
This is a repository copy of Gaussian process emulators for quantifying uncertainty in CO2
spreading predictions in heterogeneous media.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/115569/

Version: Accepted Version

Article:

Tian, L., Wilkinson, R.D. orcid.org/0000-0001-7729-7023, Yang, Z. et al. (3 more authors) 
(2017) Gaussian process emulators for quantifying uncertainty in CO2 spreading 
predictions in heterogeneous media. Computers and Geosciences, 105. pp. 113-119. 
ISSN 0098-3004 

https://doi.org/10.1016/j.cageo.2017.04.006

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Gaussian Process Emulators for Quantifying1

Uncertainty in CO2 Spreading Predictions in2

Heterogeneous Media3

Liang Tiana, Richard Wilkinsonb, Zhibing Yanga, Henry Powerc, Fritjof4

Fagerlunda, Auli Niemia5

aAir, Water and Landscape Sciences, Department of Earth Sciences, Villavägen 16, SE-7526
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Abstract11

We explore the use of Gaussian process emulators (GPE) in the numerical sim-12

ulation of CO2 injection into a deep heterogeneous aquifer. The model domain13

is a two-dimensional, log-normally distributed stochastic permeability field. We14

first estimate the cumulative distribution functions (CDFs) of the CO2 break-15

through time and the total CO2 mass using a computationally expensive Monte16

Carlo (MC) simulation. We then show that we can accurately reproduce these17

CDF estimates with a GPE, using only a small fraction of the computational cost18

required by traditional MC simulation. In order to build a GPE that can pre-19

dict the simulator output from a permeability field consisting of 1000s of values,20

we use a truncated Karhunen-Loève (K-L) expansion of the permeability field,21

which enables the application of the Bayesian functional regression approach.22

We perform a cross-validation exercise to give an insight of the optimization23

of the experiment design for selected scenario: we find that it is sufficient to24

use 100s values for the size of the training set and that it is adequate to use as25

few as 15 K-L components. Our work demonstrates that GPE with truncated26

K-L expansion can be effectively applied to uncertainty analysis associated with27
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1. Introduction1

Planning and operation of a carbon dioxide capture and storage (CCS)2

project requires reliable model predictions concerning the fate of the stored3

CO2. Carefully conducted numerical simulations are critical for the under-4

standing of the associated coupled physical and chemical processes (Pruess and5

Garćıa, 2002; Juanes et al., 2006; Doughty, 2007; Dai et al., 2016; Bacon et al.,6

2016; Xiao et al., 2016). An important additional complication arises from the7

geological heterogeneity of the target formation, such as stratigraphic archi-8

tecture and facies distribution, which is difficult to estimate from the limited9

number of observations available (i.e., from the sparse networks of primarily10

vertical investigation wells) in a deterministic manner (Ambrose et al., 2007;11

Tsang et al., 2008; Gershenzon et al., 2015; Ritzi et al., 2016; Tian et al., 2016b;12

Ampomah et al., 2016). Therefore, robust and computationally effective meth-13

ods for dealing with the uncertainty arising from the geological heterogeneity14

are in great need. In general, two components contribute to the modelling15

uncertainty for CO2 geological storage: (1) input uncertainty, including the16

aforementioned parameter uncertainties (unknown geology), and (2) model un-17

certainty, or “structural uncertainty” according to the conventional hydrological18

modelling terminology (Renard et al., 2010), as modelling approaches are de-19

veloped under different conceptual and methodological frameworks, involving20

various approximations and simplifications. An example on the latter is the21

work reported by Nordbotten et al. (2012), where a benchmark simulation case22

was run with various numerical codes and effort was made to evaluate the signif-23

icance of deviated solutions from various modelling strategies and assumptions.24

In the present work, we focus on the input uncertainty.25

Standard geostatistical techniques are used to resolve the input uncertainty26

when evaluating reservoir CO2 storage performance. For example, the Um-27

brella Point power plant model (based on the Frio formation) was created using28

TProGs program by Doughty and Pruess (2004) where multiple two-dimensional29
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stochastic representations of fluvial depositional settings were picked deliber-1

ately to reproduce realistic three-dimensional geologic structures. A sequential2

indicator simulation approach was used by Flett et al. (2007) to create realistic3

shale facies distribution for 3-D notional marine sand system models with vary-4

ing net-sand-to-gross-shale ratios. A sequential Bayesian simulation technology5

was used by Claprood et al. (2014) in constructing a porosity distribution for a6

3-D model of Beauharnois Formation to understand its CO2 storage potential.7

In terms of the characterization of the spatial permeability distribution, Han8

et al. (2010) created multiple two-dimensional permeability fields with inclusion9

of low permeability lenses using a sequential Gaussian simulation approach. Dis-10

cussions on effects of the permeability heterogeneity include the contributions11

from Jahangiri and Zhang (2011) with a focus on the plume distribution, and12

from Lengler et al. (2010) with a focus on small-scale heterogeneity (< 100m).13

Using a macroscopic invasion percolation model, Yang et al. (2013) performed a14

detailed parametric sensitivity study on upscaled capillary pressure-saturation-15

relative permeability relationships for CO2 migration in multimodal heteroge-16

neous media. A more recent sensitivity study was reported by Tian et al. (2016a)17

where the parameters controlling the spatial correlation structures of the per-18

meability fields were systematically analysed so as to understand their effects19

on CO2 storage performance.20

A Monte Carlo simulation method is normally used when a deterministic21

description of the model input cannot be used (James, 1980). In this approach,22

multiple, mutually different but equiprobable realizations of the parameter field23

are generated, the model problem simulated for all of them, and the output24

analysed in terms of the statistics of the outputs. The method has been proved25

viable for the simulation of geological storage of CO2 (Jahangiri and Zhang,26

2011; Deng et al., 2012; Dai et al., 2014; Tian et al., 2016a). However, an obvi-27

ous limitation for the method is the high computational cost, which limits the28

number of possible runs for large-scale, long-term simulations of CO2 migration29

in 3-D heterogeneous medium. This in turn violates the underlying criteria of30

the Monte Carlo approach, which require the model to be run at many input31
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configurations in order to accurately infer the uncertainty in the model pre-1

dictions. Therefore, new reduced-order models that can capture the essential2

behaviour of the fully physically based models, yet avoiding the prohibitive com-3

putational cost of them are of great interest. A general overview on surrogate4

modelling in water resources was given by Razavi et al. (2012). More recently,5

Liu et al. (2013) developed geostatistical reduced order models (GROMs) in6

the parameter domain to solve under-determined inverse problems addressing7

subsurface multiphase transport.8

In this paper, we propose a Bayesian approach for uncertainty analysis (UA),9

that is, the forward propagation of uncertainty through a model. We focus10

on simulators such as TOUGH2 / ECO2N (Pruess et al., 1999; Pruess and11

Spycher, 2007), which are used for the numerical simulation of CO2 injection12

into deep heterogeneous aquifers. These numerical models (called the simulator)13

are deterministic, meaning they will always produce the same output if the input14

is known exactly, and thus can be regarded as mathematical functions f(·). As15

we are uncertain about the input Z (i.e., the true permeability is unknown),16

this uncertainty is transferred to f(Z), so that we are uncertain about the best17

prediction. The objective of uncertainty analysis is therefore to estimate the18

distribution of f(Z), given a distribution for inputs Z.19

2. Methodology20

We present the modeling problem and describe the quantities of interest in21

Section 2.1. In Section 2.2, we present the method to simulate the random22

permeability field. In Section 2.3, we describe the Gaussian process emulation23

(GPE) methodology and it application to our problem. A complete procedure24

to our implementation of GPE is given in Section 2.4. In Section 2.5 we describe25

the use of GPE for uncertainty analysis.26

2.1. Modelling of CO2 migration in a heterogeneous aquifer27

We consider supercritical CO2 injection from a vertical borehole, and we28

simulate CO2 migration until the CO2 plume front reaches the monitoring well29
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at the far end of the domain (Fig. 1). The simulations are performed using the1

TOUGH2/ECO2N code (Pruess et al., 1999; Pruess and Spycher, 2007). The2

quantities of interest are the breakthough time (BT) and the total mass (TM)3

of the injected CO2. For the numerical experiments where we want to address4

the uncertainty caused by heterogeneity, we vary the correlation length of the5

randomly generated permeability fields, but use a fixed standard deviation (see6

2.2). A more detailed description is given in the Supplementary Information(SI).7

In this work, we use the notation Z to denote the permeability spatial field8

and want to find the distribution of f(Z) given the distribution of Z, where f(·)9

represents the simulator output (e.g., either the total mass or the breakthrough10

time of the CO2). In other words, our objective is to estimate the cumulative11

distribution functions (CDFs)12

F (y) = P(f(Z) ≤ y). (1)

The CDFs can be estiamted using a Monte Carlo (MC) approach if sufficient13

computer power is available. If Z1, . . . , Zn is a large sample from log-Gaussian14

random field (log-GRF) we are using to model the heterogeneous permeability15

field, then the empirical CDF (ECDF),16

F̂ (y) =
1

n

n
∑

i=1

If(Zi)≤y, (2)

is an unbiased estimator of the CDF. Here, IA is an indicator function taking17

value 1 if event A occurred and 0 otherwise.18

2.2. Modelling the heterogeneous permeability field19

We consider a representation of Z on a two-dimensional mesh grid with a20

finite resolution 100× 20. The x in the notation Z(x) is the location coordinate21

vector, emphasizing that Z is location dependent. Our prior model for Z is22

logZ ∼ N(µ,Σ), (3)

where we specify Σ through a covariance function that describes the permeabil-23

ity covariance between any two locations in the domain, i.e., Σij = c(xi, xj)24

5



Figure 1: Conceptual model of the simulation domain (Tian et al., 2016a)

.

for some covariance function c, and spatial locations xi and xj . Several tech-1

niques exist to simulate realisations from this distribution, including circulant2

embeddings, Karhunen-Loève expansions and stochastic collocation (Graham3

et al., 2011). The method of Karhunen-Loève (K-L) decomposition is used in4

our work. The Karhunen-Loève theorem says that Z(x) admits a representation5

of the form6

Z(x) =

∞
∑

i=1

ξiλiφi(x) (4)

where the λi and φi(x) are the ordered eigenvalues and eigenfunctions of the7

covariance function respectively, and the ξi are independent N(0, 1) random8

variables. Note that if interest lies solely in the value of Z on a finite grid of9

n values (as in our case), then this reduces to a finite sum of n terms, and the10

K-L decomposition provides an exact decomposition of the correlation function11

on the discrete grid (Crevillén-Garćıa et al., 2017). To reconstruct Z(x), only12

the {ξi}
n
i=1 need to be saved, since λi and φi are determined by the covariance13

function and thus remain the same throughout the uncertainty analysis. The14

simulator is then considered as a function of ξξξ = (ξ1, . . . , ξn)
⊤ instead of Z, i.e.,15

f(Z) ≡ f(ξξξ).16

In order to calculate the CDFs of the target quantities and evaluate the17

performance of the GP emulator, two datasets are generated for each of three18

selected scenarios where we vary the correlation-length of the unknown per-19

meability fields (Table 1, first three rows). The first dataset consists of 10420

input-output pairs and is used to produce a MC estimate of the CDF; the sec-21
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ond dataset consists of a smaller number of numerical simulations and is used1

for training the emulator. The overall procedure is illustrated in Fig. 2 and is2

further explained in the following section.3

2.3. Gaussian process emulation4

An emulator (Kennedy and O’Hagan, 2000) is a statistical model that closely5

mirrors a simulator. It is built using an ensemble of input-output pairs {Xi, yi}
N
i=16

and can be used to predict the simulator output for any new input. The most7

popular approach to building emulators is to use a Gaussian process (GP) (Ras-8

mussen and Williams, 2006), which are equivalent to the kriging models used9

in geostatistics (Stein, 1999). Gaussian processes describe an infinite collec-10

tion of random variables, and can be thought of as distributions over functions11

(Rasmussen and Williams, 2006; Crevillén-Garćıa et al., 2017). A GP is fully12

specified by its mean and covariance functions (Rasmussen and Williams, 2006).13

In our case, direct application of GP would be computationally costly for that14

a 2, 000 dimensional input space would require thousands of training samples (as15

the hyperparameters associated with each input component are estimated from16

the simulator data by solving an optimisation problem, e.g., Crevillén-Garćıa17

et al., 2017). Instead, we can construct a GP emulator by exploiting the spatial18

structure in Z provided by the exact decomposition of Z on a discrete grid. If19

we order the eigenvalues in Eq.(4) so that λ1 ≥ λ2 ≥ . . . ≥ λn, then we can20

achieve a form of data compression by truncating the expansion to the first d21

terms22

Z̃(x) =

d
∑

i=1

ξiλiφi(x), (5)

and thus representing the permeability in a lower dimensional space. This trun-23

cation explains the most variance and achieves the minimum mean square error24

amongst all such approximations. We exploit this truncation in order to build25

a reduced order emulator from Z̃ rather than Z, which is equivalent to building26

an emulator with input ξξξ = (ξ1, . . . ξd)
⊤.27

The emulator requires the simulator to be run a small number of times28

(ntrain) at carefully selected inputs (design points) to create a set of training29
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Figure 2: Comparing procedures for estimating CDFs using Monte Carlo simulation

(TOUGH2/ECO2N) and Gaussian process emulation. The thickness of the arrow illustrates

the relative computational cost.

inputs (See Fig.2). Because the simulation of Z is based on a truncated K-1

L expansion, the training ensemble is a set {ξξξi, yi}
ntrain

i=1 where each ξξξi ∈ R
d.2

Space-filling designs (McKay et al., 1979; Morris and Mitchell, 1995) are recom-3

mended for GP models, as GP predictions essentially interpolate based on the4

distance to a few of the nearest training points. We use the maximin Latin hy-5

percube designs which maximise the minimum distance between any two points6

in the training set. We will examine the optimal value of d and ntrain using7

predictive performance measures in Section 4.8

The implementation of GPs require that we specify prior mean and co-9

variance functions. We use a constant mean function and choose between the10

squared exponential and Matérn covariance functions. The hyperparameters in-11

volved in these two terms are estimated through training using type II maximum12

likelihood (Rasmussen and Williams, 2006). We use the GPstuff implementa-13

tion of Gaussian processes (Vanhatalo et al., 2012), which are a set of MATLAB14

codes integrating Gaussian process models for Bayesian analysis. Notice that15

the GP covariance function (also called the kernel) should be distinguished from16

the one mentioned earlier in describing the spatial correlation of the permeabil-17

ity field.18
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2.4. GP emulation with K-L truncation1

We summarize the procedure as follows:2

1. Choose design ξξξni=1 using a maximin Latin hypercube design where ξξξ ∈ RN
3

2. Run simulator to obtain training set {ξξξi, yi}
n
i=1. We then truncate each ξξξ4

to the first d elements. The value of d will be optimized in Step 6.5

3. Pick a prior mean functionm(ξξξ) = E[f̂(ξξξ)] and covariance function k(ξξξ, ξξξ′) =

Cov(f̂(ξξξ), f̂(ξξξ′)) where f̂(·) is the emulator. For example, the square ex-

ponential (SE) covariance function is

k(ξξξ, ξξξ′) = σ2 exp

(

−
1

2

|ξξξ − ξξξ′|2

λ

)

where λ is a length scale hyper parameter, and σ2 a variance parameter.

We denote the GP prior by:

f̂(ξξξ) ∼ GP(m(ξξξ), k(ξξξ, ξξξ′)).

4. Update the GP to find the posterior mean (m*) and covariance functions

(k*) using equations:

m∗(ξξξ) = m(ξξξ) + t(ξξξ)⊤K−1(y −m),

k∗(ξ∗, ξ∗) = k(ξξξ, ξξξ)− t(ξξξ)⊤K−1t(ξξξ)

where Kij = k(ξξξi, ξξξj) is the Gram matrix, t(ξξξ)⊤ = (k(ξξξ1, ξξξ), . . . , k(ξξξn, ξξξ)),6

and m and y are the vectors of simulator responses and their prior mean7

for the emulator. Note that the posterior is a GP conditioned on the8

training set.9

5. Optimize the hyperparameters, such as λ, σ2 in SE, by maximising the10

type II maximum likelihood (see Rasmussen and Williams, 2006).11

6. Optimize the choice of d, the covariance function, etc, using cross-validation12

to estimate a measure of the predictive performance.13

2.5. Using GP for UA14

Once we have a GP emulator of the simulator, we can use it to predict the15

simulator CDF and to quantify the uncertainty in our estimate. To estimate16
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the CDFs, we use the procedure suggested in Oakley and O’Hagan (2002). This1

involves drawing sample functions {fj}
L
j=1 from the GP that are consistent with2

the training data by adding in new design points {ξξξ∗i }
1000
i=1 , and simulating a value3

for the response from the GP emulator. We then update the emulator to take4

into account the fake simulated data. The placement and number of additional5

design points is chosen so as to make the uncertainty in the simulated functions6

fj essentially zero. We then estimate the CDF for each simulated function7

using Monte Carlo in the usual manner, giving us L realizations F ∗
1 , . . . F

∗
L.8

From this we use the median of the CDFs as a point estimate, and can calculate9

uncertainty about our estimates using the ensemble of CDFs.10

3. Results11

3.1. Estimating the CDF12

Each quantity of interest (total mass (TM) or breakthrough-time (BT)) from13

each of the three cases (three different models for the unknown permeability14

field) is considered as a standalone problem. As the training set is based on a15

Latin hypercube design, we use a fixed number of training points (Table 1) to16

construct each of the three GP structures. For each emulated ECDF curve, 1,00017

random sample points are first generated using a pseudorandom number (vector)18

generator in Matlab assuming a dimension corresponding to dtrain = 30 (Case19

1) or dtrain = 20 (Case 2 and 3). Then, this set of random inputs, together with20

the corresponding training pairs, were used to feed the designated GP structure21

in order to produce / draw one sample from the posterior distribution. For each22

quantity of interest, 100 posterior samples (L = 100) were used to calculate the23

median ECDF. Note that this is computationally cheap as it does not involve24

running the TOUGH2/ECO2N simulator25

Fig. 3 shows the breakthrough time for Case 1. The GP curve is the median26

CDF calculated from the 100 posterior samples. The confidence intervals of27

the MC CDF are omitted for visual clarity. The dashed lines (posterior credible28

intervals) indicate that the MC CDF is enveloped within the emulator confidence29
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Table 1: Case specifications and results for model selection

Case No. 1 2 3

Correlation length 0.075 0.15 0.30

size of MC set NMC 10,000 10,000 10,000

size of training set ntrain 800 400 400

dimension of the training set dtrain 30 20 20

CRPSBT,Matérn 0,00640 0,00193 0,00153

CRPSBT,SE (dtrain = 20) 0,00108 0,00187 0,00135

CRPSTM,Matérn 0,00490 0,00766 0,00975

CRPSTM,SE (dtrain = 20) 0,02489 0,02508 0,02534

intervals. Excellent matches are observed: for all cases examined, the median1

GP curves replicate the MC ones almost exactly. The mean CRPS (Continuous2

Rank Probability Score, see the SI) for the three correlation length cases are3

0.00640, 0.00193 and 0.00153, respectively. A similar procedure was used for4

the total CO2 mass (TM) at the breakthrough time. The TM ECDF curves5

from the MC are also well predicted by the median GP results. The TM result6

exhibits a slightly less good match in comparison to the observation from the7

BT, especially for the lower and upper tail of the ECDF. However, the 5th to8

the 95th percentiles of the GP prediction agree closely with the MC results. The9

CRPSs for three tested cases are, respectively, 0.00490, 0.00766 and 0.00975.10

Note that for TM smaller CRPSs are observed for Case 1 in compari-11

son to the other cases (Table 1) due to a larger number of training points12

(ntrain,case1 = 800) and the higher dimension of the training inputs (dcase1 = 3013

KL components). Note also that the CRPSs for BT are noticeably smaller in14

comparison to the TM ones (one order of magnitude). Excellent agreement is15

observed for BT results (Fig. 3). For Case 2 and Case 3, the results are visually16

similar to Case 1 and are therefore not included for space considerations.17

3.2. Cross validation18

At the initial stage of the experimental design, two key factors are very dif-19

ficult to determine beforehand, namely the size of the training set (ntrain) and20

11
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Figure 3: Comparison of GP emulation vs. Monte Carlo simulations. Top: breakthrough time

(BT) recorded in seconds; bottom: the total mass of CO2 (TM).

its dimension (dtrain, the number of K-L components retained for the predic-1

tion). Using leave-one-out cross validation (LOO-CV, see also SI) can guide us2

in tackling these issues. For each GP, LOO-CV has been performed to estimate3

the predictive accuracy of the emulator in two steps: Step 1, a training set with4

fixed size is selected and the predictive performance measured using the Dawid5

score (DS), which can be thought of as being similar to the log-likelihood (see6

12



Wilkinson et al., 2011, and the SI). This score is then plotted as a function of1

the number of K-L components; Step 2, the number of K-L components is now2

fixed and the predictive performance is plotted as a function of the size of the3

training set.4

The DS estimated using LOO-CV are plotted as a function of the number of5

K-L components in Fig. 4. It is found that by using a fixed size of the training6

set for all cases, the DS score becomes stabilized when using more than 15 K-L7

components (dtrain ≥ 15). When using exactly 15 K-L components for each8

case to fit the GPs, the DS score appears to become stabilized when using a9

training set with more than 100 design points (ntrain ≥ 100, see Fig. 5).10

4. Discussion11

The investigated two dimensional model domain has 2,000 elements rep-12

resenting a spatially correlated heterogeneous permeability field. Uncertainty13

analysis using the classical MC method requires that the already computational14

demanding simulator to be run for as many as 104 times. For the GP emulator15

approach to UA, the main part of computational cost comes from the simulator16

runs needed for the training inputs. GP posterior sampling has in comparison17

virtually no computational cost. In this section we discuss the design and the18

construction of the GP emulator.19

4.1. Model configuration20

One very important aspect of using GP emulation is the choice of the covari-21

ance function that defines the nearness or similarity in the input space (Ras-22

mussen and Williams, 2006). In other words, how similar f(xxx) is likely to be to23

f(xxx′) when xxx is close to xxx′. The covariance function can be any positive definite24

function, so that it generates a valid covariance matrix for any set of inputs.25

Some of the commonly used functions are the squared exponential covariance26

function (SE) and the Matérn class of covariance functions. The SE covariance27

function generates samples that are infinitely differentiable, whereas the Matérn28

13



covariance function (with ν =
3

2
degrees of freedom) generates samples that are1

only once differentiable. It can be hard to judge in advance what the more2

appropriate model might be, but we can use CV scores to guide the choice. We3

constructed alternative GPs using both for each of the cases examined in Section4

3 (see Table 1). The ECDFs calculated using the Matérn covariance function5

(ν =
3

2
) exhibit smaller CRPS values in comparison to the ones calculated using6

SE. For the emulation of BT, there is no noticeable difference between using the7

SE or Matérn covariance functions. However, for TM the Matérn exhibits much8

better predictive performance. Notice that the choice of dtrain (the dimension9

of training points, in our case equivalent to the number of K-L components) will10

affect the performance of the GP emulator, depending on the number of train-11

ing points (ntrain). We note that the choice of covariance function can affect12

the performance of the GPE, and that more complex covariance functions can13

be obtained by combining covariance functions (see Rasmussen and Williams,14

2006, for example). A detailed discussion is beyond the scope of the current15

work, but can be found in Crevillén-Garćıa (2016).16

4.2. Cross-validation and optimization17

We would like to use the smallest number of the training inputs possible to18

create an emulator that meets our accuracy requirements. To investigate this,19

we use the method of cross-validation (CV). The idea is to split the training set20

into two disjoint sets, one of which is used for the training and the other is used21

for the validation of the emulator. Notice that such splits can be done repeatedly22

in multiple ways (k-fold CV), one extreme case is when k = n, also known as23

leave-one-out cross-validation (LOO-CV). We can use CV scores to choose the24

optimum input dimensionality (the number of K-L coefficients, dtrain) and the25

number of design training points (ntrain) to be used in the GP. The evaluation26

is done by looking at the variance of the predicted value in LOO-CV as well as27

the Dawid score for the overall prediction error.28

In our calculations, the size of the training ensemble is 800 for Case 1 but29

400 for Case 2 and Case 3. The reason for using more training sets in Case30
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Figure 4: Dawid scores indicating prediction accuracy (estimated using LOO-CV) vs. number

of K-L components retained (dtrain).

1 is that the correlation length for the log-Gaussian permeability field model1

is smaller in Case 1 than in Cases 2 and 3. Thus, the permeability varies2

over shorted distances, and so we need more K-L components to describe the3

variation well, and consequently we need a larger training ensemble to build4

an adequate emulator. For predicting the BT ECDF (Fig. 4), using 15 K-5

L components provides good results, whereas for predicting the TM ECDF,6

15



around 20 K-L components is preferred. The indication is that the calculations1

of breakthrough time and total mass for the injection simulation of CO2 are two2

very different processes.3
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Figure 5: LOO-CV Scores vs. the size of the training set (ntrain).

A priori, it is difficult to provide a precise value for an adequate or appropri-4

ate number of training points required for a GP, as, to the best of our knowledge,5

a priori estimation of the error is not possible for GPs. Optimization of the de-6

sign would mean changing the space filling design, which would mean drawing7

16



new samples ξξξi from R
d=2000. To understand whether this design improved the1

GP performance, the simulator (TOUGH2/ECO2N) would need to be rerun2

so as to generate the corresponding new training ensemble. In other words,3

one would need to build new GPs based on additional simulator runs in order4

to understand the potential gain from optimization. This would be extremely5

computationally costly, and so a different approach has been used here.6

Considering Case 1, for example, where we have generated 800 training pairs7

(ntrain = 800), we start by building an emulator, GP0,j=20, using a random8

draw (whilst trying to retain some of the space filling properties of the design)9

of j = 20 training points from initial set of 800. A first DS score can then10

be calculated for GP0,j=20 using LOO-CV. By randomly adding one training11

point at a time from the remaining training pairs, we can iteratively create12

new emulators, GPi,j=20+i. The resulting Dawid scores then reflect how the13

predictive performance improves as the sample size increases. It should be noted14

that Latin-hypercube sampling has been used to create the initial 800 points.15

The re-sample of the existing Latin-hypercube set should be path-independent.16

Fig. 5 shows the decreasing trend of DS score reflecting that more information17

is provided by the training set as the sample size increases. It can been seen that18

100 training pairs would be needed for Case 1 when building a GP for BT ECDF19

using only 15 K-L components. Note that the pattern of TM LOO-CV result20

for Case 1 (Fig. 5, lower panel) is different from the other cases. We further21

extended the LOO-CV test for Case 1 and the decreasing trend in the DS score22

was confirmed (Fig. 6). This indicates that for heterogeneous domain with a23

smaller correlation length, a larger training set may be needed for constructing24

the GP so as to achieve a similar predictive performance.25

4.3. Using GP for uncertainty analysis26

The output from each GP constructed in Section 3 is a collection of ran-27

dom variables indexed by ξξξ. An assumption has been made that the spatial28

distribution of the heterogeneous field can be adequately described by ξξξ. In a29

geostatistics perspective, the conventional perception of correlation length (λ),30

17



Figure 6: LOO-CV Scores vs. the size of the training set (ntrain), Case 1

standard deviation (σ) and the descriptive covariance function (see SI) of the1

permeability field can all be interpreted as possible projections of ξξξ.2

We use standalone GPs in predicting the ECDF for each uncertain output3

of interest. It is worth noting that the two outputs, the breakthrough time4

and the total mass, are fundamentally different processes. Fig.3 shows that5

the breakthrough time is log-normally distributed, while the total mass follows6

a normal distribution. The GP emulator prediction is noticeably better for7

log10(BT ) than for TM. This difference in reproducing the MC results may8

indicate that the dependence of TM on the underlying permeability field is more9

complex than that of BT. Additional metrics apart from the K-L expansion10

parameter (or alternative methods) describing the permeability fields may be11

needed to improve the uncertainty analysis of the total CO2 mass.12

We have shown that the use of GP for UA, in our case exploring the ECDFs13

of BT and TM, results in considerably lower computational cost compared to14

classical MC analyses. By improving the experimental design, it is possible to15

further improve the model performance.16

18



5. Concluding remarks1

We have carried out uncertainty analysis of the simulations of CO2 injection2

and migration into a deep heterogeneous saline aquifer using both MC simula-3

tion and GP emulation. We have shown how GPEs can successfully be used4

to predict ECDFs of the breakthrough time and total CO2 mass, replicating5

the ECDF estimates obtained using Monte Carlo simulation, at only a small6

fraction of the computational cost. The GPs automatically provide confidence7

intervals for the estimates of the CDF, which compare well to those calculated8

from classical MC. Our work demonstrates that GP emulators with truncated9

Karhunen-Loève expansion can be effectively applied to uncertainty analysis10

associated with modeling of multiphase flow and transport processes in hetero-11

geneous media.12

We have also examined the issues surrounding experimental design, including13

the possibilities to further optimize the GP. An optimum design may need to14

re-sample the input space, and therefore need additional simulator runs. To15

address this, an alternative approach has been taken by down-sampling the16

training set. The results from the cross-validation exercise indicate significant17

performance gain from potential optimization. This information provides a good18

starting point for further applications.19

We have treated the two outputs, namely the CO2 breakthrough time and20

the total CO2 mass as two independent processes, and built standalone GPs for21

each one. It is possible to construct a single GP with multiple outputs (Alvarez22

et al., 2011), and this may provide one future perspective for exploring the23

internal physical mechanism for a complex system. Another future aspect would24

be to use simulations of varying fidelity and then to use multilevel emulation to25

further increase the accuracy of the GPE (cf. multi-level Monte Carlo in Giles26

et al. (2015)).27

We have also explored the indication from modelling of heterogeneous media28

and identified that the conventional perception on correlation length is, from a29

geostatistic perspective, a matter of parameter bounds and dimensions. Finally,30

19



we note that future work is needed to address the limitation associated with the1

use of truncated Karhunen-Loève expansion, which is a smooth representation2

of the random field, for application to real reservoirs which often exhibit multi-3

scale permeability heterogeneity.4
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