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A B S T R A C T

Among the geological features, karst is the one that has received special attention in oil and gas exploration for
being a strong indicator of the potential existence of hydrocarbon reservoirs. The integration of automatic
pattern recognition methods and Graphics Processing Units (GPU) provides a powerful tool to help geological
interpretation of seismic data. In order to provide insightful information for interpreters, this work investigates
the usage of GPUs in addition to image segmentation by means of unsupervised classification for the identifi-
cation of karst features in 3D seismic data. For this purpose, an implementation of the robust Self-Organizing
Map for GPUs (SOM/GPU) is provided, and a comparison against a Central Processing Unit (CPU)-based SOM
(SOM/CPU) is performed to assess the speeding-up provided by GPU. Experiments have shown promising results
for geological interpretation using seismic data.

1. Introduction

At least 40% of the recoverable hydrocarbons are trapped in stra-
tigraphic unconformities such as the ones originated from karstification
(Sayago et al., 2012). Among the fields originated from karst, one can
refer to the Lower Ordovician Puckett and the Permian Yates in west
Texas (Loucks, 1999), the Upper Devonian Grosmont Formation in
Alberta, Canada (Luo et al., 1994; Buschkuehle et al., 2007) and the
Lower Ordovician Lunnan field in the Tarim Basin of China (Zhao et al.,
2014, 2015).

The karstification process creates, in most cases, geomorphological
features that are barely continuous and randomly spatially distributed
in the seismic data. Also, they have seismic responses that occur in
subtle ways that can be easily misunderstood with other geological
features, seismic noise or simply not be noticed by the interpreter
(Maoshan et al., 2011). In addition, the exploration to identify karst
features is a time-consuming task since it requires the analysis of huge
volumetric seismic data. The volume of data can have its size sig-
nificantly increased if more information is added (i.e., computing and
analyzing multiple attributes) in order to help out the interpretation.

The requirements to solve this problem can be met by employing
graphics processing units (GPUs) that tackle both the problem of

amount of data and computing time by providing a low-cost device with
parallel architecture that enables the processing of high amounts of
data simultaneously in a short time. Despite not having been fully in-
vestigated (Jeong et al., 2006), this powerful resource has been largely
employed in a wide range of applications including simulations in
geosciences research (Rubio et al., 2014; Lacasta et al., 2015), and
acceleration of calculations, especially for reservoir characterization
(Liu et al., 2009; Komatitsch et al., 2010). In some applications, the
GPU parallel implementation reached high speed-up values (Tahmasebi
et al., 2012; Cheng, 2013; Li et al., 2014).

This work explores the usage of GPUs for the application of un-
supervised karst identification in 3D seismic data using multi-attribute
data. The purpose of this study is to explore the programming chal-
lenges and the potential benefits of embedded computing using com-
modity hardware components. Due to the lack of well data from our
study area and complexity of the seismic data, we decided to apply an
unsupervised classification approach using the Self-Organizing Map
(SOM) algorithm. SOM has been the practice in a large number of
different applications (Chang et al., 2002; Ersoy et al., 2007; Kuroda
et al., 2012; Mojarab et al., 2014), this study applies the technique to
better interpret karst features in 3D seismic data.

The main contributions of this work are:
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• a fast approach for karst feature identification in huge seismic vo-
lumetric data;

• the proposal of an unsupervised GPU-based karst feature identifi-
cation approach;

• the karst feature identification using multi-attribute data;

• to provide insightful information by identifying potential karst
features;

• to reduce the amount of data to be analyzed and time spent in the
interpretation.

The remainder of this paper is organized as follows: Section 2 pro-
vides an overview of karst features. The theoretical background of the
SOM is presented in Section 3, and a brief history of GPUs and the
architecture of a Compute Unified Device Architecture (CUDA)-enabled
GPU are presented in Section 4. The parallel implementation employed
in the experiments is introduced in Section 5. The methodology adopted
and the case of study used for the evaluation are presented in Sections 6
and 7, respectively. Conclusions regarding the experimental results are
stated in Section 8.

2. Overview of karst features

Karst is described as a landscape that contains caves and extensive
underground water systems that develops on soluble rocks such as
limestone, marble and gypsum (Ford and Willians, 1989). Karst is
formed from the subaerial exposure of carbonate rocks, recognizable by
features produced by dissolution, precipitation, erosion, sedimentation
and collapse (Esteban and Wilson, 1992). It can also be the result of
corrosion caused by hydrothermal processes and differential CO2 re-
gimes or fluids containing H2S (Immenhauser and Rameil, 2011).

Near-surface karstification creates a terrain with distinct geomor-
phological and geological elements (Fig. 1). Well-developed drainage
systems predominate in karst terrains, having a high degree of con-
nectivity with subsurface hydrology. Common features found in karst
terrains are deep canyons, large valleys associated with sinkholes, and a
large number of channels, plus less developed features associated with
intermittent flows or with less erosive power, such as ravines and gul-
lies.

However, the most common surface features are sinkholes or do-
lines, being defined by Waltham and Fookes (2003) as karst elements
formed by a closed circular depression eroded around an internal
drainage point into the underlying limestone. These features mark the
main relationship between surface geomorphology and the subsurface,
and are usually generated by dissolution and collapse processes.

The flow rates and aggressiveness of the surface water will dictate
the construction of the underground karst, creating caves, channels,
conduits, passages, and chambers. The burial compaction and diagen-
esis of this system will result in a paleocave system that is an important

class of carbonate reservoirs (Loucks, 1999).

3. The Self-Organizing Map

The Self-Organizing Map (SOM) is inspired by the human brain in
which each region is responsible for a specific task (Kohonen, 1990).
The main feature of SOM is the competition among nearly neurons to be
activated given an input sample. The competition process results in a
spatially organized “internal representation” of various features of
input signals and their abstractions, in which similar ones are located
close to each other (Haykin, 1998). The final representation is a two-
dimensional topological map composed of ×N M cells (neurons) which
are tuned to selectively respond to input patterns. By doing the map-
ping of the input samples, SOM approximates the neurons' weight
vector to the input sample and creates a topological map such that si-
milar samples will be located closer to each other in the map. Such
process allows to visually identify potential clusters and their spatial
organization. The mapping is conducted in the same way as in a su-
pervised training.

The SOM learning process or pattern mapping process is divided
into three steps: competition, cooperation, and adaptation. Let ∈x nR ,
and a j-th neuron with synaptic weight vector ∈wj

nR . In the compe-
tition process, the winner neuron is defined as the one that provides the
highest level of similarity to the input sample x. This step can be
summarized in Equation (1), in which the similarity can be obtained by
minimizing the Euclidean distance as follows.

= − = … ×winner x j N Mx w( ) arg min , 1,2, , .j j (1)

The result winner x( ) is the index of the neuron in the map whose
distance to the input sample x is the smallest one.

The cooperation process defines a topological neighborhood cen-
tered at the winning neuron found through Equation (1). The topolo-
gical neighborhood reproduces the evidence of lateral interaction
among a set of neurons. It was also observed the strength of lateral
interaction decays smoothly with lateral distance having its maximum
strength at the winning neuron. The responses of this activity can be
modeled by a Gaussian function:
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in which hi j, stands for the topological neighborhood centered on
winning neuron i with lateral distance defined through σ, di j,

2 represents
the distance between i and activated neuron j, and T is the maximum
number of iterations (Kohonen, 2013). Also, the lateral interaction σ
decreases with time, which is given by:
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in which σ0 is the value of σ at time 0, τ1 is a time constant (Haykin,
1998).

Finally, the adaptation process performs the update of the neurons'
weight vector based on Hebb's postulate (Hebb, 1949). The final weight
vector's update function can be defined as follows:
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t
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j
t1

, (4)

in which +w j
t 1 is the updated weight vector of the j-th neuron at time

+t 1, and η is a learning rate parameter that decreases over time ac-
cording to:

⎜ ⎟= ⎛
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⎠
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τ

,t 0

2 (5)

in which η0 is the initial value of the learning rate and τ2 is another
constant of time. Kohonen (1990) still divides the adaptive process into
two phases: ordering and convergence. In the ordering phase, the to-
pological ordering of the neurons' weight vectors takes place. The

Fig. 1. Block diagram of an epigenic karst terrain, including the main features
observed in exokarstic, epikarstic and endokarstic domains.
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convergence phase is related to tuning the neural network in order to
provide an accurate representation of the input samples.

4. Graphics processing unit (GPU) and CUDA

The Compute Unified Device Architecture (CUDA) is a platform
created by NVIDIA that enables general-purpose applications to use the
power of a graphic processing unit that provides a huge increase in
computational performance. Applications using CUDA go from bioin-
formatics (McArt et al., 2013), computational chemistry (Anthopoulos
et al., 2013) to medical imaging (Shi et al., 2012), weather and climate
(Michalakes and Vachharajani, 2008; Brown et al., 2015), including
seismic analysis (Liu et al., 2009; Komatitsch et al., 2010).

GPUs were first designed as graphics accelerators but, in the late
1990s, their usage for general-purpose applications had significantly
increased especially by research that took advantage of their great
floating point performance. However, developing such applications was
really difficult even for those who had knowledge of graphics pro-
gramming languages such as OpenGL (OpenGL, 2016). Later on, Ian
Buck and his research team from Stanford University developed the
Brook compiler and runtime system (Che et al., 2008), which upgraded
GPU to a general-purpose processor in a high-level language, making
the programming task easier. Ian Buck and NVIDIA further developed a
solution that would enable to run C programs on GPU. In 2006, NVIDIA
released CUDA, in which hardware and software solutions were cou-
pled (NVIDIA, 2010).

Fig. 2 shows the memory architecture of a CUDA-enabled GPU. The
terms “host”and “device” refer to CPU and GPU, respectively. The data
to be processed can be stored in the “global memory”, which can be
accessed by any GPU thread or in the “shared memory” where data
access is restricted to a few GPU threads. Threads are the units that
execute kernels, i.e., functions written for CUDA. Threads are organized
in blocks and are identified by a unique index given by its position in
the block and the identification of its block. Blocks can assume up to
3D-dimension format and have a group of threads given by their di-
mension. A block of size 3 × 3 × 3 will have 9 threads, for example.

5. GPU parallel implementation

The GPU parallel implementation used in the experiments relies on
the Somoclu (Peter et al., 2015), which is implemented over Thrust
(NVIDIA, 2016b), that is a C++ template library for CUDA

applications. Some operations using vectors and matrices are performed
using the cuBLAS (NVIDIA, 2016a), which is an implementation of
BLAS (Basic Linear Algebra Subprograms) on top of the CUDA. The
program can still make use of the Message Passing Interface (MPI)
(Open-MPI, 2016), that is a communication protocol used for parallel
applications. The memory organization used by the Somoclu follows
the values presented in Table 1, where SomX is the dimension in x-axis,
SomY is the dimension in y-axis, and BLOCK DIM is the block size.

The parallelization in the SOM algorithm is used in the tasks that
compute the best match and neuron weight vector's update, defined by
Equations 1 and 3, respectively. In the first case, it is clear that finding
the distance between a sample xi and a neuron wj is independent of
finding the distance between a sample xk to the same neuron wj, for
instance. Therefore, this task is parallelized in such a way that multiple
calculations can be done simultaneously by a predefined number of
threads.

The neuron weight's vector update in Somoclu is performed at the
end of an epoch. During an epoch, each allocated thread computes the
result for Equation (3), stores the result in its local variable, and waits
for the other threads to finish it. Once all threads have finished their
job, their local results are all summed up and the neuron map is up-
dated. Since the neuron map is a critical section (i.e., more than one
thread accessing the same variable), a synchronization is performed
during the update to keep the final result consistent.

6. Methodology

The experiments are conducted following the workflow depicted in
Fig. 3. The first step computes a set of five attributes from the amplitude
seismic data which will describe each sample x. The outcome is a 5-
dimensional representation, in which each dimension stands for a dif-
ferent attribute. The set of attributes was selected based on the features
they highlight and is comprised of:

• Most positive (Fig. 4a) and most negative curvature (Fig. 4b): the
curvature measures the deformation of a surface at a point. The
larger the deformation, the larger the curvature is. The curvature
value is positive if the feature is anticlinal, and negative if it is
synclinal (Chopra S., 2007). The curvature is computed by fitting a
quadratic surface on the surface patches of a given size. The most
positive and most negative curvature values can be derived from a
search over all possible normal curvatures Roberts (2001).

• Second derivative of the amplitude (Fig. 4c): the amplitude second
derivative provides a measure of the sharpness of the amplitude
peak. This attribute is an effective discriminator for bright spots,
sequence boundaries, major changes in a depositional environment,
and lithologic variations, among others (OpendTect, 2002). This
attribute is computed from the second derivative of the envelope

= +E t S t H t( ) ( ) ( ) where S t( ) is the seismic trace, H t( ) stands fo
the Hilbert's transform and t is time.

• Envelope-weighted frequency (Fig. 4d): it is the instantaneous fre-
quency weighted by the envelope over a given time window. This
attribute can be used for hydrocarbon indicator by low-frequency
anomaly, fracture zone indicator, and bed thickness, among others
(OpendTect, 2002). The instantaneous frequency is defined as the
time derivative of the instantaneous phase.

• Isopach (Fig. 4e): this attribute gives the variation of lateral
Fig. 2. Memory architecture in a CUDA-enabled GPU (Adapted from (Kirk and
Hwu, 2010)).

Table 1
Structure dimensions used in the application.

Dimension

Grid size × ×+ − + − 1SomX SomY BLOCK DIM
BLOCK DIM

nSamples BLOCK DIM
BLOCK DIM

* 1 1

Block size 32 × 1 × 1
# threads 32 × 1 × 1
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thickness of a bed, formation or stratigraphic interval. It highlights
characteristics of a basin, such as the location of buried ridges, and
position of shorelines, among others (Maltman, 2000). The isopach
map used in the experiments was computed using the top and basin
of the Macaé formation, which are the horizons of highest acoustic
impedance variation.

Due to the number of samples and calculations, the second step
takes advantage of the powerful processing capability of the GPU to
speed-up the unsupervised learning of the multi-attribute seismic data
generated in the previous step. The unsupervised learning will map the
seismic data into a 2D topological map by means of the SOM algorithm
using both CPU and GPU implementations for performance comparison
purposes. Both implementations have their neuron maps randomly in-
itialized and their common parameters are listed in Table 2. Except for
the neuron map size that was chosen empirically, the remaining para-
meters are the default values in the Somoclu library.

The GPU implementation still has some additional parameters as
listed in Table 3, which were set according to the computing environ-
ment settings. The computing environment used in the experiments has
the following configuration:

Fig. 3. Main workflow.

Fig. 4. The (a) data in amplitude and the set of five attributes shown at the Macaé top: (b) most positive and (c) most negative curvatures, (d) amplitude second
derivative, (e) envelope-weighted frequency and (f) isopach.

Table 2
Parameters used to setup the SOM algorithm.

Parameter Value

Neuron map size 20 × 20
Neuron map type planar
Neighborhood function Gaussian
Epochs 100
Initial radius 10
Final radius 1
Learning rate cooling strategy linear
Radius cooling strategy linear

Table 3
Additional parameters for the parallel implementa-
tion.

Parameter Value

# nodes 1
# processes per node 16
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• Intel Xeon E5-2630 v3 of 2.40 GHz–8 cores/16 threads.

• 48 GB of RAM memory.

• Nvidia Titan Xp graphic card – 12 GB GDDR5X of dedicated
memory, 11.4 GHz of memory speed and 547.7 GB/s of memory
bandwidth.

As displayed in Table 3, the experiment itself makes use of only one
node. The resulting neuron map should preserve some topological
distribution and shows clusters that can be visualized through the U-
matrix (Ultsch and Siemon, 1990). In unsupervised classification, the
neurons have no label assigned since the input data is unlabeled.

Typically, a clustering algorithm is applied in order to partition the
neuron map into C clusters and associate a label l to each cluster. In our
application, we applied the K-means algorithm (Jain, 2010) to create
two clusters (karst and non-karst features). The K-means is one of the
simplest clustering algorithms that partitions data in an iterative
fashion using k-centroids being k defined a priori. The centroids are
defined in the first iteration, but they change along the iterations to the
mean point of its cluster.

Giving the labeled neuron map, the classification is performed by
assigning the label of the best matching neuron to the input sample. In
summary, the best matching neuron is obtained by finding the most

Fig. 5. Top of the Macaé formation and some of the identified geological features in the amplitude data: ravines (green arrows), a wide and sinuous canyon (red
arrow) and sinkholes (pink arrows). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Maps of distribution: (a) U-matrix, (b) amplitude second derivative, (c) most negative and (d) most positive curvature, (e) envelope-weighted frequency, (f)
isopach distribution maps, and (g) labeled neuron map.
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similar neuron to the input sample (i.e., smallest Euclidean distance). As
in the unsupervised learning, this step is also executed in the GPU, in
which multiple GPU threads will compute simultaneously the best
matching neuron for the entire dataset.

7. Case of study: Macaé formation

The seismic data have mapped the top of the Macae Formation,
which corresponds to Albian carbonates. The selected study area is
located in the southern area of the Campos Basin in Brazil, which is
approximately 500 km2 of area, 14.6 km long (SW-NE) and 34 km wide
(NW-SE). Each bin represents a section of size 12.5×18.75m2 in size,
sampled of 4ms and record length of 5 s. The seismic traces are char-
acterized by 1250 samples, frequency spectrum ranging from 0 to
125 Hz, and 35 Hz as dominant frequency. The working volume has a
size of 2.8 GB.

The top of the Macaé formation (Fig. 5) is characterized by closed
circular depressions interpreted as sinkholes (pink arrows), a wide and
sinuous canyon (red arrow), and less developed erosive features clas-
sified as ravines (green arrows), which comprise the features of interest
to be identified in the experiment.

7.1. Experiments and discussion

The U-matrix resulting from the unsupervised learning is shown in
Fig. 6a. Fig. 6b–f depict the distribution of the weight values in the
neuron map respective to each attribute. As aforementioned, the ap-
plication is treated as a binary classification problem whose samples
will be either karst or non-karst features. Given that, the clustering and
labeling of the neuron map through the K-means algorithm results in
the partitioned map depicted in Fig. 6g. Therefore, neurons are labeled
as class 1 (red) or class 2 (blue).

The classification using the best matching approach gives the result
shown in Fig. 7. There, we have that class 1 represents the non-karst
features and class 2 represents the features of interest. Fig. 8 shows in
detail some of the mapped features in the final result.

The delimitation of elements provided by the extraction of class 2
facilitates the process of geological interpretation of a paleohorizon.
Examining Fig. 8a, at least 7 sinkholes (pink arrows) can be easily
identified and analyzed under a morphometric point of view, having
diameters between 70 and 600m, and depths from 5 to 60m. In ad-
dition, two well-developed ravines (green arrows) show rectilinear
pattern and low continuity. These features end in sinkholes, defining
connection points between the surface and subsurface hydrology. Class
2 also shows the occurrence of a canyon, highlighting its sinuous pat-
tern (Fig. 8b). This feature has steep-sided walls indicating a preferably
vertical development vector. Also, the high symmetry of the canyon

Fig. 7. Classification result at the Macaé top.

Fig. 8. Classification result in details: (a) ravines and karst features (green and
pink arrows, respectively), and (b) canyon (red arrow) and false-positive fea-
tures (black arrows). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Table 4
Computing time comparison.

Algorithm Computing time (seconds) Speed-up

SOM/CPU 9549 1.00
SOM/GPU 304 31.41

L.C.S. Afonso et al. Computers and Geosciences 119 (2018) 1–8
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edges becomes evident. The canyon has dimensions ten times greater
than the ravines with average width and depth of 1,200 and 100m,
respectively. A few false-positive features can be observed pointed by
black arrows in Fig. 8b.

As aforementioned, this work deals with an unsupervised applica-
tion. The fundamental problem in unsupervised learning is to find
clusters, such that samples within each cluster should share some level
of similarity. Therefore, it was computed the Silhouette coefficient (SC)
Sarle (1991) to provide a qualitative evaluation of the classification
result. The SC provides a score of clustering quality, which ranges from
− +1 to 1 , being − 1 incorrect clustering, 0 the existence of over-
lapping clusters, and + 1 highly dense clusters (best result). The ex-
perimental result achieved an SC score of 0.41.

Under the computational point of view, the application successfully
dealt with the large volume of seismic data, being capable of working
with the entire data at once in all steps of the workflow. Regarding the
computing time performance, the usage of a GPU provided a huge
speed-up, thus reaching a gain of over 31 times compared to the CPU
implementation (Table 4). The computing time comprises the time of
mapping the seismic data, clustering the neuron map, and classifica-
tion.

The gain comes from changes made in how the best matching
neuron is computed in both training and classification phases, and in
the neuron weight vector update. In a non-parallel code, the distance
from each input sample x to each neuron wj in the map is computed one
by one. In the GPU implementation, the same distance can be computed
for all neurons at the same time. This is possible because multiple
threads are allocated, being each one responsible for the computing of
one distance.

8. Conclusions

The properties of the karst features contained in seismic data make
the task of karst identification a very difficult one. Additionally, the
great amount of volumetric data that has to be analyzed makes the
interpretation very much time-consuming.

Nowadays, applications need to provide useful information in the
lowest time. GPU comes as a low-cost option to tackle the problems of
volume of data and processing time through its parallel architecture.
Allied with this powerful tool, we may add pattern recognition methods
that can retrieve insightful information in situations such as the ap-
plication presented in this paper.

This work explored the potential of GPUs in an application that
usually requires high computational resources and achieved promising
results. Considering the geological results, the application was able to
successfully identify the features of interest on the top of our study area.
The computing performance has also achieved satisfactory and im-
portant results. The application successfully processed the entire da-
taset in any step and achieved a huge speed-up against a CPU im-
plementation.
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