelised representation of S
using the distance transform (Foskey et al., 2003;
Hesselink et al., 2005; Chaussard et al., 2011).
However, Voronoi methods are complex to im-
plement robustly and using a voxelisation intro-
duces unwanted inaccuracies and is not scalable
(Sobiecki et al., 2013). In this paper we there-
fore choose to use the ball-shrinking algorithm
that was introduced by Ma et al. (2012). This al-
gorithm is simple, robust, memory efficient and
easy to parallelize (see Ma et al. (2012); Jalba

(b) Its medial axis and some

Figure 5: The two final iterations in the ball-
shrinking process for the point p to ap-
proximate the medial axis M[S].

et al. (2012)). And, as we demonstrate in Sec-
tions 3.3 and 3.4 it can be modified to deal effec-
tively with noisy real-world inputs and to pro-
cess massive dataset.

The ball-shrinking algorithm approximates the
medial axis from an oriented point cloud P that
samples S. It works as follows (see Figure 5): for
each point p € P with corresponding normal np,
aball By(cy, ro) with a large radius ry and center
Co = —ronyp + p is initialized. By definition this
ball is centered on the straight line through n,,.
This large initial ball is iteratively shrunk to find
and approximate a medial ball. Let i > 0 be an
iteration counter. A new ball B; is found by per-
forming a nearest neighbour query from ¢;_; to
the points in P (but excluding p itself). The re-
sulting point p; is used to compute 7; and ¢; such
that B; passes through p and p; and remains cen-
tered on the straight line that passed though n,.
The iteration is stopped when p;4; equals p; or p,
implying that B; is empty. It clearly also touches
P on two points and can therefore be considered
a medial ball; and ; is therefore a point on the
medial axis of P. If this ball-shrinking procedure
is executed for every p € P, an approximate inte-



rior medial ball for every p is obtained. By run-
ning the algorithm a second time, but now with
flipped normals, we find also an approximate ex-
terior medial ball for every p € P. The set of the
interior and exterior medial balls forms an ap-
proximate MAT of S.

3.3 Denoising heuristics

The original ball-shrinking algorithm of Ma
et al. (2012) was designed to handle well-
sampled point clouds with very little noise.
However, in practice, point clouds such as Li-
DAR datasets typically contain significant noise
and have a highly varying point density which
leads to a distorted MAT approximation. While
it is common to filter and remove noisy MAT
points after approximation (see for instance
Amenta et al. (2001)), this has an unwanted side
effect: a filtered MAT contains less points and
is therefore a sparse approximation of the true
MAT. In our experience, the resulting MAT ap-
proximation may in fact be so sparse that the
MAT is hardly perceivable at all. We therefore
introduce heuristics that do not remove noisy
MAT points, but move them towards a stable
MAT instead. They are extensions to the ball-
shrinking algorithm of Ma et al. (2012) which, as
described in Section 3.2, computes a series of n
balls By, . .., B,—1 for every point in P. We have
found that it is often possible to recognize an un-
stable medial ball by analyzing the progression
of ball metrics as a function of the ball iteration.
Furthermore, we make the observation that the
last ball in the ball-shrinking sequence may not
always be the best approximate medial ball when
noise is taken into consideration (see Figure 6).

Based on these observations we propose two
simple heuristics that both use the scale in-
variant separation angle 6; (the angle < pc;p;,

Figure 6: Two ball iterations for p, where j = i+1.
The noisy point p;j can be detected by
the small separation angle 6; of B,.

see Figure 6) that is defined for each iteration i in
the ball-shrinking process for a single point.

stable ball preservation Whenever 6;.; drops
below a threshold preserve, We stop the ball-
shrinking process and set B; to the approx-
imate medial ball for the current surface
point. As illustrated in Figure 6, B; ignores
the noisy point of iteration i + 1, and is
therefore a better approximate medial ball.

plane detection when the separation angle of
the first ball 6; is lower than a threshold
tplanar> We do not assign a medial ball to
the current surface point. This typically oc-
curs when approximating the medial axis
for a planar feature whose point samples
are slightly perturbed. Since a ball that
touches a plane in two points should have
an infinite radius, we should ignore these
balls.

Thus, by exploiting the information that is cap-
tured in the sequence of balls of a surface point,
rather than only considering the final ball, we
find significantly more robust approximate me-
dial balls. Note that this does not add to the
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Figure 7: Simple tiling scheme. Each tile is
buffered with the initial ball radius ry.

computational cost of the ball-shrinking algo-
rithm, since the average number of ball iter-
ations per point is lower as a result of these
heuristics.

3.4 Approximating the MAT for large
datasets

To be able to handle massive datasets (i.e. bil-
lions of points) that do not fit a computer’s main
memory (in-core), we propose a simple parti-
tioning scheme for the ball-shrinking algorithm
that is able to sequentially process subsets of
the dataset. This is possible because the only
global operation performed by the algorithms
described in this paper, the nearest neighbour
query, is actually bounded by the initial ball ra-
dius oy which is a user-defined parameter. Only
medial balls with a radius up to ry are con-
structed, and the radius of the largest medial ball
of an object typically depends on the approxi-
mate size of that object. A sensible choice for the
value of ) is therefore an approximate size of the
largest object in the input. For our datasets we
found that a value for ry of approximately 100 m
suffices. It is therefore possible to spatially sub-
divide and process a massive dataset with a lim-
ited amount of main memory.

To partition, we subdivide the dataset into
square tiles of fixed dimensions. The tile-size
is chosen such that the contained points eas-
ily fit main memory. Additionally, every tile
is buffered with the value of ry (see Figure 7).
Then, the tiles are processed one by one. First
we compute a kd-tree for the complete tile (in-
cluding the buffer) to speed up nearest neigh-
bour queries. Then we approximate the point
normals and the MAT itself for the points that
are inside the tile but not in the buffer region.

With this simple out-of-core scheme we can ob-
tain identical outputs compared to the in-core
approach. In Section 5 we demonstrate how we
compute the MAT for a dataset with 1.3 billion
points.

4 MAT-based simplification and
splat-based visualisation

We propose to use the MAT derived local fea-
ture size (LFS) for both the point cloud simpli-
fication and the splat radius determination. The
LFS f(p) of a point on p € P, where P repre-
sents the point cloud, is defined as the short-
est distance between p and the MAT of P (see
Figure 8). It captures the curvature at p and
the proximity of other parts of S, since in both
these cases the medial axis is close to S. Given
a point cloud P, we can eliminate much of its
redundancy by removing points that have rela-
tively high LFS. We use the e-sampling criterion
(Amenta et al., 1998) to achieve this, similarly
to Dey et al. (2001) and Ma et al. (2012). P is
called an e-sample if each point p € P has an-
other point of P within a distance of ¢f(p) (see
Figure 8). An e-sample can be approximated by
iteratively removing points that do not break the
e-sampling criterion. Similar to Ma et al. (2012)
we compute an approximate e-sample from an
oversampled input point cloud P by testing for
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Figure 8: The local point density and the radius
of the splat for p (a point sampled
on S) are based on the local feature
size f(p) which is the shortest distance
from p to the point approximation of
M(S]. For this figure € ~ 0.5.

each p € Pwhether the ball B(p, ¢f(p) ) contains
any point from P other than p itself. If it does, p
is removed from P. In our version of this algo-
rithm we process the points in a random order,
because an order in which subsequent points are
too close may cause gaps in the simplified point
cloud. The LFS thus gives a simple and effective
definition of the size of a feature, and with the -
sampling criterion we are able to relate the LFS
directly to the local sampling density. We thus
obtain a geometry dependent simplification of
the point cloud where areas with a large LFS are
represented with relatively fewer points than ar-
eas with a small LFS.

To complete our visualisation approach we also
make the splat radius adaptive to the LFS. Each
point is rendered as a splat with a radius set
to ef(p) (see Figure 8). Points in areas with a
lower point density in the e-sample are therefore
drawn with larger splats. Moreover, because
both the splat radii and the e-sample are both
based on the distance ¢f(p), the resulting visu-
alisation is such that a surface-like impression is
obtained where holes are minimised despite the

non-homogeneous geometry-aware point sim-
plification.

5 Implementation, experiments and
discussion

We have implemented the algorithms described
in Sections 3 and 4 and tested them using two
aerial LIDAR datasets. The first is a publicly
available dataset of a mountain range in Califor-
nia, USA (National Science Foundation, 2005).
From this ‘mountain’ dataset we took an area of
942 x 898 meters, containing 1 632 040 points.
The reported point density is 2.98 points per
square meter. The second dataset is from the
municipality of Rotterdam, The Netherlands,
and has a reported point density of 30 points per
square meter. From this ‘urban’ dataset we se-
lected an area of 200 x 250 meters, containing
746 351 points, to compare with the mountain
dataset and an area of 1.3 billion points to test
the scalability of our method.

Since our ball-shrinking algorithm requires a
normal vector for every input point, we compute
these beforehand using a principal component
analysis of the nearest 15 neighbours of every
point. To speed up nearest neighbour queries
for the normal computation, the MAT estima-
tion, the LFS estimation and the e-sample sim-
plification, we use a kd-tree. Furthermore, to
make the computation of the LFS more robust,
we compute the LFS (the distance from a sur-
face point to the MAT) as the median distance
of the 15 nearest MAT points. To perform splat-
ting we implement the splat rendering method
of Botsch and Kobbelt (2003) using OpenGL
shaders.

We have released our Python implementation
under an open-source license and made it pub-
licly available (Peters, 2015).



Figure 9: Simulated aerial LiDAR point cloud
for a house model (dimensions: 10 x
20 x 15 m, 1751 points).

5.1 MAT approximation and noise handling

In order to quantitatively analyse the effect of
the novel denoising heuristics that we propose
in Section 3.3 we use a point cloud that was
obtained by simulating an aerial LiDAR scan®
on a surface model of a house (see Figure 9).
Noise is simulated by adding a normally dis-
tributed noise component with a standard de-
viation of 2 cm along the scanning direction
and an additional 2 cm in the position of the
scanner. We ran the unmodified ball-shrinking
algorithm (Ma et al., 2012) (denoted M) and
our improved variant with denoising heuristics
(denoted M) on this point cloud with added
noise (denoted P,,) and without added noise (de-
noted P). To quantify the quality of the result-
ing MAT approximation we measure the dis-
tance to a reference MAT, that is directly de-
rived from the surface model geometry (de-
noted M[S]). From Figure 10b we observe
an overall decrease of 31% (at a conservative
toreserve = 20°) in the error of M[P,] as a result
of our ball-preservation denoising heuristic that
affected 11% of the interior MAT points. These

*Using industry standard parameters (flight height 400
m, flight line spacing: 400m) and the BlenSor software
(Gschwandtner et al., 2011)
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points are no longer close to the main MAT
branches, as a result of the small perturbations
in P, for which the unmodified ball-shrinking is
particularly sensitive. Figure 10a illustrates how
these points are moved towards M[S] as a re-
sult of our ball-preservation heuristic, thereby
obtaining a denser MAT approximation than
possible when these points would have been re-
moved (e.g. Amenta et al. (2001)). From our
experiments with real-world LiDAR datasets we
observe the same behaviour (see Figures 11 and
12). As a result of the plane detection heuris-
tics, 96% of the exterior MAT points are fil-
tered at fpjanar = 30° (similar to the plane detec-
tion in Figure 11). Furthermore, from the plot
of M [ P], we see that our denoising heuristics
have a negligible effect on the approximation of
the MAT of the noise-free pointcloud P.

It can also be observed (especially from Fig-
ure 12) that some of the minor side-branches
disappear or shrink in the denoised MAT. We
can conclude that there is a trade-off between
the amount of detail captured by the MAT and
the robustness to the noise present in the input
point cloud. Where our denoising approach dis-
tinguishes itself is that it delivers a much denser
MAT approximation than previous methods
(where noisy points are removed). Also, despite
the dependence of two user-defined thresh-
olds, we find that the same parameter values
(tpreserve = 20° and fpreserve = 32°) are adequate
for both the urban and the mountain dataset.

Ultimately a much more distinctive and more
useful MAT approximation is obtained. With-
out our denoising heuristics, computing the LFS
would not be feasible since there are many MAT
points near the sampled surface that distort the
LES computation (see Figure 13). Therefore, it
would not be possible to successfully perform
our geometry-dependent point cloud simplifi-
cation and splat-radius determination for visu-
alisation.
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(b) Overall error in MAT approximation with respect to ref-
erence MAT with and without our denoising heuristics.

Figure 10: Sequence of shrinking balls on a 2D
dataset for a single input point
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Figure 11: Medial axis approximation dataset B
without denoising (Ma et al., 2012)
and with denoising (our method) for
fpreserve = 20° and Eplanar 32°.
Shown are top views (top) and side
views (bottom). Interior points in
red, Exterior points in purple
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Figure 12: Exterior MAT approximation with (our method) and without denoising (Ma et al., 2012)
heuristics. tpreserve = 20° and fpjanar = 32°

Figure 14 illustrates very clearly the skeleton-
like nature of the MAT of the sample dataset,
where the ridges and valleys of the mountain
range are translated to branches of the interior
and exterior MAT respectively.

5.2 Scaling

Figure 15 shows the memory usage of our sim-
ple partitioning scheme during the MAT com-
putation of a 1.3 billion point dataset. We must
note that our current implementation has inef-
ficient memory management, which is inherent
to the used programming language (Python).
The memory measurements in Figure 15 are
therefore exhibiting a slightly increasing trend
over time (i.e. as the number of processed points
increases) that is independent for the theoret-
ical memory requirements of the algorithm.
Nonetheless, we make the key observation that
the amount of required memory is successfully

limited. The amount of required memory is now
bounded by the largest number of points inside
a tile rather than the total point count of the
dataset. As a result we are able to process mas-
sive datasets.

Furthermore, others have shown that highly
efficient parallel implementations of the ball-
shrinking algorithm are feasible (Ma et al., 2012;
Jalba et al., 2012) (our added denoising heuris-
tics do no alter the memory requirements of the
ball-shrinking algorithm). We therefore con-
clude that our approach to obtain a robust MAT
approximation of a LiDAR point cloud is well
scalable in terms of both memory and compu-
tational cost.

5.3 MAT-based simplification and
splat-based visualisation

Figures 16 and 17 demonstrate the effect of the
MAT-based simplification and splats with their

12



(a) Without denoising. (b) With denoising. fpreserve = 20°, fplanar = 32°

Figure 13: Local feature size approximations for an urban dataset with and without denoising. Red
indicates low local feature size, blue high local feature size.

(a) Raw point cloud.

(c) Interior MAT (d) Exterior MAT

Figure 14: The denoised MAT for the mountain dataset. Colors indicate elevation.
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Figure 15: Memory consumption as a function
of the number of processed points for
the MAT approximation of the 1.3
billion point urban dataset.

radii adapted to the LFS.

In both cases the simplification removed 90%
of the original points (¢ = 0.4), yet when ren-
dered with LFS-sized splats the resulting visu-
alisation is similar to the original splatted point
cloud with fixed splat-radii. While the simpli-
fied LFS-splatted rendering is not absolutely free
from holes for the urban dataset (see mark 2
in Figure 17), we also observe that, despite the
reduction in points, the sparsely sampled ver-
tical surfaces (walls) now appear as solid sur-
faces (see mark 1 in Figure 17d). This is a no-
table improvement over fixed-sized splats, be-
cause this amplified the viewer’s sense of struc-
ture and depth at all viewing distances.

Figure 18 illustrates further how the distribution
of points in the simplified point cloud respects
the geometry of the sampled surface. Splats are
drawn there with a decreased radius so that it
is clearly visible that 1) more points are drawn
in areas with a relatively high curvature such as
the creases in the valleys and 2) the correspond-
ing splats have a smaller radius when compared
to the planar areas with fewer and larger splats
(also apparent in Figure 17d). Finally, in Fig-
ure 19a we compare fixed-sized splats with LFS-
sized splats for the simplified mountain dataset.

The flat region has fewer samples due to the rel-
atively high LFS. But, in the case of LFS-sized
splats, the larger splat radii effectively compen-
sate for the coarser point distribution, leading to
a virtually hole-free visualisation.

6 Discussion

We have shown that a robust MAT can be com-
puted from LiDAR point clouds, and that we can
use the MAT to perform geometry-dependent
simplification and to improve splat-based visu-
alisation of LiDAR point clouds. A key mo-
tivation for the development of this approach
was the distorted depth-perception and sense of
structure due to the presence of holes when a
point cloud is viewed up close (see Figure 1).
From Figure 17 it is obvious that splat-based
rendering gives significantly less and smaller
holes. Furthermore, with our MAT-based point
simplification and splat-radii, we can maintain
this benefit while retaining only 10% of the
points. However, not all holes are eliminated
and some new holes are even introduced. This
has two causes. First, the largest holes are mainly
a result of insufficient sampling of the LiDAR
point cloud due to occlusion (e.g. missing walls)
and the material and orientation of the surface
with respect to the laser scanner (also noted by
Kova¢ and Zalik (2010)). Without either mak-
ing explicit assumptions on the shape of ob-
jects or acquiring more samples in the field, lit-
tle can be done about this in our opinion. Sec-
ond, while our simplification procedure guaran-
tees that areas are not oversampled according to
the e-sample criterion, it does not guarantee that
sufficient points are preserved in all cases. Thus,
although the local point densities are approxi-
mately the same, depending on the (random-
ized) order in which points are processed dur-
ing the simplification, holes may appear in some
places. To solve this issue, the local point distri-
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(c) Simplified point (90% of points removed) cloud (d) Simplified point (90% of points removed) cloud
with simple points with Ifs-radius splats

Figure 16: Visualisation results for the Mountain dataset (e = 0.4).
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(c) Simplified point (90% of points removed) cloud (d) Simplified point (90% of points removed) cloud
with simple points with Ifs-radius splats

Figure 17: Visualisation results for the Urban dataset (¢ = 0.4). Note the different point-densities
on vertical and horizontal surfaces (marked 1 and 2).

Figure 18: MAT-based simplification and splat-radii. The splat radii in this image are reduced for
illustrative purposes.
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(a) fixed-sized splats

(b) Ifs-sized splats

Figure 19: Simplified point cloud (¢ = 0.4) of

mountain dataset.

bution after simplification should be more ho-
mogeneous. This may be achieved by enforcing
a more grid-like distribution of points during
the simplification or by more carefully consider-
ing the order in which points are decimated.

While we did not address how to efficiently cre-
ate and manage different (discrete) levels of sim-
plification for one dataset, we do not foresee any
major problems in combining our simplification
approach with an octree data-structure (similar
to e.g. Kreylos et al. (2008)).

The simple partitioning scheme that we have
implemented effectively limits the amount of
memory required to complete the computation
of massive datasets. The main limitation of
this approach is that the number of points in
a tile is still bounded by the amount of avail-
able memory. Also, the size of a tile should
be at least as large as the buffer radius. Thus
for extremely dense datasets (several hundreds
points per square meter) it may no longer be fea-
sible to process reasonably sized tiles. The point
streaming techniques introduced by Isenburg
et al. (2006) are a possible solution to this prob-
lem, although these techniques require a good
spatial coherence of the input point cloud.

7 Conclusions

In this paper we have made three main con-
tributions. First, we have shown that a usable
MAT approximation can be obtained from a
massive LiDAR point cloud. To make that pos-
sible we have extended the ball-shrinking algo-
rithm to approximate a robust MAT from a noisy
input point cloud. Second we have proposed an
out-of-core partitioning scheme to approximate
the MAT for massive datasets that do not fit a
computer’s main memory. And third, we have
demonstrated one potential application of the
MAT in visualisation of LIDAR point clouds, by
using it to perform geometry-aware simplifica-
tion and splat-radius determination. As a result
we have obtained a visualisation in which it is
easier to perceive depth and structure in the ren-
dered LiDAR point cloud, while rendering only
a fraction of the full point cloud.
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