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Abstract

Earth science data are being collected for various science needs and applications, processed using 

different algorithms at multiple resolutions and coverages, and then archived at different archiving 

centers for distribution and stewardship causing difficulty in data discovery. Curation, which 

typically occurs in museums, art galleries, and libraries, is traditionally defined as the process of 

collecting and organizing information around a common subject matter or a topic of interest. 

Curating data sets around topics or areas of interest addresses some of the data discovery needs in 

the field of Earth science, especially for unanticipated users of data. This paper describes a 

methodology to automate search and selection of data around specific phenomena. Different 

components of the methodology including the assumptions, the process, and the relevancy ranking 

algorithm are described. The paper makes two unique contributions to improving data search and 

discovery capabilities. First, the paper describes a novel methodology developed for automatically 

curating data around a topic using Earth science metadata records. Second, the methodology has 

been implemented as a stand-alone web service that is utilized to augment search and usability of 

data in a variety of tools.
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1. Introduction

Earth science domain is no stranger to explosion of data volume and variety. For example, a 

quick search on data.gov for the term “earth science” returns over 46,000 data collections. 

Data discovery has become an inherent issue for sites like data.gov, which harvests metadata 

on all open data from a wide range of federal agencies, state governments, and other 

organizations within the United States. Earth science data can be, and typically are, used for 

novel applications by unanticipated users, who must know what and where to search in order 

to discover relevant data for a specific research investigation or application. This 
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requirement of knowledge on these unanticipated users becomes both difficult and time 

consuming, and has generated the need for data curation.

Curation, which typically occurs in museums, art galleries, and libraries, is traditionally 

defined as the process of collecting and organizing information around a common subject 

matter or a topic of interest. More specifically, the act of searching, selecting, and 

synthesizing Earth science data/metadata around information from across disciplines and 

repositories into a single, cohesive, and useful collection has been defined by Ramachandran 

et al. (2016) as geocuration. For consistency throughout the paper, the term curation will be 

used to refer to geocuration since the focus of this paper is on Earth science data and 

information. Curating data sets around topics or areas of interest is a potential solution to 

improve the data discovery problem, especially for unanticipated users. Curation can be a 

manual process where the domain experts search, identify, and package the relevant data 

sets. The Climate Data Initiative (CDI) project, described by Ramachandran et al. (2016), 

utilized Subject Matter Experts (SMEs) from different federal agencies to manually curate 

and share data around key climate resiliency themes and openly available climate data from 

various federal agencies.

However, curation can also be achieved in an automated fashion. In this paper, we present a 

methodology to automate curation around well-defined topics. The topics of our focus are a 

specific set of Earth science phenomena. According to the American Meteorological Society 

(2016), a phenomenon is an observable occurrence of particular physical significance. 

Instances of specific phenomena (also referred to as events), such as Hurricane Katrina and 

the volcanic eruption of Chaitén, are of a great interest in Earth science because these events 

form the basis of case studies. Case studies are scientific investigations that examine the 

underlying governing dynamical and physical processes that drive the occurrence of a 

specific event and are a popular scientific research approach within the Earth sciences, 

Atmospheric science in particular (Schultz, 2009). Curating data around specific 

phenomenon or events improves Earth scientist’s ability to discover data for scientific 

investigation.

This paper presents a novel curation methodology that automates search and selection of 

data around a specific Earth science phenomenon and returns data sets ranked according to 

their relevancy to the specific phenomenon. This particular methodology contains several 

components (i.e., assumptions, reference query definition, and relevancy ranking algorithm) 

and has been implemented as a stand-alone operational web service that can be utilized to 

augment searches in other tools. Furthermore, the described methodology uses Earth science 

metadata records to compute relevancy ranking to enhance data search and selection. To our 

knowledge, such an approach has not been investigated within the field of Earth science.

2. Information retrieval

Information retrieval is defined as the task of finding resources of unstructured nature from a 

large collection of resources to satisfy an information need (Manning et al., 2008). A typical 

information retrieval consists of several steps. First, the user identifies a task (e.g., “assess 

the impact of Hurricane Katrina on coastal shorelines”), which generates an information 
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need (e.g., “find all relevant data sets needed to study Hurricane Katrina”) encoded as a 

query that can be executed by a search engine. Search engine utilizes underlying information 

retrieval model to analyze the encoded query and returns results for that search. Note: 

Encodings of the query will depend on search engines. In the final step, the user refines the 

query and reviews the results in an iterative manner until the results satisfy his or her needs.

Two challenges must be addressed while designing an information retrieval system: 

misformulation, where the user is unable to encode their information need to an effective 

query, and customization of an information retrieval model for the user’s particular 

application. Forming the right query requires the use of not only correct combinations of 

keywords, but also domain knowledge, which unanticipated users of data might not have, to 

obtain the best results. The customization of an information retrieval model depends upon 

the following: knowing the types of documents in your collection, understanding the 

documents in your collection, and leveraging domain knowledge to improve relevancy 

ranking scores.

Providing a mechanism for query expansion is a widely used technique employed in 

information retrieval to avoid misformulation. Query expansion involves expanding the 

original query with synonyms in order to improve retrieval performance. Qiu and Frei 

(1993) proposed a probabilistic query expansion model based on a similarity thesaurus that 

reflects domain knowledge about the particular collection. In Qiu and Frei’s model, queries 

are expanded by adding terms that are similar to the concept of the query rather than by 

selecting terms that are similar to the query terms. Ontology-based query expansion is 

another widely used method (Shamsfard et al., 2006). Bhogal et al. (2007) and Carpineto 

and Romano (2012) provide the latest review of ontology-based query expansion techniques. 

More recently, ways to compute similarity between related entities using ontologies have 

been presented by Zheng et al. (2015). However, knowledge engineering to construct robust 

ontologies tends to be labor and time intensive.

A number of information retrieval models have been developed in the past, including 

Boolean retrieval model, vector space model (Turney and Pantel, 2010), and probability 

retrieval model (Manning et al., 2008; Singhal, 2001). Most search tools available for 

finding Earth science data use a Boolean retrieval model, wherein a user query is constructed 

as a Boolean expression of search terms that can be combined with different operators such 

as AND, OR, and NOT. The returned results are an unranked list of documents where the 

search terms match and meet the operator criteria. Search tools based on the Boolean 

retrieval model are useful for expert users with a precise understanding of their needs and of 

the collection. Users of these search tools must be familiar with not only the data sets, but 

also how the data sets are represented in the metadata catalog.

Boolean retrieval models are plagued with feast problems—a return of too many results 

without any ranking—and famine problems—a return of zero results. The feast and famine 

problems associated with Boolean retrieval models force users either to wade through a very 

large list of unranked results or to expend time and energy contriving a correct query that 

will produce sufficient results. Therefore, Boolean retrieval models are not useful for 
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unanticipated users of data where the burden is on the user to formulate the right query 

attuned to the search tool.

Unlike the Boolean retrieval model where a document is either matched or not matched to 

the query, the vector space model, introduced by Salton et al. (1975), ranks the returned 

documents based on document scores, with the most relevant documents appearing at the top 

of the list. The vector space model approach models a set of documents as vectors in a 

common vector space, with each dimension defined by the terms (also known as bag-of-

words) in the whole document collection. The “document vector” can be in binary form, 

where its components are prescribed 1 if the term is in the document or 0 if the case is 

otherwise. A user query comprising of terms of the user’s interest is represented as another 

vector in the vector space. This “query vector” can be constructed with terms of equal 

weights or of different weights assigned using some quantifiable scheme. The closeness of a 

document to a query is determined by the similarity measure between query vector and 

document vector, with scores assigned accordingly.

Cosine similarity is a widely used similarity measure that calculates the angle between query 

vector and document vector (Manning et al., 2008; Salton and McGill, 1986). The smaller 

the angle or larger the cosine value, the more similar the document is to the query. The 

Jaccard coefficient (Kim and Choi, 1999) is another similarity measure, but it accounts for 

the term overlap between the query vector and document vector normalized by the union of 

terms in both of them (Manning et al., 2008; Salton and McGill, 1986).

A better approach for presenting the document is to assign weights to vector components—

also known as Term Frequency-Inverse Document Frequency (TF-IDF) (Manning et al., 

2008; Salton and McGill, 1986). In the TF-IDF weighting scheme, the weight is directly 

proportional to the frequency in which the term occurs within the document, and indirectly 

proportional to the popularity of the term, which is determined by the number of documents 

where the term occurs (Manning et al., 2008).

The effectiveness of an information retrieval system is assessed using two key statistics—

precision and recall. Precision indicates the percentage of the returned results that are 

relevant to the user’s information need, while recall indicates the percentage of the relevant 

documents in the total collection retrieved by the system (Manning et al., 2008). Although a 

high precision and high recall is the goal of a retrieval system, the gain of one metric often 

leads to the loss of another.

Information retrieval methods can also be applied to other resources besides metadata text. 

Specifically, for Earth science, browse images are possible resources, whose image features 

can characterize underlying data sets. However, Earth science images are published for only 

limited data sets and without any standardization, making the image features difficult to 

generalize for retrieval.

We frame the data curation need as a specialized information retrieval problem with a well-

defined scope. Since we are targeting a limited set of phenomena, we can address 

misformulation by using a predetermined set of science keywords identified from a 

controlled vocabulary using domain knowledge as terms for the query. We designed a 
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customized information retrieval model using our domain knowledge of the document 

collections, which are the individual records in a metadata catalog. Each metadata record in 

the catalog contains science keyword annotations from the same controlled vocabulary.

3. Understanding the metadata records

Metadata, which is data about data, plays an integral role to ensure that data can be 

discovered, navigated, and analyzed. The NASA Earth Science’s Common Metadata 

Repository (CMR) (EOSDIS, 2016a, 2016b, 2016c) is designed as a high performance, high 

quality, continually evolving metadata system that merges all existing metadata into one 

source. CMR provides a unified, authoritative repository for NASA’s Earth Science 

metadata. The CMR catalog currently contains metadata for 32,195 data sets and over 300 

million files (EOSDIS, 2016a, 2016b, 2016c), and so is a rich resource of information that 

can be mined for useful information to discern the relevance of a data set for a particular 

phenomenon.

NASA’s CMR is built on a Unified Metadata Model (UMM) (EOSDIS, 2016a, 2016b, 

2016c), which is an extensible model that can provide a cross-walk for mapping between 

CMR-supported metadata standards, such as ISO 19115. The use of the UMM model allows 

each standard to be mapped centrally to the UMM model rather than mapping CMR-

supported metadata standards to each other. This process drastically reduces the need for the 

number of required translations from n × (n-1) to 2n where n is the number of metadata 

standard. The UMM describes the metadata related to key concepts (collection, granule, etc.) 

for NASA’s Earth science data using UMM metadata “Profiles.” Each UMM profile is a 

document that provides a schema-agnostic representation of the elements necessary to 

provide high quality metadata for its related Earth Observing System Data and Information 

System (EOSDIS) concept and maps those elements to each CMR-supported metadata 

standard (EOSDIS, 2016a, 2016b, 2016c).

Our approach exploits the UMM-C profile, or the metadata elements that describe a data 

collection or data set. The collection-level metadata schema describes the metadata for the 

whole data set and either requires or recommends certain fields. The required fields include 

the “data set short name” and “long name” and a “description” for the data set, while the 

recommended fields include spatial and temporal resolutions and extents and science 

keywords to describe the data set. The long name is the reference name used to describe the 

scientific contents of the data collection. The description field allows data providers to 

describe, in detail, the content of the data collection. Both long name and description fields 

are usually in free-text format. The science keywords describe the contents of the data set as 

defined by the Global Change Master Directory (GCMD) vocabulary (GCMD, 2016). The 

GCMD controlled science keyword vocabularies allow metadata to be described in a 

consistent manner and enable precise searching of metadata records and subsequent retrieval 

of data and services. The GCMD vocabulary is constructed into seven facets, Earth Science, 

Data Services, Data Centers, Locations, Instrument/Sensors, Platforms/Sources, and 

Projects, with each facet represented as a taxonomy working from a general concept at the 

root toward specialized concepts at the leaf. GCMD keywords are consequently organized 

into five hierarchical levels from Topic to Term, along with three variable levels. These 
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GCMD Earth science keywords describe physical variables, such as temperature, wind, 

water, radiation, and aerosols, that are considered relevant to the phenomena. An example of 

a GCMD Earth Science keyword is “Atmosphere > Aerosols > Aerosol Optical Depth/

Thickness > Angstrom Exponent.”

Our methodology uses the GCMD Earth Science keywords, long name, and description 

fields to determine the relevancy-rankings. We further utilize the GCMD science keywords 

to define a phenomenon. The method presented in this paper is built on a certain set of 

assumptions, which are as follows:

• The GCMD vocabulary is complete enough for such use and has the proper 

granularity to comprehensively characterize an Earth science phenomenon.

• The metadata records stored in the CMR catalog are consistent, correct, and 

complete. Specifically, the metadata description long name and keywords fields 

have consistent, correct, and complete metadata values (i.e., the GCMD 

vocabulary is used properly with each record having the correct annotation and 

the correct granularity; the GCMD vocabulary is used consistently across all 

records from different data providers).

4. Methodology

As stated earlier, data curation for a given set of phenomena can be framed as a specialized 

information retrieval problem with a well-defined scope. We address the misformulation 

issue by using a predetermined set of terms for the query. Domain knowledge is used to 

identify science keywords from the GCMD controlled vocabulary. We also utilize our 

knowledge and expertise of the metadata records in the CMR catalog to design a custom 

information retrieval model.

4.1. Defining reference queries for different phenomena

We tasked three Earth science experts to select a relevant subset of GCMD science keywords 

from version 6.0 to describe a specific phenomenon. Hurricane, volcanic eruption, flood, and 

fire were selected as the initial set of phenomena based on the Earth science expertise 

deeming these phenomena most monitored by NASA Earth Observing Systems. Earth 

science keywords selected by the different experts for each phenomenon were aggregated to 

construct the bag-of-words set to serve as the reference query. These keywords are 

considered equally important with regard to ranking collection-level science keyword 

metadata. Another set of keywords and/or phrases, each corresponding to the word or phrase 

in the five hierarchical levels of the keywords, was generated from these Earth science 

keywords. The generated keyword set is referred to as a “free-text keyword set” in order to 

distinguish it from the GCMD science keyword set. The free-text keyword set was used to 

rank the long name and description metadata (described further in this paper). Weights were 

assigned to each selected keyword based on its depth level within the taxonomy. The weight 

of 0.2 was assigned to the topic (root) level of the GCMD Earth science keyword, 0.4 to the 

term level keyword, and weights of 0.6, 0.8, and 1.0 were assigned to keywords at variable 

levels 1, 2, and 3, respectively. Higher weights imply higher specificity; therefore, the 

keywords with higher weights serve as a better discriminator. Note: Even though our initial 
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approach only considered four phenomena, the same approach can be extended to other 

Earth science phenomena, such as earthquake and landslide. Domain experts for such 

phenomena will need to select appropriate Earth science keywords from GCMD as the bag-

of-words.

4.2. Vector space model for science keyword fields

A vector space model was used to rank each Earth science keyword field (denoted as s) in a 

metadata collection. Assuming k is the number of GCMD Earth science keywords identified 

by domain experts, the vector space is a k-dimensional space with each dimension being one 

of the k Earth science keywords.

We denote via V (cs) the vector derived from an Earth science keyword field of a collection 

metadata c, represented as follows:

V Cs = c1, c2, …, ck , (1)

where ci = 1 if the keyword field of a collection metadata c contains the ith keyword, or ci = 

0 if no keywords are present in the record.

Similarly, the reference query vector for a phenomenon is represented as follows:

V qs = q1, q2, …, qk or 1, 1, …, 1 , (2)

Since phenomenon-relevant keywords are used only once, qi = 1 (where i = 1to k).

In vector space model document retrieval, all keywords in a document are not treated equally 

important for relevancy. A weight based on the TF − IDF scheme is often assigned to a 

keyword t in scoring the document relevancy. The TF − IDF weight of a t is defined as 

follows:

TF − IDF t = TF t • IDF t , (3)

where TF (t) is the number of occurrences where term t appears in a document. The more 

frequently t appears in a document, the more weight t is assigned.

Additionally,

IDF t = log N /DF t ,

where N is the total number of documents in the document set and DF (t) is the number of 

documents in the set that contain t. If a rare t appears in documents, the more unique t is to 

the document and thus more weight is assigned to t.

In our metadata records, unique keywords can occur only once per record; therefore, TF (t) 
= 1 for all t.

So,
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TF − IDF t = IDF t .

The IDF values are calculated for all Earth science keywords in all of the metadata records. 

As a result, the modified document vector is as follows:

V m cs = c1 • IDF1, c2 • IDF2, …, cN • IDFN , (4)

where ci = 1 if the keyword field of a collection metadata c contains the ith keyword, or ci = 

0 if no keywords are present in the record.

Similarly, the query vector is represented as

V m qs = IDF1, IDF2, …, IDFk , (5)

since qi = 1 for i = for 1, k in (2).

4.3. Vector space model for long name (title) and description

The long name field in the metadata record provides a descriptive title for the data set. The 

document vector for a long name is defined as follows:

V cl = c1 • IDF1 • w1, c2 • IDF2 • w2, …, cN • IDFN • wN ,

where ci is the number of occurrences of term i in the long name field, IDFi is the inverse 

document frequency of term i in the long name field of all collection metadata, and wi is the 

weight assigned to the term in the free-text keyword set.

Correspondingly, the query vector V (ql) for the long name field and V (qd) for the 

description field are defined as follows:

V ql = V qd IDF1 • w1, IDF2 • w2, …, IDFN • wN .

The description field, which is a free text field, in the metadata record provides additional 

information about the data set. The document vector for the description field is defined as 

follows:

V cd = c1 • IDF1 • w1, c2 • IDF2 • w2, …, cN • IDFN • wN ,

where ci is the number of occurrences of term i in the description field, IDFi is the inverse 

document frequency of term i in the description field of all collection metadata, and wi is the 

weight assigned to the term in the free-text keyword set.

4.4. Similarity measures

Ranking of the metadata record is computed using two commonly used similarity metrics: 

Jaccard coefficient and Cosine similarity. Jaccard coefficient, a similarity measure between 
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two data sets, is defined as the size of the intersection divided by the size of the union of the 

two data sets.

For document vector V (cs) and query vector V (qs) in (1) and (2), the Jaccard coefficient for 

metadata record c is defined as follows:

Jaccard c = V cs ∩ V qs / V cs ∪ V qs , (6)

where ⋂ indicates set intersection and ⋃ indicates set union.

Cosine similarity of data collection c using Earth science keyword metadata is defined as 

follows:

CosSim cs = V m cs • V m qs / V m cs • V m qs , (7)

where Vm(cs)•Vm(qs) is the inner product of the document vector and the query vector and 

the denominator, |Vm (cs)•Vm (qs)|, is the product of their Euclidean lengths. CosSim (cs) is 

also referred to as Sc (s), the similarity score from the science keyword field. Similarly Sc 

(l), the similarity score from the long name field, and Sc (d), the similarity score from the 

description field, are calculated using Eq. (7), where Vm(cs) and Vm(qs) are replaced with V 
(cl), V (ql) and V (cd), V (qd), respectively.

We calculated the Jaccard coefficient and Cosine similarity for each collection metadata and 

then ranked these collections in decreasing order. The metadata records with larger values 

appeared first on the list and are considered the most relevant to the phenomenon of interest.

4.5. Weighted zone ranking (ensemble approach)

The algorithm generated scores for each collection metadata record using three fields: Earth 

science keyword, long name, and description. We combined all three scores and generated 

an overall score, known as the ensemble score, for each collection record. Using the zone 

ranking approach, we defined the ensemble score, Sc (e), for a collection c as a linear 

combination of the three individual scores, as defined in the following:

Sc e = ws • Sc s + wl • Sc l + wd • Sc d ,

where Sc (s), Sc (l), and Sc (d) are the similarity measure values from the Earth science 

keyword field, long name field, and description field of collection c, respectively. ws, wl, wd, 

and are corresponding weights for the three metrics with the sum of ws, wl, wd, and equaling 

1.

Fig. 1 illustrates graphical overview of our methodology for a phenomenon.

5. Results

Next, we describe our experiments and results.
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5.1. Experiment setup

The methodology explained in Section 4 was tested for ranking data sets for the four 

phenomena. For each phenomenon, 200 metadata records describing data sets were 

randomly selected from the catalog to create a truth set. Since various phenomenon occur 

during different seasonal time frames, transpire over a specific duration of time, and exist 

within certain geographical areas, data sets can be filtered using heuristics based on 

phenomenon characteristics. For instance, hurricanes originate in tropical ocean regions and 

have been found to have a life cycle of up to two to three weeks (University of Illinois 

Urbana-Champaign, 2010). Filtering data sets using domain knowledge about the 

phenomenon helps remove irrelevant data sets from the ranking process. For hurricanes, data 

sets with a temporal resolution larger than ‘daily’ were removed. The remaining metadata 

records for the data sets in the truth set were then labeled by three domain experts to be 

either “relevant” or “not relevant” to a specific phenomenon. The final relevancy label was 

determined by a majority of votes from the three experts.

5.2. Comparison of similarity measures

First, the ranking performances of the Jaccard coefficient and Cosine similarity metrics on 

Earth science keyword metadata were compared for top 10, 20, and 30 collection returns. 

The amount of relevant collections returned for hurricane and volcanic eruption are shown in 

the table below.

The results presented in Table 1 suggest that both of the measures—the Jaccard coefficient 

and the Cosine similarity—performed similarly. However, we selected Cosine similarity 

measure as the similarity metric for relevancy ranking because it is commonly used in space 

vector model information retrieval.

5.3. Data curation results

Since we are using three fields from within the metadata records—Earth science keywords, 

long name (title), and description—we needed to assign weights to the similarity measure 

computed for each of these fields per Section 4.5. We calculated these weights by optimizing 

precision and changing each weight (ws, wl, wd) from 0.0 to 1.0 in increments of 0.1.

Precision and recall are two of the most often used performance metrics for document 

retrieval. Precision is the fraction of the retrieved documents that are relevant, whereas recall 

is the fraction of relevant documents that are retrieved. For a document set that contains a 

total of N documents in which M documents are relevant, when the query returns n 
documents out of m relevant documents, precision equals n/m. When relevant documents m 
are returned from M relevant documents, recall is computed as m/M. For an optimal retrieval 

system, both precision and recall are high. Since more than one combination of weight sets 

may produce the same precision value, we utilized tie-breaking measure T defined in the 

equation below:

T = ∑i = 1
n Si

i ,
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where Si is the status of returned document i. Si equals 1 if document i is relevant and 0 if 

otherwise. Therefore, for a set of weights that has equal precision value, the optimal weight 

is the one that maximizes the T value.

Ranking results for the top 20 returns using the ensemble method with an optimal weight 

and with equal weight were compared against a random selection of data sets for all four 

phenomena. It is assumed that the top 20 data sets should satisfy most users’ data search 

needs.

Based on the experimental setup, two factors should be considered while analyzing the 

results. First, there are different amounts of “relevant” data sets within each truth set for each 

phenomenon. The precision values from random selection reflect this variation. Over 60% of 

volcanic eruption and fire data sets in the truth set were relevant, while only 35% of flood 

data sets were relevant. For hurricane, the amount of relevant and not relevant data sets in 

the truth set was roughly equal. Second, the recall values from the random selection depend 

upon the collection size. While there are 40 data sets for volcanic eruption, there are over 70 

data sets for hurricane, fire, and flood. As a result, the recall value for volcanic eruption was 

50% (20/40) for 20 returns while the recall value for hurricane was 28.6% (20/70).

It is therefore better to compare the curation results against a random selection rather than 

compare the performance of the methods for each phenomenon against each other.

Based on the results presented in Table 2 below, precision when using optimal weights is 5% 

better than when using equal weights, and the recall values are about 3.5% better on average. 

More importantly, when comparing the results of the ensemble method using optimal 

weights to the results of random returns, precision values improved by 35%, 22%, 11%, and 

30% for hurricane, volcanic eruption, fire, and flood, respectively, and recall values 

improved by 19%, 18%, 4%, and 22%, respectively. On average, precision improves about 

25% when using our method and recall improves about 16%.

Analyzing the retrieval performance for specific phenomena, the results for fire are lower 

than those for hurricane, volcanic eruption, and flood. The quality of the metadata records 

may partly contribute to these differences.

The top 20 return results for each phenomenon are shown in Figs. 2–5. Each figure displays 

the precision improvement between our method and the random selection’s results (denoted 

by a dotted line). For hurricane events, precision is 100% when recall reaches 0.45, 

suggesting that the top 17 returns are relevant (0.45 × 38, where 38 is the total number of 

relevant data sets). For flood events, precision is low when the recall value is small, and 

improves with increasing recall values. This correlation is caused by the first data set 

returned being “not relevant” in addition to 3 out of the 5 top returns being “not relevant”.

We evaluated the contribution of the three fields of the metadata records to the ranking 

algorithm based on the weight distributions. These results are presented in Table 3 below. On 

average, the weight for Earth science keyword is largest when the weight for description is 

smallest. This relationship is expected since the Earth science keywords metadata fields, 
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which use a controlled vocabulary, are accurate and consistent in describing data product 

while the description field is free-text and has the most variability in quality.

5.4. Web service implementation

The relevancy ranking algorithm has been implemented as a web service. The web service 

follows the REST (Representational State Transfer) architectural style and is implemented 

using Java Spring framework. Results from relevancy ranking algorithm are read and 

converted into JSON encoding. The web service accepts phenomena type as a request 

parameter and returns data set name, relevancy score, version, data set shortname, and 

processing level in descending order of relevance. Any other metadata elements can be 

added to the response using a configuration in server side. The service can be utilized by 

other search services or analysis applications and can be accessed here for hurricane: http://

34.192.255.219:8080/ecstest/relevancy?

type=hurricane&bbox=-180,-90,180,90&starttime=2010-10-20&stoptime=2010-10-30.

6. Discussion

Our proposed methodology has both strengths and limitations—each discussed below.

6.1. Strengths

6.1.1. Approach is data driven—Unlike other domain ontology-driven approaches 

that are top-down, our methodology uses a data (metadata) driven approach. The curation 

methodology was developed after analyzing the metadata schema and the existing records. 

Both the reference query and the relevancy ranking algorithm are dependent on the 

controlled vocabulary used in the metadata records and the specific fields used in our 

method.

6.1.2. Construction of reference query is simple—The methodology defines a 

reference query using a controlled vocabulary. This approach is effective for a search tasks 

that are well scoped such as data discovery for a specific phenomenon. Furthermore, 

defining a reference query using a controlled vocabulary is simpler and less labor intensive 

than trying to knowledge engineer a formal ontology.

6.1.3. Methodology is scalable—Our approach is scalable to the addition of new 

records in the metadata catalog and does not require any modifications since new metadata 

records that are added to the catalog all utilize a controlled vocabulary.

6.2. Limitations

6.2.1. Modeling the search intent is difficult—It is difficult to predetermine the 

exact information need of a user. For instance, one user may be interested in only a specific 

aspect of a phenomenon (e.g., flooding caused by a hurricane) whereas another user may 

only be interested in studying a unique characteristic of a phenomenon (e.g., hurricane 

intensification). These two users’ data needs are going to be different. We mitigate this issue 

by ensuring that the reference query for a specific phenomenon is broad and covers all 

possible relevant keywords. While this may not provide the exact results for a specific user, 
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it does substantially reduce the list of data for the search results. Furthermore, additional 

facets such as application areas can be added to the reference query to improve search 

results.

6.2.2. Quality of metadata records is variable—One of our key assumptions is that 

the metadata records stored in the CMR catalog are consistent, correct, and complete. More 

specifically, we assumed the following:

• The metadata description and science keywords fields are complete

• The GCMD vocabulary is used correctly to annotate each metadata record

• The correct granularity is used in each metadata record

• The GCMD vocabulary is used consistently across all records by different data 

providers

Our initial analysis of the methodology results showed that part of our assumptions to be 

incorrect. Mainly, we observed incomplete metadata for problematic data sets. Also, the 

quality of metadata records in the CMR is variable in terms of consistency. To address this 

limitation, we have launched a new project to improve NASA’s Earth science metadata 

record quality in the CMR catalog. The new project seeks to address all of the critical 

metadata quality issues uncovered so far.

6.2.3. Dependency on the controlled vocabulary—Ranking results from our 

methodology depend on two aspects of the controlled vocabulary: its richness in detail and 

future changes. A rich, detailed, and controlled vocabulary provides a better level of 

annotation granularity to represent different phenomena and helps disambiguate data sets. 

Whereas the use of a poor controlled vocabulary will limit it usefulness. Also, any major 

changes to the controlled vocabulary will carry a substantial impact on our methodology and 

will require reformulation of the reference queries.

6.2.4. Truth set labels may be biased—There may be labeling bias in the truth sets 

created by the domain experts. The Earth science domain experts on our team have stronger 

expertise in certain areas, such as hurricanes, and weaker expertise in others, such as floods 

and fire. This bias is possibly reflected in the overall results of the methodology. We plan to 

expand the pool of domain experts to assist in both defining reference queries and labeling 

truth data to improve the relevancy ranking results.

7. Summary

Curating data sets around topics or areas of interest solves the data discovery problem in the 

field of Earth science, especially for unanticipated users. Towards that end, this paper 

provides methodology in building a relevancy ranking-based Earth science data curation 

service around phenomena. Applications of the service for various Earth science phenomena 

are also presented.

As part of our future work, we plan to expand the algorithm to encompass the variable levels 

stored within data files (granules) instead of remaining at just the data set level. We designed 
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an initial algorithm for this problem and it is currently being tested. We also plan to expand 

our approach beyond using the metadata records and plan to incorporate information from 

journal publications. One approach being considered is to construct graphs linking 

information extracted from publications along with the information stored in the metadata 

catalog. These graphs can be used to develop relevancy ranking algorithms to improve 

curation results. To address the misformulation problem, we also plan to explore auto-

generating reference queries for topics by mining selected papers.

Acknowledgements

The authors would like to acknowledge Mike Little, Nikunj Oza, and the NASA ESTO team for providing technical 
guidance. This project was funded by a NASA ESTO AIST grant. The authors would like to acknowledge other 
members on this project for their contributions: Steve Kempler, Chung-Lin Shie, Suhung ShenSu Hang, Maksym 
Petrenko (NASA/GSFC) and Peter Fox, Stephan Zednik, Anirudh Prabu (RPI). The authors are also grateful to 
Chris Lynnes (NASA/GSFC) for his insights and suggestions to improve the methodology. Finally, the authors are 
grateful to Kala Golden for editing and improving the manuscript.

References

American Meteorological Society (AMS), 2016 ‘Phenomenon’. Glossary of Meteorology. August 
(Online) 〈http://glossary.ametsoc.org/wiki/Main_Page〉 (Accessed 03 August 2016).

Bhogal J, Macfarlane A, Smith P, 2007 A review of ontology based query expansion. Inf. Process. 
Manag 43 (4), 866–886.

Carpineto C, Romano G, 2012 A survey of automatic query expansion in information retrieval. ACM 
Comput. Surv 44 (1), 1–50.

Earth Observing System Data and Information System (EOSDIS), 2016a NASA’s Common Metadata 
Repository, August, (Online). 〈https://earthdata.nasa.gov/about/science-system-description/eosdis-
components/common-metadata-repository〉 (Accessed 03 August 2016).

Earth Observing System Data and Information System (EOSDIS), 2016b Unified Metadata Model 
(UMM), August (Online). 〈https://earthdata.nasa.gov/about/science-system-description/eosdis-
components/common-metadata-repository/unified-metadata-model-umm〉 (Accessed 03 August 
2016).

Earth Observing System Data and Information System, (EOSDIS), 2016c CMR Search, August 
(Online). 〈https://cmr.earthdata.nasa.gov/search/〉 (Accessed 03 August 2016).

Global Change Master Directory (GCMD), 2016 Discover Earth Science Data and Services, August 
(Online). 〈http://gcmd.nasa.gov/index.html〉 (Accessed 03 August 2016).

Kim M, Choi K, 1999 A Comparison of collocation-based similarity measures in query expansion. Inf. 
Process. Manag 35 (1), 19–30.

Manning C, Raghavan P, Schütze H, 2008 Introduction to Information Retrieval. Cambridge University 
Press, New York, 2008.

Qiu Y, Frei H, 1993 Concept based query expansion. In: Proceedings of the 16th Annual International 
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 160–169.

Ramachandran R, Bugbee K, Tilmes C, Privette A, 2016 Climate data initiative. Comput. Geosci 88 
(C), 22–29.

Salton G, McGill M, 1986 Introduction to Modern Information Retrieval. McGraw-Hill, Inc, New 
York.

Salton G, Wong A, Yang C, 1975 A vector space model for automatic indexing. Commun. ACM 18 
(11), 613–620.

Schultz D, 2009 Eloquent Science: A Practical Guide to Becoming a Better Writer, Speaker, and 
Atmospheric Scientist. American Meteorological Society, Boston.

Shamsfard M, Nematzadeh A, Motiee S, 2006 Orank: an ontology based system for ranking 
documents. Int. J. Comput. Sci 1 (3), 225–231.

Singhal A, 2001 Modern information retrieval: a brief overview. IEEE Data Eng. Bull 24, 35–43.

Maskey et al. Page 14

Comput Geosci. Author manuscript; available in PMC 2020 May 21.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://glossary.ametsoc.org/wiki/Main_Page
https://earthdata.nasa.gov/about/science-system-description/eosdis-components/common-metadata-repository
https://earthdata.nasa.gov/about/science-system-description/eosdis-components/common-metadata-repository
https://earthdata.nasa.gov/about/science-system-description/eosdis-components/common-metadata-repository/unified-metadata-model-umm
https://earthdata.nasa.gov/about/science-system-description/eosdis-components/common-metadata-repository/unified-metadata-model-umm
https://cmr.earthdata.nasa.gov/search/
http://gcmd.nasa.gov/index.html


Turney P, Pantel P, 2010 From frequency to meaning: vector space models of semantics. J. Artif. Intell. 
Res 37 (1), 141–188.

Zheng J, Fu L, Ma X, Fox P, 2015 SEM+: tool for discovering concept mapping in Earth science 
related domain. Earth Sci. Inform 8 (1), 95–102. 10.1007/s12145-014-0203-1.

Maskey et al. Page 15

Comput Geosci. Author manuscript; available in PMC 2020 May 21.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 1. 
Diagrammatic overview of relevancy ranking approach for a phenomenon.
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Fig. 2. 
Precision and Recall plot for Hurricane; top 20 results. The chart shows the precision 

improvement between our method and the random selection results (denoted by a dotted 

line).
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Fig. 3. 
Precision and Recall plot for Volcanic Eruptions; top 20 results. The chart shows the 

precision improvement between our method and the random selection results (denoted by a 

dotted line).
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Fig. 4. 
Precision and Recall plot for Fire; top 20 results. The chart shows the precision improvement 

between our method and the random selection results (denoted by a dotted line).
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Fig. 5. 
Precision and Recall plot for Flood; top 20 results. The chart shows the precision 

improvement between our method and the random selection results (denoted by a dotted 

line).
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Table 1

Similarity measures results for hurricane and volcanic eruption.

Hurricane Volcanic eruption

Jaccard Coefficient Cosine Similarity Jaccard Coefficient Cosine Similarity

Top 10 retrieval 10 9 6 7

Top 20 retrieval 17 16 15 15

Top 30 retrieval 23 24 22 21
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Table 2

Ranking results from top 20 returns using the ensemble method.

Optimal weight Equal weight Random

Precision Recall Precision Recall Precision Recall

Hurricane 90.0% 47.4% 85.0% 44.7% 54.3% 28.6%

Volcanic eruption 85.0% 68.0% 80.0% 64.0% 62.5% 50.0%

Fire 75.0% 30.0% 75.0% 30.0% 64.1% 25.6%

Flood 65.0% 48.1% 55.0% 40.7% 35.5% 26.3%
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Table 3

Optimal ensemble weights for each phenomenon.

Optimal Weight Set (Wsciencekeyword, Wlongname, Wdescription)

Hurricane (0.6, 0.1, 0.3)

Volcanic eruption (0.2, 0.6, 0.2)

Fire (0.6, 0.2, 0.2)

Flood (0.5, 0.4, 0.1)
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