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Abstract

The Water Residence Time distribution is the equivalent of the impulse response of a
linear system allowing the propagation of water through a medium, e.g. the propaga-
tion of rain water from the top of the mountain towards the aquifers. We consider the
output aquifer levels as the convolution between the input rain levels and the Water
Residence Time, starting with an initial aquifer base level. The estimation of Water
Residence Time is important for a better understanding of hydro-bio-geochemical pro-
cesses and mixing properties of wetlands used as filters in ecological applications, as
well as protecting fresh water sources for wells from pollutants. Common methods
of estimating the Water Residence Time focus on cross-correlation, parameter fitting
and non-parametric deconvolution methods. Here we propose a 1D full-deconvolution,
regularized, non-parametric inverse problem algorithm that enforces smoothness and
uses constraints of causality and positivity to estimate the Water Residence Time curve.
Compared to Bayesian non-parametric deconvolution approaches, it has a fast runtime
per test case; compared to the popular and fast cross-correlation method, it produces
a more precise Water Residence Time curve even in the case of noisy measurements.
The algorithm needs only one regularization parameter to balance between smoothness
of the Water Residence Time and accuracy of the reconstruction. We propose an ap-
proach on how to automatically find a suitable value of the regularization parameter
from the input data only. Tests on real data illustrate the potential of this method to
analyze hydrological datasets.
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1 INTRODUCTION

1. Introduction

The hydrological Water Residence Time distribution (named in this article simply
as residence time) is a measure allowing the analysis of the transit of water through a
given medium. Its estimation is necessary when using wetlands as a natural treatment
plant for pollutants that are already in the water Werner & Kadlec (2000), to better
manage and protect drinking water sources from pollution Cirpka et al. (2007), to study
the water transport of dissolved nutrients Gooseff et al. (2011). For a more compre-
hensive application range, including deciphering hydro-bio-geochemical processes or
river monitoring, the review done in McGuire & McDonnell (2006) is a useful starting
point. We call here the residence time the linear response of the aquifer system. In this
context it refers to wave propagation of the water dynamics, not to the actual molecular
travel time Botter et al. (2011).

To obtain the residence time, one can distinguish two families of methods: active
and passive. The active methods are carried out by releasing tracers at the entrance of
the system at a given time, like artificial dyes, and then by tracing the curve while mea-
suring the tracer levels at the exit of the system Dzikowski & Delay (1992); Werner
& Kadlec (2000); Payn et al. (2008); Robinson et al. (2010). Although robust, this
methodology involves high effort and high operational costs. It could also perturb the
water channel and this may lead to biased results. The passive methodology consists
of recording data at the inlet and outlet of the water channel by specific water iso-
topes McGuire & McDonnell (2006), water electrical conductivity Cirpka et al. (2007)
or by simply recording the rainfall levels at high altitude grounds and the aquifer levels
at the base Delbart et al. (2014). In the passive case, the residence time is not measured
directly but must be retrieved by deconvolution. Some authors also use deconvolution
in the active methodology when the release of tracer cannot be considered as instan-
taneous McGuire & McDonnell (2006); Cirpka et al. (2007); Payn et al. (2008). The
residence time can then be approximated as the impulse response of the system and this
in turn can be estimated by deconvolution Neuman et al. (1982); Skaggs et al. (1998);
Fienen et al. (2006). The method can also be used for enhancing geophysical models,
although not targeted explicitly for Water Residence Time estimation Zuo & Hu (2012).
Deconvolution methods can be parametric Neuman & De Marsily (1976); Long & De-
rickson (1999); Etcheverry & Perrochet (2000); Werner & Kadlec (2000); Luo et al.
(2006); McGuire & McDonnell (2006) or non-parametric Neuman et al. (1982); Di-
etrich & Chapman (1993); Skaggs et al. (1998); Michalak & Kitanidis (2003); Cirpka
et al. (2007); Fienen et al. (2008); Gooseff et al. (2011); Delbart et al. (2014).

Parametric methodology has the advantage of always providing a result with ex-
pected properties such as correct shape and positiveness but with the caveat of being
insensitive to unexpected results for real data (for instance a second peak in the res-
idence time). The non-parametric deconvolution has the advantage of being ”blind”,
meaning that no strong a priori are being set on the estimated curve, but in the ab-
sence of adapted mathematical constraints, the results may not reflect the physics of
the residence time curve (these are sometimes negative or non-causal).

Our method is non-parametric and takes into account limitations of previous meth-
ods from the same category: variable-sized rainfall time series as input compared
to Neuman et al. (1982), a more compact direct model formulation than in Neuman
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1 INTRODUCTION

et al. (1982); Cirpka et al. (2007), less computational effort and less time consuming
than for a Bayesian Monte-Carlo inverse problem methodology Fienen et al. (2006,
2008), strictly using a passive method with respect to mixed methods like the ones
in Gooseff et al. (2011). In contrast to the cross-correlation Vogt et al. (2010); Delbart
et al. (2014) we avoid the unrealistic hypothesis that the rain signal can be considered as
white noise. In fact, rainfall datasets have long range memory properties and therefore
we simulate the input rainfall for synthetic tests as a multifractal signal Tessier et al.
(1996). One important difference from other non-parametric deconvolution methods
is that we enforce causality explicitly through projection. We also discuss the im-
portance of this aspect to avoid a sub-optimal solution when using a Fourier Domain
based convolution McCormick (1969). In Neuman et al. (1982); Dietrich & Chapman
(1993); Delbart et al. (2014) the causality constraint was not mentioned. In Skaggs
et al. (1998); Cirpka et al. (2007); Payn et al. (2008); Gooseff et al. (2011), causality is
taken into account through a carefully constructed Toeplitz matrix for the convolution
operation.

We propose a new algorithm to estimate the residence time with the following
properties:

• passive: only input rainfall and output aquifer levels are required;

• flexible: in the sense that it handles even unexpected solutions (double peaks or
unexpected shapes of the residence time). It can handle Dirac-like rain events
as inputs but also clustered rain events over a longer time period (for instance a
whole season);

• constrained: by physical and mathematical aspects of the residence time (posi-
tivity, smoothness and causality);

• automatic: providing a simple and accurate way of choosing the best hyper-
parameter that governs the smoothness of the residence time curve, without hu-
man operation;

• efficient/accurate: a fast algorithm that provides a good signal-to-noise ratio
(SNR), avoiding noise amplification.

This last property is important in order to deal with non-linearity and non-stationarity of
the water channel, a known difficulty in residence time estimation Neuman & De Marsily
(1976); Massei et al. (2006); McGuire & McDonnell (2006); Payn et al. (2008)

The rest of this article is organized as follows: Section 2 presents the direct prob-
lem and the inverse problem formulation, Section 3 depicts the algorithm used to solve
this inverse problem formulation. Some important implementation details are dis-
cussed in Section 4. We also discuss differences between our solution and previous
non-parametric 1D deconvolution methods used as benchmarks in Section 5. In Sec-
tion 6 we present results obtained from synthetic data and we discuss the choice of the
hyper-parameter that controls the smoothness of the residence time. Finally, we present
results obtained from real data in Section 7, while Section 8 concludes the paper.
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2 MODEL

2. Model

2.1. Direct Problem

The direct model for water propagation through a channel can be written as a linear
system Neuman et al. (1982):

y = 1c+x∗k+n , (1)

with:

• y∈R+
T ,y=(y0, ...,yT ) output of the linear system: aquifer basin level (known),

real, positive signal, of length T ,

• 1 vector of all ones of length T ,

• c≥ 0 initial aquifer basin level (to estimate), real, positive, constant

• x ∈R+
T ,x = (x0, ...,xT ) input of the linear system: rainfall level (known), real,

positive signal, of length T

• ∗ convolution

• k ∈R+
K ,k = (k−K

2
, ...k0,k1, ...k K

2
) impulse response to be estimated, real, posi-

tive signal, of length K

• n ∈RT white gaussian noise, real, signal of length T .

The impulse response of the system – k – as well as the mean level of the aquifer –
c – must be estimated. It is required that k be positive, causal, and smooth. If positivity
is obvious for the residence time, causality refers to the delayed, unidirectional flow of
water from the point of entry to the aquifer, thus the idea that k must progress only in
the positive time domain (negative time domain elements of k are zero). Smoothness
regularization is used in order to avoid noise amplification in the deconvolution.

2.2. Inverse Problem

To estimate k, we propose to solve the following constrained optimization problem:

k̂, ĉ = argmin
k∈RK

+,c

1
2
‖y−x∗k− c1‖2

2 +λ‖∇k‖2
2 (2)

s.t. causality is enforced: ∀i ∈ {−K/2, . . . ,−1} ki = 0

This function classically introduces a ”fidelity term” (attachment to the data) corre-
sponding to the white Gaussian noise, as well as a `2 ”regularization term” on the gra-
dient of k in order to favor ”smooth” solutions. The smoothness degree of the estimate
is controlled by the hyper-parameter λ . A bigger λ will stress more the smoothness of
the solution, while a smaller λ will better fit the solution to the data. A main goal of
this work is also to find the optimal λ range that consistently gives accurate estimates
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3 ALTERNATING MINIMIZATION FOR 1D DECONVOLUTION

while taking into account both good data representation and smoothness a priori. In
the following, we rewrite the functional (2) using matrix operators:

J(k,c) =
1
2
‖y−Xk− c1‖2

2 +λ‖Dk‖2
2 (3)

s.t. ∀i ∈ {−K/2, . . . ,−1} ki = 0 and ∀i ki ≥ 0

where X is the Toeplitz matrix corresponding to the convolution by the signal x,
while D is the finite-difference matrix corresponding to the gradient used for applying
smoothness on the estimated signal. The minimization of J(k,c) can be interpreted as a
Maximum A Posteriori (MAP) estimation in a Bayesian context with a Gaussian prior
on the noise and an exponential family on the smoothness.

Since the problem is convex, we estimate k and c by an Alternating Minimization
algorithm (shortened throughout as AM), that ensures a global minimization for the
two items to be estimated. A historical overview is available from OSullivan (1998).
With a fixed c, the problem is a simple quadratic optimization with constraints that is
solved using the Projected Newton Method Bertsekas (1982), chosen for computational
speed. With a fixed k, the estimate of c is given by an analytic formula.

The AM algorithm will evaluate k to convergence while applying an orthogonal
projection P on the positivity and causality constraints in each iteration. The analytic
solution for k is computed and used as an initial step for the iterative AM algorithm.

3. Alternating Minimization for 1D Deconvolution

After replacing the convolution operator with the equivalent Toeplitz matrix X, we
introduce the functional J(k,c) to minimize:

J(k,c) = P
(

1
2
||y−X ·k− c1||22 +λ ||Dk||22

)
, (4)

where P(k) is the orthogonal projection over the constraints, ∀t kt = 0 if kt < 0 or if t <
0.

Considering that both k and c must be estimated, we propose an AM algorithm
where in a first step kest is estimated, then in the second step cest is updated.

3.1. Estimation of kest with the Projected Newton Method
The update of kest by the Projected Newton Method with c fixed is given by:

kt+1 = P
(
kt +αt · (−∇

2J(k,c)−1 ·∇J(k,c))
)

= P
(
(1−αt)kt +αt · (XT X+λDT D)−1 ·XT (y− c1)

)
, (5)

where αt > 0 is the descent step size. For k =
{

k−K/2, . . . ,k0,kK/2
}

, we have P(k) ={
0, . . . ,0,(k0)

+, . . . ,(kK/2)
+
}

, where (x)+ = max(0,x).
By replacing the Hessian and the Jacobian of (3) in (5), we see that only the step

size αt can evolve at each iteration, while kt is changed by a constant called Newton’s
step.

kt+1 = (1−αt)kt +αt · (XT X+λDT D)−1 ·XT ỹ
kt+1 = (1−αt)kt +αt · Mt

n ,
(6)
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3.2 Estimation of c3 ALTERNATING MINIMIZATION FOR 1D DECONVOLUTION

where αt is the variable step size, Mt
n= (XT X+λDT D)−1 ·XT ỹ is Newton’s step.

3.2. Estimation of c

Taking the derivative of (3) with respect to c1 leads to:

∇J(k,c) =−y+1T Xk+ c1 !
= 0 (7)

With k fixed, the estimation of c is given by:

c1= y−1T Xk , (8)

where m̄ is the empirical mean of vector m.
The AM algorithm for estimating k and c is summarized in Alg. 1.

Algorithm 1 Alternating Minimization
Input: x,y,λ ,D,αmin,k errmin,y errmin,smax, tmax
Output: kest ,cest ,yrec

1: cest = y, ŷ = y− cest
2: Mt

n= (XT X+λDT D)−1 ·XT ŷ, kest =Mt
n

3: k errrel = 1,y errrel = 1,s = 0, t = 0, Jre f =
1
2
||ŷ||2, yrec = 1

4: while s != smax and y errrel > y errmin do
5: α = 1, s = s+1
6: kest old = kest , yrec old = yrec, ŷ = y− cest
7: while t != tmax and k errrel > k errmin and α > αmin do
8: t = t +1
9: kest = P((1−α)kest old +α Mt

n)

10: J(k)t+1 =
1
2
||ŷ−x∗kest ||22 +λ ||Dkest ||22

11: if (J(k)t+1 > Jre f ) then
12: kest old = kest , α = 0.9 ·α
13: else
14: Jre f = J(k)t+1, t = 0
15: break;
16: end if

17: k errrel =
||kest −kest old ||22
||kest ||22

18: end while
19: ỹrec = x∗kest
20: cest = y− ỹrec

21: yrec = ỹrec + cest , y errrel =
||yrec−yrec old ||22
||yrec||22

22: end while
23: return kest , yrec, cest
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4 IMPLEMENTATION DETAILS

4. Implementation Details

We provide a distribution package in Matlab for our algorithm and the download
link can be found at the end of this article. Although in the previous sections the
model and the solution are written in matrix form, the Matlab implementation of the
convolution for our AM algorithm is done through dot product multiplication in the
Fourier Domain with appropriate zero padding, meaning that no Toeplitz matrix is
explicitly defined here for the convolution. It is also possible to carefully implement a
causal convolution by designing a proper Toeplitz matrix. However, the convolution in
the Fourier Domain appears to be more efficient in general.

This implementation also allows for the estimation of a k residence time longer than
the inputs x and y, although this would be under-determined. Once that non-circularity
is enforced through this particular implementation of the convolution, another aspect
that is dealt with is the causality constraint.

In Figure 1, we present the convolution of two rainfall Diracs with a residence time
curve. We convolve the rainfall time series once with a residence time curve found
in the negative time domain (causality is not respected) and once when this curve is
in the positive time domain (causality is respected). The resulting breakthrough curve
appears before the rain events in the first case which is wrong. In the second case the
breakthrough curve appears after these rainfall events as expected for real applications.
In the non-causal case lobes can appear in the negative time domain also, incorporating
energy that should be present in the residence time curve thus reducing its amplitude
and distorting its shape.
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Figure 1: Enforcing causality while doing the convolution in the Fourier Domain needs to include the nega-
tive time domain interval of the residence time.

In Figure 2 we estimate with the AM algorithm all the possible residence time
curves: with no positivity and no causality constraints applied, only the positivity con-
straint applied, only the causality constraint applied, and both positivity and causality
constraints applied. In all cases, the convolution between the rainfall and these resi-
dence time curves give a reconstructed breakthrough curve that is similar in general
shape with the real one. The best residence time estimation and breakthrough curve
reconstruction are nonetheless the ones where both positivity and causality constraints
are applied in the algorithm.
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Figure 2: Different results for the kest for different constraints applied during the AM algorithm. All give a
similar yrec but the best yrec and kest are those where both positivity and causality constraints are applied.

Furthermore, not applying the causality constraint all along the AM algorithm, and
setting the negative time domain of kest to zero only at the end, would lead to a sub-
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5 DISCUSSION ON RELATED WORK

optimal solution caused by the way in which the AM algorithm navigates through the
optimality map attached to the given functional: any change in the estimated vector kest
at the end of the algorithm moves the value of the functional away from the optimal
point that was estimated in the last iteration McCormick (1969); Bertsekas (1982).

5. Discussion on Related Work

Non-parametric deconvolution techniques with/without positivity constraints exist
from the 1980s. How is our method different from those and why benchmarking it
against the cross-correlation?

5.1. Comparison to Previous Works

As a first example, let’s take Neuman et al. (1982) which does a regularized non-
parametric deconvolution and uses a bi-criterion curve; it navigates the optimality map
to find the optimal estimation of the residence time by using a lag-one auto-correlation
coefficient between the two error criteria. We consider this to be similar to our approach
but our functional has a simpler, unified formulation from the direct model’s point
of view and a different method to navigate the optimality map through the Projected
Newton method in the AM algorithm. Also in the cited article there is no discussion
about positivity, smoothness and causality of the estimated residence time.

In the case of the Skaggs et al. (1998) article, the direct model is similar to ours
with some differences in its formulation:

( f̂ , α̂) = argmin
f∈RK

+,α

=
1
2
‖c−A · f‖2

2 +α
2‖∇2 f‖2

2

with f ≥ 0 , a′ f = 1 ,

(9)

where

• c is the output of the system, known;

• a is the input of the system, known;

• A is the Toeplitz matrix of the input of the system;

• f is the impulse response of the system, to estimate;

• α is the hyper-parameter to estimate with Fischer’s Statistic method;

• ∇2 f denotes the Hessian of f

The hyper-parameter α is here squared and determined with Fischer’s Statistic
method (F), while smoothness is implemented by a second derivative applied on f .
There is a constraint for positivity and the condition that the integral of the obtained
curve sums up to 1. The solutions are evaluated with Provencher (1982) Fischer’s
Statistic method and visual inspection. Another aspect here is the multiple peak prob-
lem, where Provencher (1982) argues to investigate separately for certain values of F .
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5.1 Comparison to Previous Works 5 DISCUSSION ON RELATED WORK

Also, to avoid computational difficulties in the test runs, a basis function representa-
tion of f was introduced to ensure linearity between the probability density function
(pdf) representation and the transport model. A causality constraint is not discussed
here. In contrast, we estimate the α hyper-parameter (λ in our case) by using the SNR
values between the reconstructed breakthrough curve and the original one. A bigger
SNR means a better reconstruction and also a better estimation of k through the con-
straints, and this is realized through the λ hyper-parameter possible choice strategies
(α equivalent). A hydrologist can then estimate the same curve with a range of values
for λ , for multiple time series and time series lengths, and then see what λ value best
fits for that particular tested site. We do smoothness regularization with a first-order
derivative since testing with a second-order derivative does not show any improvement
on the estimate, thus our direct model is slightly simpler. Our algorithm does not make
an a priori assumption about the shape of the estimated residence time, therefore mul-
tiple lobes can appear without having to set any fixed number of these beforehand. The
estimation of f (k in our case) is also free of being modeled with basis functions. The
sole observation here is that the channel needs to be short enough so that it can be
considered linear.

In the case of Fienen et al. (2006) the presented method is a Bayesian Monte-Carlo
non-parametric deconvolution method that gives as result the full shape of the residence
time distribution curve containing all possible residence time curves for that channel
with zones of interest curves and the average curve. The method can yield multiple
peaks in the transfer function with some computational cost – ”Using the MCMC Gibbs
sampler with reflected Brownian motion requires some computational effort (CPU time
up to several days on a typical desktop computer)” Fienen et al. (2006). There is a
constraint for positivity and for causality through Michalak & Kitanidis (2003). Ex-
pectation Maximization is used to estimate the parameters. The algorithm is tested on
uni-modal and bi-modal cases. In comparison, our method provides faster estimates of
the residence time curve for a Dirac-like rainfall event or for a clustered rainfall event.
The computational cost per tested hyper-parameter λ is small. There is no constraint
on the shape of the residence time curve other than smoothness (controlled by λ ), and
positivity and causality which we implement throughout the algorithm. On the down-
side, our algorithm does not estimate the uncertainties attached to the residence time
like in a Bayesian approach.

Another example is Dietrich & Chapman (1993) with an algorithm based on ridge
regression, where the direct model is similar to ours but has two hyper-parameters to
be set. Michalak & Kitanidis (2003) is another article where Bayesian Monte-Carlo de-
convolution is done through an inverse problem setup. Here positivity and causality are
implicitly enforced by the method of images applied to reflected Brownian motion that
gives ”a prior pdf that is non-zero only in the non-negative parameter range” Micha-
lak & Kitanidis (2003). The MCMC is here implemented with the Gibbs sampling
algorithm. Similar to Fienen et al. (2006) the result is also a pdf with zones of interest
for the residence time curve. Even if the computational time for Bayesian MCMC de-
convolution methods is deemed ”manageable” Michalak & Kitanidis (2003), probably
even more so with current hardware, the need for a fast method seems necessary for
the community, and we expand on this in the next paragraph.
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5.2 Comparison to the Cross-Correlation Method5 DISCUSSION ON RELATED WORK

5.2. Comparison to the Cross-Correlation Method
We use the cross-correlation method as a benchmark to compare the performance

of our algorithm. The cross-correlation measures the similarity between two signals,
the second one being a shifted version of itself.

The AM algorithm also estimates the basin measurements constant level, cest , and
the estimated residence time amplitude depends on this constant level. It is necessary to
obtain this same amplitude for the cross-correlation method, for comparison purposes,
and this is done through the following:

yrec = x∗Rxy

kest = Rxy ·
σy

σyrec

(10)

We call the cross-correlation method XCORR in our plots.
The cross-correlation implicitly assumes that the input rainfall is white noise. In

this case, the auto-correlation of each rain fall time series would be a Dirac at the center.
Since real rainfall time series have actually long-tailed statistics, the cross-correlation
method is inexact. Here we use multifractals to simulate realistic rainfall Tessier et al.
(1996). Therefore, we expect the cross-correlation method to have a limited perfor-
mance in real life tests.

The decision to benchmark against the cross-correlation is due to the fact that
it is the preferred method for hydrologists in numerous recent articles: for deter-
mining transport of biological constituents in Sheets et al. (2002), or studying river-
groundwater interaction with different types of measurements being cross-correlated
like in Hoehn & Cirpka (2006). Cross-correlation is also used by Vogt et al. (2010)
for estimating mixing ratios and mean residence times, by Delbart et al. (2014) for
estimating the pure residence time curve. Therefore, the hydrology community is in-
terested in a simple and fast method with minimal implementation time that gives a
residence time curve estimation from different time series measurements. In the case
of the cross-correlation method, one focuses on analyzing the position of the maximal
amplitude and general shape of the curve. From this curve hydrologists extract the
characteristics of interest for that particular channel (mean residence time, mixing ra-
tios, etc.). In contrast to the cross-correlation method we offer positivity, smoothness
and causality constraints that give a more precise curve and a similar computing time.

5.3. Comparison to Cirpka et al. (2007)
Another benchmark method for the AM is the one presented in Cirpka et al. (2007)

that uses measurements in fluctuations of electrical-conductivity as inputs, with a direct
model similar to (1). The algorithm in Cirpka et al. (2007) is the same as the one used
in Vogt et al. (2010) and both articles compare their results with those of the cross-
correlation method. In Cirpka et al. (2007) the deconvolution algorithm is also an
Alternating Minimization algorithm, but this time between estimating the residence
time in the first step using a Bayesian Maximum A Posteriori method, and estimating
the variance of the noise and the slope parameters in the second step. One can notice
that Equation (3) is similar to (Cirpka et al., 2007, Eq.(8)). One main advantage of
the Cirpka et al. (2007) approach is that it delivers the uncertainty curves of the full
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6 SYNTHETIC DATA

Bayesian method while not being a full Bayesian deconvolution method, thus having a
fast computation time. One drawback is that the two parameters, variance of noise and
slope, need to have well chosen initial values. In a full Bayesian based deconvolution
these parameters would also need to be estimated and this would be done by Markov
Chain Monte Carlo methods which are computationally intensive. With regularization
based deconvolution we try to avoid high computational costs and having multiple
parameters that need carefully chosen initial values. The optimal value for our hyper-
parameter λ can be automatically obtained from the inputs.

6. Synthetic Data

6.1. General Discussion and λ Choice Strategies

In the context of a realistic synthetic validation we generate the rain signals x with
a multifractal simulation based on Tessier et al. (1996). We use the multifractal param-
eters H =−0.1,C1 = 0.4,α = 0.7. Furthermore we simulate k with a Beta distribution
B(x,α = 2,β = 6). We choose arbitrarily c = 100. To evaluate the computed estimates
we use the SNR definition, where we replace the noise term with the estimated kest
signal or the yrec signal respectively.

SNR = 20log10
‖m‖2

2

‖m−mest‖2
2
[dB] , (11)

where m is the true signal k or y and mest is the estimated kest or reconstructed yrec
signal respectively.

Examples of results obtained from synthetic data are shown in Figure 3 and Fig-
ure 4. The positivity and causality constraints are well respected. In addition, our
method always provides a better estimation of the residence time kest in comparison
with the standard cross-correlation method. The cross-correlation method manages to
preserve the position of the maximum intensity of the residence time distribution but
does not match either the shape or the amplitude of the true k. It can be observed
that for a high noise level of y, the λ hyper-parameter must be greater in order to ob-
tain better estimates kest and yrec. The greater the λ , the greater the importance of
the regularization term in comparison to the fidelity term therefore smoothing is more
important, which improves results when entries are noisy. Therefore, an analysis of
the deconvolution results is also necessary in order to find the right adaptation of the λ

hyper-parameter for a particular noise level.
We propose four strategies to automatically tune the λ hyper-parameter.

1. λoracle: choosing the λ corresponding to the best estimation of kest by maxi-
mizing the kest SNR output (or minimizing the distance between kest and k).
This strategy only works if the solution is known and represents the maximum
achievable value.

2. λdiscrepancy: choosing the λ giving the residual variance between y and yrec clos-
est to that of the noise. This method is known as ”Morozov’s discrepancy prin-
ciple” Pereverzev & Schock (2009).
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6.1 General Discussion and λ Choice Strategies 6 SYNTHETIC DATA

3. λ f idelity: choosing the λ corresponding to the best reconstruction of yrec by maxi-
mizing the yrec SNR output (or minimizing the distance between yrec and y). This
is the value of the reconstruction optimum. This completely heuristic method au-
tomatically selects the hyper-parameter with a performance close to the selection
by ”discrepancy principle” as will be seen next, in a completely blind way (with-
out a priori knowledge of the variance of the noise).

4. λcorrCoe f f : choosing the λ corresponding to the best reconstruction of yrec by
maximizing the correlation coefficient value between yrec and y.
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Figure 3: Two examples of the residence time estimation kest and reconstructed aquifer levels yrec from syn-
thetic data for a y input SNR of 5 dB (noisy measurements). The input rain is generated with realistic multi-
fractal time series. AM stands for the Alternating Minimization, XCORR for the standard cross-correlation,
true for the true solution.
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Figure 4: Same as in Figure 3 for a y input SNR of 25 dB.

The four λ strategies give different estimates of kest , whose SNR value is compared
to the y input SNR (measurements noise level), the goal being to obtain the best pos-
sible kest SNR for each given y input SNR level. The algorithm is tested for different
input SNR values from 0 dB (very high noise level) to 30 dB (almost no noise) and
over a λ range chosen from 10−5 to 1012 with 20 values dispersed on a logarithmic
scale.

To show the quality of estimation, for each noise level, we run arbitrarily 30 test
cases (input rainfall x). For each randomly chosen x convolved with the known k,
the resulting y signal has Gaussian noise added to it according to the input SNR test
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6.1 General Discussion and λ Choice Strategies 6 SYNTHETIC DATA

value. We apply the AM, XCORR and Cirpka et al. (2007) methods to each test case
for all λ s. For each test run we record the kest SNR value, the yrec SNR value and
the yrec correlation coefficient. Since 30 tests are made for each input y SNR, we
obtain 30 plots showing the evolution of the kest SNR, of yrec SNR and yrec correlation
coefficient, depending on the λ choice.

By averaging these plots, mean values and their standard deviation can be com-
puted which are shown in Figure 5 for a y input SNR of 5 dB and Figure 6 for 25 dB
respectively. We lose the optimality for each single example due to averaging, but we
show the variability of the criteria depending on noise level and input data. We also
present graphically the four strategies of λ determination.
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Figure 5: Selection strategy of hyper-parameter λ . We plot average and standard deviation over 30 synthetic
examples of: (a) kest SNR, (b) yrec SNR and (c) yrec correlation coefficient as a function of λ . The y input
SNR is 5 dB, meaning very noisy measurements. The λoracle point in (a) shows the best λ in average to
maximize the kest SNR for the synthetic tests. This can be computed only when the true solution is known.
In (b) the λ f idelity maximizes the yrec SNR. The λdiscrepancy is achieved when yrec SNR is closest to the actual
noise level. In (c), the λcorrCoe f f is the optimum over the correlation coefficient between yrec and y.
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Figure 6: Same as in Figure 5 with an y input SNR of 25 dB. We find that λ f idelity, λdiscrepancy and λcorrCoe f f
approach the optimal λoracle in average.

In Figure 7, we can see how the four strategies compare with the cross-correlation
method. For a kest length of 1000 data points to estimate, we show in (a) the results
for when inputs x and y are 1000 data points long and in (b) the results for when they
are 5000 data points long. The kestSNR is always the best for the λoracle strategy as
expected. Across the plots, λcorrCoe f f performs closest to it. The λ f idelity strategy is
similar to λdiscrepancy for SNRs from 10 dB to 30 dB. For the highest noise level, y
input SNR < 10 dB, λ f idelity is worst for short time series and λdiscrepancy is worst for
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longer time series. Whatever the strategy, our method is always better than the cross-
correlation.

The average optimal λ value for each strategy, given the y input SNR level, is pre-
sented in Figure 8. In (a) and (b), we see the evolution of the λ values versus the y input
SNR for the four given strategies. The four strategies of the hyper-parameters λ are
similar at low noise level, down to 10 dB for both 1000 and 5000 data points. Then, they
begin to diverge but λcorrCoe f f always stays in the neighborhood of λoracle, meaning it
is a valid strategy to use in real test cases where k is not known. At very high noise lev-
els for 1000 data points, λdiscrepancy increases and provides an over-regularized, highly
smooth solution that is far from the optimum. For 5000 data points both λ f idelity and
λdiscrepancy deliver smaller λ s. If for λ f idelity we can still expect that it would deliver
a proper kest , we can suspect that λdiscrepancy would stress more an attachment to the
data. This means that the estimated kest would give a yrec that would follow too closely
the shape of y, including its noise.

Furthermore we investigate the influence of data volume on the k estimate. The
aggregated results are presented in Figure 9, (a) for a y input SNR of 5 dB and in (b)
for a y input SNR of 25 dB. All of our four strategies show significant improvement
when the input time series of rainfall and aquifer measurements are longer, especially
when the measurements are noisy.
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(a)

(b)

Figure 7: Quality of the residence time estimation kest for the four hyper-parameter selection strategies and
the cross-correlation method. Mean and standard deviation of obtained kest SNRs, as a function of the noise
level of the measurements, for inputs of length: 1000 data points (a) and 5000 data points (b). The cross-
correlation method always stands lower indicating a poorer estimation. The correlation coefficient strategy
λcorrCoe f f is the best strategy, across noise level and signal length.
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Figure 8: The evolution of the four λ strategies depending on the input SNR. For 1000 data points in (a) and
5000 data points in (b).
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Figure 9: Quality of residence time kest estimation depending on the number of data points contained by x
(input rain) and y (output aquifer level). We can observe that more data points lead to a better estimation for
our method for all four λ strategies. (a) is for a y input SNR of 5 dB and (b) is for a y input SNR of 25 dB

6.2. Comparison to Similar Methods

In Figure 10, we can see how our method compares to the cross-correlation method
and the algorithm described in Cirpka et al. (2007) for various y input SNRs and 1000
and 5000 data points respectively (positive time interval of residence time to be esti-
mated of 500 data points). Our method and the Cirpka et al. (2007) algorithm show
similarly good results in comparison with the cross-correlation. The method of Cirpka
et al. (2007) has a smaller standard deviation than our method, showing a weaker de-
pendence of the noise/structure of the dataset.
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(a)

(b)

Figure 10: Comparison between our algorithm, the cross-correlation and the Cirpka et al. (2007) algorithm
for 1000 data points (a) and 5000 data points (b)

While our proposed approach provides different output results depending on the
given λ , the best solution being picked automatically, the operator can choose an ap-
propriate solution based on his own expertise, from an appropriate range around the
optimal λ . Moreover, the solution is independent from the initialization due to the
convexity of the J functional.

In Figure 11, bar plots illustrate the average runtime for 30 test cases, for different
y input SNRs, for the three algorithms. The AM algorithm is consistently faster than
the Cirpka et al. (2007) algorithm for y input SNRs higher than 15 dB 11(c). It is also
faster for the small data sets of 1000 points 11(a),11(b).
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Figure 11: Analysis of runtimes between the AM algorithm and the Cirpka et al. (2007) algorithm for various
lengths of the dataset and various noise levels.
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7. Real Data

The tests on real data are conducted on data sets made available from the ”Base de
Donnes des Observatoires en Hydrologie” c© Irstea, Irstea (2017). The data is gathered
in the Ile de France region, in France. The measurements are from two neighboring
sites, one at a higher altitude for rainfall measurements and the second at a lower al-
titude for aquifer measurements, taken at every 1 hour intervals, between January 1st ,
2016 until January 1st , 2017.

For the real data, the estimates are based on the λcorrCoe f f strategy with λ s chosen
around the optimal values found with the synthetic data set, between 108 to 102. In
Figure 12 and in Figure 13, estimates of the residence time for real life measurements
of x and y are shown.
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Figure 12: Examples of results for real data using the λcorrCoe f f strategy. We estimate the residence time
kest and the aquifer level cest ; we also plot the breakthrough curve yrec in blue. AM stands for the Alter-
nating Minimization, XCORR for the standard cross-correlation, the true residence time k is not known.
The position of the maximum amplitude of kest is similar for the two methods but the shape of kest varies
significantly. Only the AM method has the physical properties of positivity and causality.
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Figure 13: Same as in Figure 12.

In all cases, the estimated curves honor the given positivity and causality con-
straints. For the cross-correlation, even if the yrec is close to the original y, the curve
for the residence time estimated by this method has the disadvantage to not respect the
positivity and causality constraints across all of the presented cases.

The aquifer level measurements have negative values due to the conventions of
the used measuring instruments. The AM algorithm is also capable of estimating the
aquifer average level c, and depending on this constant and the amplitude of the rain
fall input, the estimated residence time curve kest will also have a certain amplitude
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(the curve is not normalized to resemble that of a pdf).
The AM algorithm succeeds in reconstructing the yrec with an SNR around 10 dB

in the studied cases, using the λcorrCoe f f and provides a better reconstruction SNR than
the cross-correlation (XCORR) method.

We find small but significant changes in the residence time curve for different data
sets of the same channel, as also identified in other datasets Delbart et al. (2014). This
may be due to the seasonal variability of the inputs (rainfall) and its effects on the
hydrological process. This aspect would be of interest to study into more detail for
specific sites to better understand it.

Another observation to be made is the fact that if non-linearities of the system are
present (in transit or at the aquifer level), our approach may also lead to over simplifi-
cation. Nonetheless the question arises if a hydrological channel could be considered
as a linear and stationary system by parts (smaller time series) and therefore allow the
use of our method for estimating partial residence time curves which can then be put
together in a more complex mapping of the channel.

One can also note in the plots that the yrec is slightly better for cases when a heavy
rainfall event appears at the beginning of the time series x instead of towards the end,
suggesting the fact that the residence time estimation would also be better.

Finally, the examples show the appearance of multiple lobes that are considered
a sign of reservoirs of the hydrological channel keeping part of the water for some
time before releasing it in a later discharge. This demonstrates the usefulness of a
non-parametric deconvolution method in comparison with parametric deconvolution
methods where such lobes are either ignored or fixed in number.

8. Conclusion

We propose a new approach to estimate a smooth residence time taking into account
positivity and causality constraints and having a fast runtime. We highlight why these
constraints must be used all along the algorithmic process to reach the expected solu-
tion in the case of non-parametric 1D deconvolution for the AM algorithm presented
here.

The estimation of the residence time kest was done using a fast Alternating Min-
imization algorithm with two steps: (1) 1D deconvolution and (2) estimation of the
aquifer initial level. All tests have been done on a personal laptop, with CPU In-
tel(R) Core(TM) i7-6600U CPU @ 2.6GHz 2.81 GHz, 16.0 GB RAM, 64-bit OS,
x-64-based processor, using Matlab R©. We validated the approach on synthetic tests
and proposed several strategies to automatically estimate a hyper-parameter, λ , that
controls the smoothness of the residence time curve. We have found that between these
strategies, the correlation coefficient strategy seems to be very efficient to estimate the
best value for λ .

We validated our AM method on synthetic data and found that the results are better
than the standard cross-correlation method and similar to those of the Cirpka et al.
(2007) method. We also demonstrated the capabilities of our AM method on real data.
Additionally, our method respects the physical constraints (positivity, causality, non-
circularity) which are important for interpretation purposes. The estimation made by
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our method will provide better information for hydro-geologists on amplitude and full
shape of the residence time, the mean level of the aquifer and will also improve the
estimation of the mean residence time (Appendix A shows how to compute it).

As possible improvements we propose refining this methodology for the potential
non-linear aspects of the water transit time through the medium.

The Matlab implementation of the algorithm is available under CECILL license
at the following public Git repository: https://git.l2s.centralesupelec.fr/

meresescual/SmoothSignalEstimatorDeconvolution.git.
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Appendix A. Mean Residence Time

In order to estimate the mean residence time τ , one has to simply renormalize the
estimated transfer function kest and take the mean:

τ =

t=
K
2

∑
t=0


kest(t) · t

t=
K
2

∑
t=0

kest(t)


(A.1)
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