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Abstract

The paper presents the spatial Markov Chains (spMC) R-package and a case

study of subsoil simulation/prediction located in a plain site of Northeastern

Italy. spMC is a quite complete collection of advanced methods for data in-

spection, besides spMC implements Markov Chain models to estimate exper-

imental transition probabilities of categorical lithological data. Furthermore,

simulation methods based on most known prediction methods (as indica-

tor Kriging and CoKriging) were implemented in spMC package. Moreover,

other more advanced methods are available for simulations, e.g. path meth-

ods and Bayesian procedures, that exploit the maximum entropy. Since the

spMC package was developed for intensive geostatistical computations, part

of the code is implemented for parallel computations via the OpenMP con-

structs. A final analysis of this computational efficiency compares the sim-

ulation/prediction algorithms by using different numbers of CPU cores, and
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considering the example data set of the case study included in the package.

Keywords: Categorical data, Transition probabilities, Transiogram

modeling, Indicator CoKriging, Bayesian entropy, 3D lithological

conditional simulation/prediction

1. Introduction1

The paper aims to introduce the spMC package (Sartore, 2013) which2

is an extension package for the R software (R Core Team, 2016). Its main3

purpose is to provide recent tools for the analysis, simulation and predic-4

tion of lithological data under the methodological framework of the spatial5

Markov chains. The first software implementation of lithological simulation6

and prediction for spatial Markov chains, stemming from the seminal work7

of Carle and Fogg (1996, 1997), Carle et al. (1998), Weissmann et al. (1999),8

and Weissmann and Fogg (1999), was the geostatistical software T-PROGS9

(Carle, 1999). This software is a well-established stochastic modelling tool for10

3-D applications and also embedded in some commercial groundwater mod-11

elling software (e.g. GMS, Aquaveo, 2015). In T-PROGS transition proba-12

bilities are estimated for describing the stratigraphical characteristics of the13

geological data. Then simulations are performed through CoKriging and14

simulated annealing methods. The spMC package in its present version is15

a complete collection of advanced methods for data inspection, statistical16

estimation of parameter models, and lithological simulation and prediction.17

It includes common tools for predicting and simulating lithofacies at pixel18

level which are typically used like sequential indicator simulation (SISIM,19

Deutsch and Journel, 1998) as well as the more recent advances (Li, 2007;20
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Allard et al., 2011). We think there are three features of spMC that can be21

of value in the geostatistical community. First, it is an extension package22

of an increasingly used software like R. Second, a particular strength of the23

package is the exploitation of high performance computational (HPC) tech-24

niques, such as parallel computing, by allowing to deal better with a large25

number of categories. Finally, we can find the implementation of the more26

recent advances in simulation of litholological data. In the next section we27

briefly recall the methodological framework. In Section 3 we illustrate the28

main features of spMC by examining a case study (Section 4). Concluding29

remarks are addressed in Section 5.30

2. Background on spatial Markov chain in geostatistics31

The spMC package provides several functions to deal with categorical32

spatial data and continuous lag Markov chain, where the lag is the difference33

between two spatial positions. Traditionally, a Markov chain is described34

by a probabilistic temporal model for one-dimensional discrete lags, i.e. the35

model quantifies the probability to observe any specific state in the future36

given the knowledge of the current state. The extension of this concept arises37

by the definition of a Markov process involving continuous multidimensional38

lags in a d dimensional space.39

We consider the stationary transition probability between two states (or40

categories), i and j, in two locations, s and s + h, namely41

tij(h) = Pr(Z(s + h) = j|Z(s) = i), ∀i, j = 1, . . . , K,

where K is the total number of states that the random variable Z can assume42

as outcome and h is a multidimensional lag of dimension. In continuous-lag43
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formulation of a Markov chain model (Carle and Fogg, 1997) the transition44

probability tij(h) is the element in the i-th row and in the j-th column of45

the matrix T(h) such that46

T(h) = exp(‖h‖Rh). (1)

The transition rate matrix Rh depends on the direction given by the lag h.47

Carle and Fogg (1997) introduced an approximation of the rate matrix48

Rh by the ellipsoidal interpolation which makes the rate matrix for the di-49

rection of h dependent on the rate matrices Rek estimated for the main axial50

directions. The vector ek indicates the standard basis vector of dimension51

d, whose k-th component is one and the others are zero. In particular, the52

matrix Rek can be computed as53

Rek = diag(`ek)−1 [Fek − I] ,

or for the reversibility of the chain as54

R−ek = diag(p)R>ekdiag(p)−1,

where `ek is the mean vector of the stratum thicknesses/lengths along the di-55

rection ek, the matrix Fek denotes the transition probabilities for consecutive56

blocks made of adjacent points with the same category, I is the identity ma-57

trix, and p is the vector of relative frequencies corresponding to the estimate58

of the stationary distribution.59

The rate rij,h in the i-th row and j-th column of the matrix Rh is then60

calculated as61

|rij,h| =

√√√√ d∑
k=1

(
hk

‖h‖
rij,ek

)2

, (2)
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where rij,h is non-positive when i = j, otherwise it is non-negative; d rep-62

resents the dimension of the lag h (and hence the number of coordinates of63

s), and rij,ek denotes the components in the i-th row and j-th column of the64

matrix Rek .65

From a statistical viewpoint, two problems arise. The former is related66

to how to estimate the components rij,h, while the latter is associated to the67

formulation of the conditional probability used for simulations and predic-68

tions.69

spMC provides a variety of estimation methods. We implemented the70

mean length method and the maximum entropy method suggested in Carle71

and Fogg (1997) and Carle (1999). These methods are both based on the72

mean lengths Li,ek and the transition probabilities of embedded occurrences73

f ∗ij,ek , which are the components of the matrix Fek . The autotransition rates74

are derived by rii,ek = −1/Li,ek , while the other rates are calculated as rij,ek =75

f ∗ij,ek/Li,ek , i.e. for any i 6= j. The mean lengths are usually computed by76

means of the average of the observed stratum thicknesses/lengths, while the77

transition probabilities of embedded occurrences are estimated as the average78

of the relative transition frequencies, or through an iterative procedure based79

on the entropy (Goodman, 1968).80

A maximum likelihood method is implemented in which we consider81

the stratum thicknesses/lengths distributed as log-normal random variables82

(Ritzi, 2000). There also exist robust alternatives for estimating the mean83

lengths which are based on the trimmed median and the trimmed average.84

Finally, we have considered a least squares approach in which we mini-

mize the sum of the squared discrepancies between the empirical transition
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probabilities and theoretical probabilities given by the model (1). Such min-

imization is performed under the constraints (Carle and Fogg, 1997):

K∑
j=1

rij,h = 0, ∀i = 1, . . . , K and

K∑
i=1

pirij,h = 0, ∀j = 1, . . . , K,

where pi denotes the i-th component of the vector p.85

In order to perform lithological simulations and predictions, an approxi-86

mation of the following conditional probability must be considered:87

Pr

(
Z(s0) = j

∣∣∣∣∣
n⋂

l=1

Z(sl) = z(sl)

)
, ∀j = 1, . . . , K, (3)

where s0 denotes a simulation or prediction location, sl represents the l-th88

spatial position which corresponds to the l-th observation, and z(sl) indi-89

cates the observed value of the random variable Z(sl). The approximation90

proposed by Carle and Fogg (1996) is based on indicator Kriging and CoK-91

riging methods, which are then adjusted by a quenching procedure based on92

the simulated annealing method. Other approximations are based on path93

methods (Li, 2007; Li and Zhang, 2007), while those that are based on the94

Bayesian entropy perspective (Christakos, 1990) were considered by Bogaert95

(2002) and modified by Allard et al. (2011).96

The Kriging approximations are calculated through a linear combination97

of weights, i.e.98

Pr

(
Z(s0) = j

∣∣∣∣∣
n⋂

l=1

Z(sl) = z(sl)

)
≈

n∑
l=1

K∑
i=1

wij,l cil,
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where99

cil =

1 if z(sl) = i,

0 otherwise,

and the weight wij,l is the component in the i-th row and j-th column of the100

matrix Wl; such weights are calculated by solving the following system of101

linear equations:102 
T(s1 − s1) · · · T(sn − s1)

...
. . .

...

T(s1 − sn) · · · T(sn − sn)



W1

...

Wn

 =


T(s0 − s1)

...

T(s0 − sn)

 .

This system of equations, which can also lead to the CoKriging equations,103

is singular. However, it can be solved through the constraints proposed by104

Carle and Fogg (1996).105

In order to obviate axiomatic problems arising from the Kriging approx-

imation, the path methods (Li, 2007; Li and Zhang, 2007) considered the

following approximation under the assumption of conditional independence:

Pr

(
Z(s0) = zi

∣∣∣∣∣
n⋂

l=1

Z(sl) = z(sl)

)
≈ Pr

(
Z(s0) = zi

∣∣∣∣∣
m⋂
l=1

Z(sl) = zkl

)
∝

∝ tk1i(s0 − s1)
m∏
l=2

tikl(s0 − sl).

These methods are characterized by following a fixed or random path of106

unknown points, which are predicted or simulated by conditioning on the of107

the previous prediction point.108

Other approximations were proposed in order to improve the Kriging109

deficiencies. In particular, Bogaert (2002) introduced a Bayesian procedure110
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exploiting the maximum entropy, which was successively considered by Allard111

et al. (2011) to justify the usage of the following approximation:112

Pr

(
Z(s0) = zi

∣∣∣∣∣
n⋂

l=1

Z(sl) = z(sl)

)
≈

pi

n∏
l=1

tikl(s0 − sl)

K∑
i=1

pi

n∏
l=1

tikl(s0 − sl)

.

3. spMC features113

The spMC package is basically a collection of functions not implemented114

in other software, which can be grouped according to their purposes as sum-115

marized in Table 1. Since the package was designed for intensive geostatis-116

tical computations, part of the code deals with parallel computing via the117

OpenMP constructs (OpenMP Architecture Review Board, 2008). For ex-118

ample, the setCores() function permits the user to choose the number of119

CPU cores that will be used by the other functions of the spMC package.120

Some of the functions implement descriptive geostatistical tools, which121

are useful for a better understanding of the process and essential for the122

parameter estimation of the model.123

Graphical tools were developed to help the user to choose the model.124

These tools are often used for initial evaluations on the input data. From a125

visual inspection of these graphics, it is possible to analyze the distribution126

of the stratum thicknesses/lengths along a given direction.127

Once the transition rates have been estimated with the chosen model128

fitting algorithm, it is possible to calculate the theoretical transition prob-129

abilities for a set of multidimensional lags. This transition probabilities are130
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Table 1: Most important user functions in the spMC package.

Tasks and functions Techniques implemented in the spMC package

Descriptive geostatistical tools

which lines Points classification through directional lines

getlen Estimation of stratum lengths for embedded chains

density.lengths Empirical densities of stratum lengths

mlen Mean length estimation for embedded chains

Estimations of continuous lag models

transiogram Empirical transition probabilities estimation

pemt Multi-directional transiograms estimation

embed MC Transition probabilities estimation for embedded chains

tpfit One-dimensional model parameters estimation

multi tpfit Multidimensional model parameters estimation

Categorical spatial random field simulation and prediction

sim Random field simulations and predictions

quench Quenching algorithm for simulation adjustments

Graphical tools

plot.transiogram Plot one-dimensional transiograms

mixplot Plot multiple one-dimensional transiograms

contour.pemt Display contours with multi-directional transiograms

image.pemt Images with multi-directional transiograms

image.multi tpfit Images with multidimensional transiograms

boxplot.lengths Boxplot of stratum lengths

hist.lengths Histograms of stratum lengths

High performance computational tools

setCores Set the number of CPU cores for HPC
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used in spMC package for simulation of the lithological categories, while131

predictions are by-products of the function sim().132

3.1. Descriptive tools133

Most of the descriptive tools of the spMC package are based on graphical134

analyses, with a subset adopted for inferential purposes. In fact, the study135

of stratum thicknesses/lengths is relevant for guiding the decision of which136

computational method to adopt for estimating the mean lengths. The anal-137

ysis of the empirical distribution of stratum lengths is mainly based on the138

evaluation of quartiles and extreme values through the basic technique of the139

boxplot diagrams, which is implemented in the function boxplot.lengths().140

Another technique is available for the empirical estimation of the stratum141

lengths distribution, which is performed by the function density.lengths(),142

and it is based on the kernel-smoothing approach.143

Further descriptive tools are the analyses of empirical, multi-directional144

and theoretical transiograms. However, the descriptive analysis of the tran-145

siograms can be performed only after an accurate inferential analysis. For ex-146

ample, the function mixplot() is used to check for probabilistic anisotropies147

by comparing one-dimensional empirical transiograms along several direc-148

tion. Similar analyses can be performed also for multidimensional models,149

e.g. when the function contour.pemt() is applied to an object resulting from150

the function pemt().151

3.2. Inferential tools152

The implementation of the one-dimensional experimental transiogram153

computation is based on two subsequent steps. In primis, a selection of points154
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which belong to specific directional-lines is common to all transiogram esti-155

mation methods. This technique is implemented in the function which lines(),156

which classifies observation coordinates along a chosen direction. After this,157

the estimation of the empirical transiogram is performed by counting the158

transitions among categories along the classified lines. The absolute transi-159

tion frequencies are then normalized to obtain the transition probabilities as160

relative frequencies. Both directional classification and transition probabil-161

ity estimation are performed by the usage of the function transiogram(),162

which also computes the standard errors by assuming the asymptotic nor-163

mality of the estimates. These standard errors are then used by the function164

plot.transiogram() to produce confidence intervals by the inversion of the165

Wald type interval for the log odds (Stone, 1996; Brown et al., 2001).166

One-dimensional theoretical transiograms are computed differently, be-167

cause they require the estimation of the model parameters for computing168

the transition probabilities. In practice, the function tpfit() allows the169

selection from three different rate estimation techniques through a specific170

argument:171

• the mean lengths method (method = "ml"), which is based on the esti-172

mation of mean lengths and the transition probabilities of the embed-173

ded Markov chains by the functions mlen() and embed MC() respec-174

tively. The resulting quantities are used to estimate the parameters;175

• the maximum entropy algorithm (method = "me"), which is iterative176

and requires few iterations to converge;177

• the iterated least squares technique (method = "ils"), which was de-178

11



veloped for reducing the discrepancies between the experimental tran-179

siogram and the theoretical model by relaxing the mathematical con-180

straints on the parameters.181

Multidimensional transiogram estimation can be viewed as an extestion182

of the one-dimensional methods. The function multi tpfit() allows for183

the parameter estimation along multiple orthogonal axes. These parameters184

will be ellipsoidally interpolated for the calculation of transition rates along185

non-orthogonal directions. As for the one-dimensional models, the three186

estimation techniques previously exposed are chosen by a specific argument187

of the functions multi tpfit().188

Multi-directional transiograms are computed either with ellipsoidal inter-189

polation or without. The function pemt() allows for the computation of the-190

oretical transition probabilities for any chosen direction without ellipsoidal191

interpolation.192

3.3. Simulations and predictions tools193

Three different techniques were considered to approximate the conditional194

probability in (3). The function sim() allows the selection of the method for195

simulation, in particular:196

• the Kriging methods are implemented for the indicator Kriging and197

indicator CoKriging. The Kriging approach is usually adopted for pre-198

diction, but it is used in the spMC package mainly for sequential simula-199

tions. In addition, it is possible to adjust the simulations by performing200

the quenching algorithm implemented in the function quench();201

12



• a fixed and random path algorithms are available, and they can be se-202

lected by logical argument fixed. By default a random path algorithm203

is performed, because its results are more consistent with reality;204

• the maximum entropy approach, which was proposed by Allard et al.205

(2011) for avoiding the entropy optimization. It performs an aggre-206

gation of transition probabilities to approximate the optimal solution.207

This particular setting reduces the computations with respect to the208

Bogaert’s proposal (2002).209

Furthermore, these three methods produce also predictions by combining210

the transition probabilities calculated through the theoretical model in (1),211

where the transition rates in the matrix Rh are calculated as in (2). In212

doing so, a considerable computational efficiency is achieved for computing213

an approximation of the distribution at each point in the simulation grid.214

4. Case study215

The package includes the 3D data-set ACM, related to a sediment deposit216

of about 300 m in longitude (X direction), 500 m in latitude (Y direction)217

and 400 m in depth (Z direction), located in Scorzé area (Venetian plain, NE218

Italy) (Figure 1), consisting of a collection of eleven simplified lithostratigraf-219

ical borehole data. The lithologies of these boreholes were simplified in three220

different cases. In the first categorical data set (MAT5) the local lithology221

was simplified in five lithologies (Clay, Sand, Mix of Sand and Clay, Gravel,222

Mix Sand and Gravel), in the second one (MAT3) in three lithologies (Clay,223

Sand, Gravel) and finally the third one the lithostratigraphy was simplified224
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Figure 1: Geographical location of the borehole data.
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in only two permeability categories (TRUE, FALSE). Geologically Venetian225

plain can be roughly divided in “high”, “low” plain. The high plain is es-226

sentially of fluvial origin, but also glacial and fluvioglacial origin near the227

pre-Alps. This area is principally composed of gravel, particularly the sedi-228

ments are made by very permeable gravel and pebbly materials. Transition229

between the high and low plain, of about 2-5 kilometers wide, is represented230

by the “fontanili” belt. In this zone the gravels decrease in thickness split-231

ting them into sub-horizontal gravelly layers separated by silty and/or clayey232

beds, sometimes interbedded with clay layers. The low plain starts where233

the gravel layers move to sand until the Adriatic coast. Low plain presents234

a subsoil composed essentially by silt and clay layers interposed with sandy235

layers. In this part the gravels are absent, with some exceptions found, at236

considerable depths (e.g. up to 300 meters in depth)(Carraro et al., 2013;237

Fabbri et al., 2011). In the high plain an undifferentiated aquifer is present,238

where water table is at maximum depth, this aquifer Southeastern becomes239

a multi-layered confined or semi-confined aquifer system directly connected240

with the unconfined. The water table outcrops in the most depressed zones241

originating the typical plain springs called “fontanili”, where the water table,242

being very shallow, intersects the topographic surface (Vorlicek et al., 2004;243

Fabbri and Piccinini, 2013). This discharge band of the unconfined aquifer244

can be from 2 to 10 kilometers wide, draining the unconfined aquifer and245

representing the source of some important Venetian river. Hydrogeologically246

ACM data set concerns the area southern of the “fontanili” belt in area of247

essentially gravelly multi-layered confined or semi-confined aquifer system.248
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Figure 2: Empirical (full black line) and theoretical (dashed line) transiogram along Z

direction. They are calculated with the MAT3 variable. The light-grey lines correspond

to the upper and lower confidence bounds for 99% coverage probability.

4.1. One-dimensional lags model249

The empirical transiogram exposed in Figure 2 is computed with 100250

lags of 1 meter by considering all couples of points along Z direction within251

a maximum distance of 100 meters. The light-grey lines corresponds to the252

upper and lower confidence bounds calculated with 99% coverage probability.253

From a graphical inspection of the transiogram, it is possible to establish if254

the process is stationary. In fact, the empirical transition probabilities should255

approximately converge to the relative frequency of the observed materials256
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as the lag-length tends to infinity (see theoretical transiogram by looking at257

each column in Figure 2). For this reason, the transition probabilities (by258

columns) corresponding to the farthest distances are respectively close to259

0.62, 0.30 and 0.08 for Clay, Gravel and Sand.260

By comparing two or more transiograms drawn for different directions,261

one can check if there is directional dependence on the data (especially if262

these are located on a regular sample grid). The process is anisotropic if263

the transition probabilities are dependent on the directions. In most cases,264

this aspect is more obvious when the distances between points along different265

directions are measured at different scales. For example, the distance between266

points along Z direction can be measured in meters, while it is expressed in267

kilometers along X and/or Y direction. However, a more quantitative method268

for inspecting this issue makes use of multidirectional transiograms and is269

useful when relatively abundant data are available in all three dimensions.270

Multidirectional transiograms are based on theoretical transition proba-271

bilities calculated from the estimates of transition rates per multiple chosen272

directions. This method exploits the implementation of the tpfit ml() func-273

tion, which is computationally faster than the tpfit me() function. Once the274

transition probabilities are calculated for specific lags, they can be organized275

and represented on few graphics as in the left column of Figure 3.276

4.2. Multidimensional lags model277

Multidimensional models are required to calculate transition probabilities278

in multidimensional spaces. In fact, even if it is possible to estimate for any279

direction the transition rates, and hence the corresponding probabilities, it280

is not computationally feasible to deal with one-dimensional models along281
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Figure 3: Multidirectional transiograms, and multidimensional transiograms derived from

the interpolation of the theoretical model in (1).
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multiple directions. Multidimensional model interpolate the transition rates282

along the main axis to obtain a suitable approximation. In so doing, the283

resulting transition probabilities are more regular, as shown in Figure 3.284

Since the evaluation of these probabilities is computationally more efficient,285

it is preferable to adopt theoretical probabilities calculated with interpolated286

rates, especially when the number of points in the simulation grid is large.287

The transition probabilities shown in the right column of graphics in Fig-288

ure 3 share some common patterns with those exposed on the left column.289

This tool is used to study the probabilistic anisotropy along several direc-290

tions, the juxtaposition of categories, and the variations of the transition291

probabilities with respect to both the direction and the distance from the292

center of each representation.293

4.3. Spatial simulations and predictions294

From a geological viewpoint, spatial simulations and predictions are nec-295

essary tools for lithological reconstruction and mapping. However, these296

statistical techniques can be computationally intensive, and therefore, ex-297

ploitation of HPC techniques can be advantageous.298

The main computational issues in classical geostatistics are related to the299

inversion of a variance-covariance matrix to obtain Kriging predictions for a300

large number of points in the simulation grid. In this context, both indicator301

Kriging and CoKriging must solve a system of simultaneous equations where302

the only few k-nearest neighbors are used instead of the whole observations.303

Similarly, the method proposed by Allard et al. (2011) can also use a reduced304

conditional probability for better computational achievements (even when305

parallel computing is not performed). In the following, a value of k = 12 was306

19



considered, which is the default value of the function sim(). The choice of307

k is subjective, because, at the best of our knowledge, no selection methods308

for k have been developed for lithological data yet.309

To show the computational advantages of the implemented algorithms, a310

regular simulation grid is constructed within the sample space. It consists311

in 21 × 21 × 21 simulation points, which cover a volume of 293m × 477m ×312

400m. Spatial simulations and predictions were performed with a 16-core313

AMD64 CPU at 2.4 GHz. Simulations were repeated by using 1, 8 and314

16-cores. In particular, Kriging algorithms were executed by considering 32-315

nearest neighbors and path algorithms with a search radius of 200 meters.316

The efficient maximum entropy method was performed by considering the317

transition probabilities among all points (as in the original formulation) and318

also with 32-nearest neighbors.319

Table 2: Execution time in seconds.

IK ICK FP RP MCS MCSKNN

Serial (1 core) 7.301 7.963 12.554 13.216 97.882 3.886

Parallel (8 cores) 2.738 3.352 12.553 13.212 21.307 1.408

Parallel (16 cores) 2.445 3.233 12.557 13.216 16.948 0.967

From Table 2, which reports the elapsed execution time for each algo-320

rithm, one can perceive a drastic time reduction with respect to sequential321

computing. Indicator Kriging (IK) and CoKriging (ICK) are similar, even if322

indicator Kriging performs faster because it processes less information than323

CoKriging. Path algorithms are sequential. They are not affected by the324

use of multiple processors. However, the fixed path algorithm (FP) perform325
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faster then the random path algorithm (RP), because the sequence of points326

to predict is already known and it does not require extra calculations. The327

efficient maximum entropy categorical simulations (MCS) are the slowest,328

while they become the fastest when the conditional probability is calculated329

with the k-nearest neighbors (MCSKNN).330

IK ICK FP RP MCS MCSKNN

Parallel code (8 cores)
Parallel code (16 cores)
Parallel code (Inf cores)

Computational speed−up

Forecast methods

S
pe

ed
−

up
 r
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io

0
2

4
6

8
10

Figure 4: Computational efficiency of the simulation and prediction methods.

After looking at the Figure 4, it is possible to establish which algorithm331

has a strong impact on high performance computing and scalability (Ku-332

mar and Gupta, 1994). In fact, the computational efficiency (measured as333

speed-up time) is calculated through the ratio of the execution time between334

serial code and parallel. The maximum speed-up with infinity cores can be335

approximately computed as the product of the sequential execution time and336
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the fraction of code which is not parallelizable. Figure 4 shows that Kriging337

methods improve their efficiency when HPC techniques are used. However,338

the most substantial improvements obtained by parallel computations are339

shown for the efficient maximum entropy methods.340

5. Conclusions341

In comparison with other software used for predicting and simulating342

lithological categories, spMC is based on a theoretical framework which fo-343

cuses on transition probabilities rather than covariances/variograms or multi-344

point geostatistics. The spMC package is able to produce results more effi-345

ciently by high performance computational techniques, and it can be used on346

several platforms (Linux, Windows and Mac). It is the unique open-source347

software which implements several estimation procedures of transition prob-348

abilities, and the more advanced simulation-prediction techniques based on349

maximum entropy by geostatistical transition probabilities. Currently, the350

Gslib library (Deutsch and Journel, 1998) and SGeMS (Remy et al., 2009) are351

the most known free-source softwares for lithological simulation/prediction352

based on variogram via Kriging/CoKriging. T-PROGS (Carle, 1999) is based353

on transition probabilities and Kriging/CoKriging, which is also available as354

a stand-alone or as an add-on in GMS groundwater model. Mainly, spMC355

supports parallel computing, and hence its results are produced more ef-356

ficiently and several lithological categories can be more readily supported.357

The results of spMC package can be visualized into R through other pack-358

ages, or exported from R and used in other software. For example, they can359

be exported in ASC format and imported in GIS software or can be used in360
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groundwater modeling. They can be exported in CSV format and used to361

draw probabilistic maps in open-source software like ParaView (Squillacote,362

2007) or for the visualization per each category of the occupancy volumes363

(see, for example, the probability map of Figure 5 for Sand category).364

Figure 5: Random-path results, obtained for Sand category, as displayed by Paraview

software.

The development of the spMC package will continue. In the future, we365

plan to include non-parametric estimates of transiograms by means of kernel366

methods (Allard et al., 2011) and other probabilistic aggregations (Allard367

et al., 2012). Additional validation functions will be also included to allow for368

the comparison of simulation/prediction probabilities and actual categorical369

variables.370
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