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A B S T R A C T

Modeling of the variogram is a critical step for most geostatistical methods. However, most of the prevalent
variogram-based solutions are designed without sufficient consideration of the effect of the interpolation process
on their application. This paper proposes an automated variogram modeling framework, which simultaneously
considers the fit of the experimental variogram and interpolation accuracy in the modeling variogram inter-
polation result. The variogram modeling framework can be treated as a nonlinear optimization problem with
two sub-goals. The first is to optimize the goodness of fit between the experimental and theoretical variogram
values under the conditions of their designated parameters. Second, we seek to optimize the difference between
measured values and the associated kriging estimates with the candidate variogram model. A typical case study
was chosen using a public dataset to test the proposed method, which was implemented using a genetic algo-
rithm, and its performance was compared with the ones of other commonly applied variogram modeling ap-
proaches. As expected, the traditional variogram modeling method that only considers fitting standard experi-
mental variograms showed severe sensitivity to errors in data and parameters; classical cross-validation
modeling results tended to overlook the experimental variograms. By contrast, the proposed method succeeded
in producing variogram models with robust, high-quality kriging estimates and favorable fitness of experimental
variograms in a more powerful and flexible way.

1. Introduction

For most geostatistical methods, a critical step to measuring the
spatial structure or relationships for data of interest is modeling of the
variogram, which has been a research focus in this field for a long-time.
Maximum likelihood and least squares are the two common ways to
achieve this model fitting goal.

Maximum likelihood (ML) methods, which estimate the variogram
model parameters by minimizing a negative log-likelihood function
under a multi-Gaussian assumption, are gaining ground among geos-
tatisticians, especially when used to incorporate trends and external
drift (Mardia and Marshall, 1984; Oliver and Webster, 2014; Pardo-
Igúzquiza et al., 2009). An attractive feature of this method is that the
variogram parameters are directly calculated and obtained without
intermediate steps. However, an ML estimator is strongly model de-
pendent (Cressie, 1985). It assumes that the data follow a multivariate
Gaussian distribution, which is a formidable requirement to fulfill and
one that is almost impossible to verify (Kerry and Oliver, 2007).

Furthermore, user-friendly software with enough flexibility to use this
method is not common in the public domain. Thus, although the ML
method has a valuable role to play in variogram modeling, it is not a
widespread approach in practice and will not be considered in this
research.

By contrast, the method of least squares (LS) has become a standard
means of objective variogram modeling, with certain computational
simplicity and broad availability to be implemented within geostatis-
tical software packages. Oliver and Webster (2014) argued that LS
approach should be satisfactory if applied with understanding in 90% of
all geostatistical investigations.

LS variogram modeling is regarded as an indirect method since
calculation of experimental variograms (also known as the sample
variogram or empirical variogram) is required. In this procedure, the
most frequently used estimator is the method of moments (Matheron,
1965), which is nonparametric and has many favorable properties, such
as unbiasedness and consistency in a pointwise sense (Miranda and
Souto De Miranda, 2011).
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The main process of variogram modeling with the LS method is to fit
discrete experimental variogram values with the closest negative defi-
nite function model. To achieve this goal, first a valid variogram model
should be chosen and then its corresponding parameters evaluated
using LS criteria.

The LS variogram parameter estimates are those that minimize the
squared differences between the theoretical model and the experi-
mental variogram. Currently, there are several different kinds of LS
methods, among which ordinary least squares (OLS), weighted least
squares (WLS) and generalized least squares (GLS) are commonly
known. Among the three methods, OLS is the simplest; GLS offers more
statistical efficiency at the price of more complexity since it takes into
account correlation between variogram estimators at different lags
(Cressie, 1985); and WLS can be regarded as a compromise between the
OLS and GLS criteria (Lahiri et al., 2002). Since it is simple to imple-
ment and efficient in application (McBratney and Webster, 1986;
Miranda and Souto De Miranda, 2011; Zimmerman and Zimmerman,
1991), WLS is the most widely accepted among the three methods.

More recent studies (Han et al., 2016; Oliver and Webster, 2014)
have shown that the WLS method yields the most satisfactory results in
fitting a variogram model. The classical and most commonly used WLS
method was proposed by Cressie (1985). Based on the principles of
WLS, a series of improved automated machine-learning methods have
been proposed recently, such as simulated annealing and nonlinear
least squares (Emery, 2010), iterative least squares (Desassis and
Renard, 2013), genetic programming and support vector machines
(Han et al., 2016).

Most of these methods have been developed to directly fit a model
to one or more experimental variograms. However, variogram mod-
eling is rarely an isolated goal. In most cases, its ultimate objective is to
estimate data values at un-sampled locations. Besides, It is notable that
the main objective of variogram modeling is to capture the major
spatial features of the attribute, not to build a variogram model that is
the closest possible to experimental values (Goovaerts, 1997). Using
these machine-learning approaches, without exception the variogram
modeling result can perfectly fit the experimental variogram values
under the ideal calculation conditions. Yet in practical applications, the
effect of the variogram model used in estimation remains unknown to
some extent.

Besides the ML and LS methods, it is notable that variogram iden-
tification can also be accomplished by cross-validated statistics
(Kitanidis, 1991; Lebel and Bastin, 1985; Samper and Neuman, 1989).
As in the systematic illustration of this method by Lebel and Bastin
(1985), it is based on the assumption that the parametric variogram
model is only an approximation of the true-field variogram; this is a
realistic point of view (in hydrology) since in most practical applica-
tions very simple (often isotropic) models are adopted. By contrast, the
problem of spatial continuity in geology is commonly much more
complicated. Despite the validity, in theory, there are few applications
of this method in geological contexts. This interpolation-based vario-
gram modeling method, however, indicates that adequately in-
corporating the minimization of kriging accuracy into the LS modeling
process is essential and feasible.

Therefore, we propose an integrated optimization objective taking
both the experimental variogram fit and the interpolation accuracy into
account. The basic idea of this research is to insert an explicit constraint
mechanism for producing high-quality estimates into the currently used
LS variogram modeling method. The main principle and the high
quality of the variogram modeling result by using this method will be
discussed and illustrated in the case study. First, we discuss the method
itself and its implementation.

2. Method

We propose an optimal variogram modeling mechanism that si-
multaneously considers spatial structure and its accompanying

interpolation accuracy. The goal of the method is to minimize the fol-
lowing expression:

= +
∈

w wθ θ θ* arg min { O ( ) O ( )}
θ D

F F I I
(1)

● θ is a vector containing all of the parameters in a certain variogram
model to be evaluated. For instance, for the typical isotropic sphe-
rical model with a nugget, the vector θ could consist of the following
four parameters: nugget value, the model type (“spherical”, for in-
stance), range value and sill value. For implementation in practice,
different basic model types can be expressed as a series of discrete
variables; for instance, 0 and 1 can be representative of the type of
the spherical and the exponential models, respectively;

● θO ( )F stands for the goodness of fit, which is the difference between
the experimental variogram values and the corresponding theore-
tical variogram model, as determined by parameter vector θ;

● θO ( )I represents the kriging interpolation accuracy by applying the
current variogram model parameterized by vector θ;

● wF and wI are weights to adjust the contributions of θO ( )F and θO ( )I
to the total optimization goal, respectively;

● �⊂D N and N is the total number of parameters in the vector θ.

Common measurements used in estimation, such as mean error
(ME), mean squared error (MSE), root mean squared error (RMSE), and
the mean squared deviation ratio (MSDR, which is the mean of the
squared errors divided by the corresponding kriging variances (Oliver
and Webster, 2014)), can be applied individually or in combination for
estimating θO ( )I in Eq. (1). Two classic ways to calculate these metrics
are cross-validation and jackknifing.

θO ( )F can be implemented by similar metrics, such as ME, MSE and
RMSE. However, it is important to distinguish which sample value is
more or less important while fitting experimental variograms. The sum
of weighted squared errors is thus suggested for θO ( )F .

wF and wI can be predefined according to the exploratory data or
background analysis in the study area. They should be generally greater
than 0.0 to keep the validity of the constraints on experimental vario-
gram fitting and cross-validated estimation. In extreme situations, ei-
ther wF or wI could be equal to 0.0 so that the proposed method de-
generates into the LS or cross-validation based method.

The optimization criterion in Eq. (1) is straightforward since the
accuracy of experimental variogram fitting and interpolation was es-
tablished several decades ago in the early monographs in geostatistics
(Goovaerts, 1997). Also, it is worth noting that the two sub-objects,

θO ( )I and θO ( )F in Eq. (1), should be expressed in the same order of
magnitude. Normalization or weighting can be used to achieve this
goal.

3. Case study

3.1. Test dataset

This case study was executed based on the Walker Lake Dataset
(Isaaks and Srivastava, 1989). The total number of data points in this
dataset is 1270, with 780 estimated points and 490 sample points on a
two-dimensional grid as shown in Fig. 1. The accompanying summary
statistics of the sample and estimated dataset are listed in Table 1, from
which it is observed that there are apparent statistical differences be-
tween these two datasets. For instance, the mean and variance of the
sample dataset are 435 and 89 929, but only 283 and 62 773 for the
estimated dataset. These differences, not uncommon in practice, in-
dicate that the sample dataset is not well representative of the whole
study area, resulting in potential difficulty in variogram modeling and
high-precision interpolation.
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3.2. An alternative implementation

3.2.1. Genetic algorithm
As shown in Eq. (1), minimizing inaccuracy both in experimental

variogram fitting and interpolation in a multi-dimensional space is a
challenging task. A valuable solution to this kind of optimization pro-
blem is to use a genetic algorithm (GA), an efficient and robust heuristic
tool for searching solutions to optimization problems that has been
successfully used in various applications (Clarke, 2017; Villegas-
Jiménez and Mucci, 2010). An extensive description of GAs is that by
Goldberg (1989).

3.2.2. Objective function
Following Eq. (1), we employed a relative RMSE, which consists of

the common RMSE divided by a constant standard deviation, to mea-
sure both the experimental variogram goodness of fit θO ( )F and inter-
polation accuracy for kriging estimates θO ( )I .

As a result, θO ( )F is modeled as:

∑= −
=σ

wθ h h h θO ( ) 1 1
N

( )[γ̂( ) γ( ; )]
i

i i iF
E 1

N
2

(2)

where N represents the number of lags applied in calculating the ex-
perimental variogram under the associated search conditions; h θγ( ; )i

and hγ̂ ( )i respectively stand for modeling and experimental variogram
values that corresponds to the i-th lag under a specific search condition;
θ stands for the vector of the current candidate parameters for calcu-
lating the model values; σE is the standard deviation of the whole ex-
perimental variogram values used in the fit, and w h( )i is the weight to
mark how important the i-th squared difference between two variogram
values is. Cressie (1985) and Pardo-Igúzquiza (1999) provided several
alternatives to estimate this parameter, and the following expression is
assumed in this study:

=w nh h( ) [ ( )]i i
2 (3)

where n h( )i is the number of contributing sample pairs for the i-th lag
hi.

For the measurement of interpolation accuracy, θO ( )I , it is similarly

Fig. 1. The position map of the estimated and sample points.

Table 1
Summary statistics of the sample and estimated points.

Dataset name Data count Mean Variance Maximum Upper quartile Median Lower quartile Minimum

SamplePots.dat 470 435.30 89929.40 1528.10 639.50 423.40 184.40 0
EstimatedPots.dat 780 283.00 62772.81 1322.52 444.64 218.45 70.27 0
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expressed as:

∑= −
=σ

z k z kθ θO ( ) 1 1
M

[ˆ ( ) ( ; )]
k

I
S 1

M
2

(4)

where z k θ( ; ) and z kˆ ( ) are respectively the estimated value and the
measured value for the k-th point; M is the total number of the sampled
points; and σS is the standard deviation of the sampled values in the
interpolation. θO ( )I in this study was estimated by cross-validation.

In this implementation, the sum of wF and wI in Eq. (1) is required
to be 1.0. According to this constraint and Eqs. (2)–(4), the final ob-
jective function is:

∑

∑

= − −

+ −

=

=
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σ
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(5)

3.2.3. Chromosome representation
The typical encoding mechanism based on binary strings was ap-

plied in this research. For convenience and flexibility, a complete
chromosome was built by transforming the optimized parameters in the
vector θ of Eq. (5) into corresponding genes in order. Fig. 2 shows the
full chromosome pattern in the case where all of the variogram para-
meters in a simple two-dimensional variogram model are required to be
optimized. It is worth noting that the variogram model type is the only
discrete parameter in the chromosome, where the three commonly used
basic variogram models (spherical, exponential and Gaussian) plus
nugget are prepared to be evaluated and selected in this case study. The
corresponding discretization formula representing the type of basic
models is listed as follows:

=
⎧

⎨
⎩

≤ <
≤ <
≤ <

Spherical T
Exponential T
Gaussian T

Model type
, 0 1
, 1 2
, 2 3 (6)

where T is the gene value representing the type of basic model in the
chromosome.

Note that this encoding pattern is dynamic and its gene can be au-
tomatically increased or decreased according to any ad hoc problems.
For instance, if the main anisotropy angle is known and does not need
to be optimized, its corresponding gene can be removed from the
chromosome. In order to visually illustrate the variogram modeling and
comparison results concisely, however, only the classical nugget plus a
single model were considered in the case study.

3.2.4. Algorithm implementation
The algorithm has been implemented as a plug-in of the Stanford

Geostatistical modeling Software SGeMS (Remy et al., 2011), which is a
flexible and extendable geostatistical package. The GA with a crowding
mechanism provided in GALib, which is a classic C++ library of GA
components (Wall, 1996), is highly efficient in this application and
therefore was selected for the following test.

Key algorithms employed in the experiment consist of calculating
the objective function and performing the GA-based primary optimi-
zation process.

Algorithm 1: objective function calculation.

(1) Decode the current genome to obtain the candidate variogram
model;

(2) Read the basic experimental variogram data, calculate the corre-
sponding variogram model values and evaluate its goodness of fit;

(3) Execute the cross-validation and assess the interpolation errors;
(4) Calculate and return the objective value based on the two kinds of

errors from steps (2) and (3).

Algorithm 2: primary optimization process.

(1) Read the related parameters such as the GA mutation and cross
probability;

(2) Initialize population and evaluate every individual gene by calcu-
lating the objective value and the associated fitness score;

(3) Sequentially execute the genetic operators (selection, crossover,
mutation) to generate a new population;

(4) Re-evaluate the new population. If the termination criterion is not
satisfied, continue to evolve by performing steps (3)–(4); if yes, stop
and execute step (5);

(5) Decode the best genome and output the optimized variogram
model.

Detailed procedures and the relationship between these two algo-
rithms are shown in Fig. 3.

3.3. Test parameters and methods

For an objective comparison of the calculation process and its result,
the classical WLS and cross-validation based methods (Lebel and Bastin,
1985) were selected and also implemented using a GA in the case study.

θO ( )F in Eq. (2) was employed as an objective function to perform the
traditional WLS method; θO ( )I in Eq. (4) was applied as an optimization
goal to implement the classical cross-validated method. Also, for the
convenience of comparison, the traditional WLS and cross-validation
based methods are respectively termed the fitting-oriented (FO) and
interpolation-oriented (IO) method; and, accordingly, the proposed
method is termed the fitting and interpolation-oriented (FIO) method.

In the test, wI in Eq. (5) was assigned to 0.5 by default such that
θO ( )F and θO ( )I could play an equally important role in the proposed

method. Additionally, we also elaborated on a special sensitivity ana-
lysis on this parameter in section 3.7. In order to obtain experimental
variograms for the modeling process, a set of typical parameters was
designed and is shown in Table 2, with the details of calculations
plotted in Fig. 7.

Based on the computed experimental variograms, the FO, IO and
FIO methods with the GA were executed in sequence to evaluate the
spatial structure of the sample data. Since GA itself was not the focus of
this experiment, the GA parameters were fixed for the three methods as
follows: the maximum number of generations at 200; the population
size was assigned as 200; and the crossover probability and mutation
probability were set as 1.0 and 0.01, respectively. In addition, to ensure
the repeatability of the experiment, all tests used a random seed for the
GA set to a constant of 1, except for the special test on varied random
seeds.

For the sake of evaluating the full ability of the proposed method,
we suppose that any other prior information for the study area is un-
known except for the measured values of samples. According to the
spatial distribution, summary statistics and the calculated experimental
variogram of the sample dataset, all of the variogram parameters need
to be evaluated within their maximum ranges of possible valid values as
described in Table 3. An additional condition to this table is that the
sum of the sill and nugget should be equal to the global variance of the
sample data, which is commonly regarded as the theoretical sill in
variogram modeling (Gringarten and Deutsch, 2001).

Fig. 2. Chromosome dynamic coding for variogram modeling with a two-di-
mensional theoretical model.
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Since the search neighborhood will significantly affect kriging es-
timates and determine which part of the variogram model will be ap-
plied while interpolating, a series of search parameters, as shown in
Table 4, were sequentially tested to obtain an appropriate neighbor-
hood model. The corresponding variogram modeling results, with these
varied search neighborhoods by the FIO method, were surprisingly si-
milar to each other; their anisotropy angles were around 160°and thus
can be plotted in Fig. 4. These resulting anisotropy angles are also
consistent with other FIO modeling results in the following test contexts
(e.g., Fig. 6 and Fig. 9). Conversely, the IO method presents significant
instabilities in this context.

Thus it can be concluded that the FIO method was not sensitive to
search neighborhood parameters in this study. So as to be able to
compare our results with the work of Isaaks and Srivastava (1989), all
of the samples within 25m of the estimated point were adopted for
ordinary kriging (OK) in the cross-validation and actual interpolation
process.

3.4. Test with different GA random seeds

An issue in complex multi-parameter optimization, is the difficulty
for GA to repeatedly produce the same consequence. This characteristic
can be evaluated for a stability test of the three variogram modeling
methods. Here a random seed set consisting of 12 constants (1, 2, ···, 12)
was used in sequence with GA to produce different variogram modeling
results.

Fig. 3. Block diagram of the GA based algorithm implementation.

Table 2
Parameters for calculating reference experimental variograms in four directions.

No. Azimuth (°) Dip (°) Angle tolerance (°) Lag count Lag distance (m) Lag tolerance (m) Band (m)

(1) 0 0 22.5 20 10 5.0 50
(2) 45 0 22.5 20 10 5.0 50
(3) 90 0 22.5 20 10 5.0 50
(4) 135 0 22.5 20 10 5.0 50

Table 3
Valid value ranges of parameters to be evaluated.

Parameter Type The corresponding value range

Nugget(m) [0, 50000]
Model type Spherical; Exponential; Gaussian
Sill(m) [0.00001, 120000]
Range1(m) [10, 200]
Range2(m) [10, 200]
Azimuth (°) [0, 180]

Table 4
A series of neighborhood parameters for the FIO method.

No. The range of participated sample count Search radius(m)

(1) [1, 20] 200
(2) [1, 40] 200
(3) [1, 60] 200
… … …
(10) [1, 200] 200
(11) [1, 200] 20
(12) [1, 200] 40
(13) [1, 200] 60
… … …
(20) [1, 200] 200
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Fig. 5 shows that the GA evolution process for the three methods
(the FO, FIO and IO), is relatively stable and consistent in the case of
200 initial individuals with different random seeds. Although there are
some differences in their evolution efficiencies, they both succeeded in
achieving considerable convergence after 200 iterations. As shown in
Fig. 5c–d, both θO ( )F and θO ( )I , in Eq. (2) and Eq. (4), respectively,
from the FIO method are greater than, but very close to, the corre-
sponding results from the FO and IO methods for all of the 12 random
seeds.

Fig. 6a shows that most of anisotropy angles of the modeling results
for the three methods with varied random seeds are around 160° and
therefore the resulting models can be observed in this direction. As
shown in Fig. 6b–c, the result differences among the three methods for
different random seeds are significant. The FO models have large
nuggets and unstable main ranges compared with the FIO models;

however, they both fit the experimental variograms well. By contrast,
the IO results are relatively more different from the experimental var-
iogram values. The distinctions between the FIO models and the results
generated by the other two methods are caused by balancing the re-
quirements of fitting the experimental variograms and producing high-
accuracy estimates.

The goodness of fit between the reference experimental variograms
(calculated by the search parameters in Table 2) and the modeling re-
sults from the three methods is shown in Figs. 7 and 8a in a qualitative
and quantitative way, respectively. Both the FIO and FO produced sa-
tisfactory results with respect to the fit of the experimental variograms;
the IO method, however, yielded disappointing variogram models. For
example, as shown in Fig. 8a, the average RMSE for the FO, FIO and IO
method were 8 196, 8 291 and 28 778, respectively.

Another kind of GA optimization result is the interpolation accuracy

Fig. 4. The experimental variogram vs. the FIO and IO variogram modeling results with neighborhood parameters in Table 5; (a) 160° and (b) 250° for parameters
(1)–(10); (c) 160° and (d) 250° for parameters (11)–(20).

Fig. 5. (a) Average and (b) standard variance of the objective function values vs. the number of generations in evolutions with 12 different random seeds for the FO,
FIO and IO method; the objective value of the best individual in experimental variogram fitting (c) and cross-validation (d).
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of cross-validation. With control over the estimation quality, it is pre-
dictable that the FIO and IO methods will produce lower cross-validated
interpolation errors than the FO method. This prediction is verified by
Fig. 8b, in which the FIO and IO models produced estimates with si-
milar accuracy measured by RMSE; in comparison, the FO models failed
to yield such accurate estimates.

In the actual interpolation process, OK with the three different kinds
of variogram model results was executed in order, with the accom-
panying interpolation accuracy measured by RMSE as described in
Fig. 8c. Interpolation accuracy of the estimates by the FIO and IO
method is clearly superior to that for the FO method. For all the cases
where random seeds vary from 1 to 12, the mean of the RMSEs from the
FO method is 152.90, whereas the corresponding measurement from
the FIO and IO method are 144.55 and 144.53. Fig. S1 (in the

Supplementary Material) reveals the estimation details of cross-vali-
dation and actual interpolation for the three methods in the case where
the random seed is 1.

Comparing and analyzing the differences among the modeling re-
sults in Fig. 8, it is notable that the quality of estimates resulting from
the same variogram model differs in cross-validation and actual inter-
polation. For instance, by using the FIO method, the RMSE value was
around 177 for cross-validation but reached a much smaller value, 145,
for the actual interpolation. A major reason for this difference is that
the samples used cannot adequately represent the characteristics of the
estimated data. However, this lack of representation in sample dataset,
which is not uncommon in practice, does not adversely affect the su-
periority of the FIO method in interpolation.

It is worth noting that although it is similar among the interpolation

Fig. 6. (a) The main anisotropy directions of the modeling results by the FO, FIO and IO methods with 12 random GA seeds; and the corresponding models vs. the
experimental variograms along (b) and perpendicular to (c) the mean of main anisotropy directions (160°).

Fig. 7. The FO, FIO and IO variogram modeling results with 12 random GA seeds vs. the experimental variograms in the reference four directions; (a) 0° (b) 45° (c)
90° and (d) 135°.
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accuracy and goodness of fit when using variograms that are modeled
from the proposed FIO method and classic one (Isaaks and Srivastava,
1989); the latter adopts an elaborately nested model and involves both
objective and subjective geostatistical steps to obtain the variogram
parameters. On the contrary, the FIO just employs a relatively simple
model and performs almost the whole modeling process in a fully au-
tomated way.

From the above calculation result and corresponding analysis, it can
be concluded that the FIO method can produce robust variogram
modeling results, with high accuracy both for the fitting of the ex-
perimental variograms and actual interpolation estimates.

3.5. Test with different numbers of experimental variograms

It is widely accepted that a larger number of experimental vario-
grams will enhance the quality of the variogram modeling results,
especially in the case of modeling by eye. However, the number of
necessary directions is hard to define. Therefore, it is important to test
the sensitivity of variogram modeling on the number and directions of
experimental variograms.

As shown in Table 5, 19 search azimuth sets were designed to
generate different sets of experimental variograms. All of the azimuth
sets are then calculated and applied in the variogram modeling for the
FO and FIO method. The corresponding performance analysis in ex-
perimental variogram fitting, cross-validation and real estimation is
demonstrated in Figs. 9 and 10.

Fig. 8. RMSEs in fitting the reference experimental variograms (a), cross-validation (b) and actual interpolation (c) with the FO, FIO and IO modeling results by the
12 random seeds.

Fig. 9. (a) The main anisotropy directions of the modeling results by the FO and FIO methods with the 19 azimuth sets; and the corresponding models vs. the
experimental variograms along (b) and perpendicular to (c) the mean of main anisotropy directions (160°).
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Fig. 9a shows that the main anisotropy angle varies little and is
recognized to be around 160°, except for the case when only two ex-
perimental variograms are used in the FO method,. Therefore, all var-
iogram models can be plotted together as in the above situation.

Fig. 9b–c reveal the variogram modeling results of the FO and FIO
method in the context of different numbers of experimental variograms.
Stability is observed for the FIO variogram models, of which all types of
the theoretical model are the spherical except in the case of 20 search
azimuths; the max range is around 47 and the min range around 27
with the nugget less than 15 000. On the contrary, either for the types of
theoretical model or for the associated parameter values, the FO
method produces more uncertain results.

Fig. 10a quantitatively illustrates that the variogram modeling re-
sults from both methods match well with the experimental variograms
in the corresponding directions. Fig. 10b–c shows that the FIO method
succeeded in producing stable, favorable results both in cross-validation
and in actual interpolation. From these figures, it is notable that as the
number of experimental variograms increases, the FIO method keeps
producing kriging estimates with high interpolation accuracy, except
for a minor fluctuation in the case when the number of experimental
variograms is 20, which means sample pairs within many associated
search lags are probably not sufficient for calculating reliable experi-
mental variogram values. For the FO method, however, it is not until
the number of experimental variograms falls between 12 and 16 that
the corresponding interpolation accuracy relatively stabilizes. Ob-
viously, the FIO method performs significantly better irrespective of the
number of experimental variograms used.

3.6. Test with different numbers of samples

Similar experimental results can also be observed across different
numbers of samples. In our study, ten different sample sub-datasets
(shown in Table 6), which were randomly drawn as 10%, 20%, ·· ·,
100% of the samples from the original 470 sample dataset, were gen-
erated to test the stability of the proposed method.

Fig. 11a presents the calculation time of variogram modeling by the
three methods with different sample datasets. Their coefficients of
variation of the main variogram parameters are revealed in Fig. 11b,
which indicates that results from the FIO method vary relatively slightly
compared with these from the other two methods. The details of
Fig. 11b can be observed in Table S1a-b in the Supplementary Material.
.

Fig. 12 shows different accuracies of the three kinds of modeling
results in experimental variogram fit and interpolation. As expected,
the FO method succeeded in fitting the experimental variograms; the IO
method produced favorable cross-validated interpolation accuracy; and
the FIO accomplished a favorable balance between the two.

3.7. Test with different cross-validation weights

As the superiority of the FIO method is to consider both the accu-
racy of fitting experimental variograms and OK interpolation, it is of
great significance to elaborate on different FIO modeling results with
varied contributions of θO ( )I or θO ( )F in Eq. (5). Thus, a series of cross-
validation weights, wI, were applied in the FIO modeling in the test
dataset. Fig. 13 indicates that the FIO results are relatively stable for
weights between 0.1 and 0.9. Fig. 14 shows that a broad range of
possible weights, from 0.3 to 0.7, would guide the FIO method to

Table 5
A series of search azimuth sets used for variogram modeling.

Number of azimuths The corresponding search azimuth set
(°)

Angle tolerance(°)

2 0, 90 45
3 0, 60, 120 30
4 0, 45, 90, 135 22.5
5 0, 40, 80, 120, 160 20
… … …
20 0, 9, 18, 27, 36, 45, … , 171 4.5

Fig. 10. RMSEs in fitting the reference experimental variograms (a), cross-validation (b) and actual interpolation (c) with the FO and FIO modeling results using the
19 azimuth sets.

Table 6
Random dataset draw from the original sample dataset.

No. Dataset name Proportion in original dataset Number of samples

(1) S10 10% 47
(2) S20 20% 94
(3) S30 30% 141
… … … …
(10) S100 100% 470
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produce favorable variogram models measured by both experimental
variogram fit and OK estimation.

In summary, the IO modeling results generally produced estimates
with high accuracy regardless of the experimental variograms; the FO
models matched well with the reference experimental variograms, but
they were frequently unable to yield favorable estimates. Besides, both
of them lacked significant stability in different contexts. By contrast, the
FIO method not only produced satisfactory results measured by the
goodness of fit of experimental variograms and quality of estimates, but
also kept being stable as the calculation parameters varied.

4. Discussion

As shown in Fig. 11a, the FO method is of high efficiency; however,
the relative longer computation time for our proposed method is a
significant issue. This shortage could be significantly overcome by only
keeping the candidate models which fit the experimental variograms
well for calculating the complete objection function. However, this
process should be performed carefully since valuable solutions might be
filtered out by a too strict rule.

In essence, both the FO and IO method share the same goal of re-
vealing the spatial continuity of the data of interest as completely as
possible. However, they both depend on a unique constraint (experi-
mental variograms or kriging estimates), which might introduce no-
ticeable uncertainties. Thus, there is not much practical significance to

obtain a “best” model by constraining either on experimental vario-
grams or kriging estimates under a certain set of calculation para-
meters. Many valuable solutions would be generated by using either the
FO or IO method in practice. Suppose F and I are the solution sets of
variogram models from the FO and IO methods, respectively; few ele-
ments in F and I that could represent the real spatial continuity will
probably belong to the intersection of F and I, F∩I, which is rightly
corresponding to the solution set of the FIO method. The significant
similarity among the FIO results in different contexts in the test implies
the validity of this method.

Thus, the proposed method is consistent with classic FO and IO
methods; in theory, it will benefit from any improvement to the FO or
IO methods. Note that only the classic forms of FO and IO method were
employed in the test. Further studies using more robust experimental
variograms (Lark, 2000; Miranda and Souto De Miranda, 2011), LS
methods and cross-validated residuals (Kitanidis, 1991) are worthwhile
to be investigated in future FIO modeling.

5. Conclusions

Although multi-point statistics is currently becoming more and
more critical in multiple research fields, variogram modeling is still
unavoidable for most geostatistical applications. It is true that there is
no best variogram model (Goovaerts, 1997). The proposed method aims
at simultaneously producing high-quality experimental variogram

Fig. 11. (a) Calculation times and (b) the corresponding modeling results of the three test methods in variogram modeling for different sample datasets using a
desktop with the Intel Core i7 CPU (2.20 GHz).

Fig. 12. RMSEs in fitting the reference experimental variograms (a), cross-validation (b) and actual interpolation (c) with the FO, FIO and IO modeling results using
the 10 sample dataset.
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fitting and kriging estimates, which are two widely accepted criteria in
variogram modeling. The associated implementation, application and
superior performance compared with traditional variogram modeling
were illustrated by a case study in the paper. According to our findings,
we conclude as follows:

(1) The proposed framework is valid for producing high-quality var-
iogram models in terms of both experimental variogram fitting and
actual interpolation; meanwhile, the method is flexible enough to
integrate prior knowledge as much as possible and is not sensitive
to parameters during implementation, such as the search neigh-
borhood and the reference experimental variograms;

(2) Cross-validation can be used to evaluate the interpolation accuracy
of candidate variogram models and GA is a valuable means to

implement the proposed method;
(3) The traditional WLS method is not always able to produce favorable

variogram models with respect to the actual interpolation accuracy
and the stability of modeling results in the context of varied num-
bers of experimental variograms or samples.

Nevertheless, it is obvious that the improvement of the proposed
method is at the cost of computational time. In the case of a large
number of samples, choosing a representative subset of samples, but not
the full sample set, would effectively speed up the calculation process.
Some parallel computing technologies are also valuable to be im-
plemented in the proposed method. We also conclude that further re-
search is needed in cross-variogram modeling for multi-variable spatial
data.

Fig. 13. (a) The main anisotropy directions of the modeling results by the FIO methods with varied weights for cross-validation; and the corresponding models vs. the
experimental variograms along (b) and perpendicular to (c) the mean of main anisotropy directions (160°).

Fig. 14. RMSEs in fitting the reference experimental variograms (a), cross-validation (b) and actual interpolation (c) with the FIO modeling results using the varied
weights for cross-validation.
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