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ABSTRACT 6 

Dimensionality reduction provides a simple, two-dimensional representation of multi-element 7 

geochemical assays, which facilitates visualisation of complex data and enhances their interpretation. 8 

A recently proposed dimensionality reduction algorithm, namely t-distributed stochastic neighbour 9 

embedding (t-SNE), generates effective two-dimensional representations of a wide range of datasets 10 

based on pairwise statistical distances of the input. However, direct application to multi-element 11 

geochemical assays has been shown to produce representations which can fail to separate specimens 12 

by a desired geological property, such as state of hydration. Since t-SNE is a statistical distance-based 13 

method, these sub-optimal representations may be due to the presence of dimensions (i.e., elements) 14 

irrelevant to the desired property—an issue often termed the ‘curse of dimensionality’. To address this 15 

shortcoming, t-SNE was applied to (i) 31 elements in a geochemical assay database covering 16 000 16 

drill core intervals intersecting the Kevitsa mafic-ultramafic intrusion (Lapland, Finland); and (ii) a 17 

subset of 11 elements capable of discriminating between unaltered and altered host rock specimens, as 18 

determined by a Random Forest classifier within a recursive feature elimination framework. The 19 

resulting representation more effectively separates altered and unaltered specimens, and we 20 

demonstrate that it produces more favourable representations than alternative well-known methods 21 

(namely, a self-organising map and principal components analysis) applied to the same dataset. We 22 

also demonstrate that the proposed t-SNE representation is applicable for re-logging of the specimens’ 23 

alteration state as logged by geologists, and in particular provides visual insight into the labels 24 

suggested by a black box statistical re-logging algorithm. 25 

                                                      
1 Mr. Tom Horrocks was responsible for experimental design, evaluation, and writing the manuscript. Prof. Eun-
jung Holden and Dr. Daniel Wedge critically reviewed the manuscript with focus on computational elements. 
Dr. Chris Wijns provided details regarding the case study (Kevitsa). Both Dr. Chris Wijns and Dr. Marco 
Fiorentini critically reviewed manuscript with focus on geoechemical interpretation. 
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1 INTRODUCTION 28 

Geochemical analysis, which decomposes geological specimens into their elemental concentrations, 29 

can refine the geological understanding of mineral deposits (Kyser et al., 2015). For example, rock 30 

units can be defined by clustering geochemical assays of drill core (e.g., Ellefsen et al., 2014; Meng et 31 

al., 2011), and predictive chemical models of lithology and alteration can be built with reference to 32 

corresponding geological interpretations (e.g., Cracknell et al., 2014). However, modern geochemical 33 

assays frequently contain concentrations for over fifty elements (Grunsky, 2010) and are thus 34 

considered high dimensional data, where the surplus of elements not only hinders effective 35 

visualisation, but also necessitates complicated statistical analysis. Dimensionality reduction is a 36 

solution to this problem, whereby the input data are transformed into a lower (often two) dimensional 37 

space, known as an embedding, which reveals the essential structure of the data (Hyvärinen et al., 38 

2001). The embedding is visually interpretable and can be a noise-reduced basis for further analysis 39 

such as clustering (Templ et al., 2008; Reimann et al., 2008; Grunsky, 2010). Dimensionality 40 

reduction techniques recommended for geochemical assays are given by Grunsky (2010), which 41 

include: principal component analysis (PCA) (Hotelling, 1933; Pearson, 1901), multidimensional 42 

scaling (Torgerson, 1952), projection pursuit (Friedman and Tukey, 1974), independent component 43 

analysis (Hyvärinen et al., 2001), Sammon mapping (Sammon, 1969), and self-organising maps 44 

(SOM) (Kohonen, 1990). 45 

Dimensionality reduction techniques can be divided into linear techniques such as PCA, which are 46 

computationally economical but not guaranteed to separate clusters (Chang, 1983); and nonlinear 47 

techniques such as Sammon mapping, which can theoretically represent nonlinear relationships 48 

between points but commonly produce lower quality embeddings on real-world data compared to 49 

PCA (van der Maaten et al., 2009). SOMs in particular have experienced increasing use in the 50 

geosciences, such as in order to characterise sedimentary provenance (Lacassie et al., 2004), 51 
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characterise phases of intrusive activity (Penn, 2005), integrate with other geoscientific data (Fraser et 52 

al., 2005; Fraser and Dickson, 2005), predict potential sources of airborne particulates (Gulson et al., 53 

2007), and determine underlying processes contributing to water quality measurements (Juntunen et 54 

al., 2013). The SOM’s embeddings are discretised (i.e., gridded) and the number of samples mapped 55 

to SOM grid cells may differ significantly which necessitates careful interpretation, although the grid 56 

structure can also be learned from the data with a growable cell structure SOM (Alahakoon et al., 57 

2000) as demonstrated by Lacassie et al. (2004) and Lacassie and Ruiz-Del-Solar (2006). 58 

A recently proposed nonlinear dimensionality reduction technique called t-distributed stochastic 59 

neighbour embedding (t-SNE) produces high quality and non-discretised embeddings which 60 

outperform many existing techniques on a variety of real-world datasets (van der Maaten and Hinton, 61 

2008). Moreover, an approximated form of the algorithm extends its applicability to large (� > 1000) 62 

datasets (van der Maaten, 2014) such as deposit-scale geochemical studies. One such study 63 

demonstrated that t-SNE could separate mineralised and unmineralised specimens in an iron ore 64 

deposit, but could not produce adequate separation between hydrated and non-hydrated host rock 65 

specimens despite the presence of loss on ignition (Balamurali and Melkumyan, 2016), which is a 66 

strong indicator of hydration. In this study, we apply t-SNE to a large geochemical dataset (16 000 67 

assays, 31 elements) of drill core intersecting the Kevitsa mafic-ultramafic intrusion in Finland which 68 

hosts a world class Ni-Cu-PGE deposit, with the primary objective of creating an embedding that 69 

clearly visualises the changes in elemental concentrations involved in host rock hydration.  70 

This study extends the previous work by Balamurali and Melkumyan (2016) in three ways. First, we 71 

empirically identify a subset of elements that are jointly predictive of alteration, and use them to 72 

produce an embedding that separates hydrated and non-hydrated specimens. The degree of separation 73 

between hydrated and non-hydrated specimens is quantified based on the alteration status of each 74 

specimen’s nearest neighbour in the embedding, and is shown to compare favourably to a t-SNE 75 

embedding generated using all elements, and an embedding based on PCA. Practical improvements of 76 

the t-SNE embedding over a SOM generated from the same data are also discussed. Second, we 77 

propose modifications to the t-SNE algorithm to address the compositional aspects of the input 78 
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geochemical data. Last, we demonstrate t-SNE’s practicality for automated geochemical-based re-79 

logging of alteration, where an embedding visualises the output of a black box re-logging algorithm as 80 

a function of the algorithm’s user-defined parameters. 81 

The remainder of this paper is structured as follows. In Section 2, the case study geochemical data and 82 

methods for element selection and dimensionality reduction are discussed. Section 3 presents the t-83 

SNE embeddings generated from all elements and from the subset of selected elements, and the latter 84 

embedding is compared to those produced by PCA and SOM. A demonstration of how the t-SNE 85 

embedding can aid geochemical re-logging is also reported. Finally, conclusions are given in Section 86 

4. 87 

2 MATERIALS AND METHODS 88 

Section 0 below provides details on the project area and the multi-element geochemical dataset used 89 

in this study. Section 2.2 describes the method for dimensionality reduction, which is summarised in 90 

Figure 1. 91 

2.1 Case study 92 

2.1.1 Geological setting 93 

The Kevitsa Ni-Cu-PGE deposit—also known as the Keivitsa or Keivitsansarvi deposit—lies within a 94 

mafic-ultramafic intrusion hosted by the Savukoski Group of the Central Lapland Greenstone Belt, 95 

northern Finland. The intrusion is approximately 16 km2 in surface area (Mutanen, 1997) and formed 96 

ca 2.06 Ga (Mutanen and Huhma, 2001). Mutanen (1997, pp. 135–139) separates the intrusion into 97 

three zones: a basal marginal chill zone (0-8 m), an ultramafic zone which hosts the deposit (up to 2 98 

km thick), and a gabbro zone in the south-eastern part of the intrusion. Significant veining occurs 99 

throughout the deposit (Le Vaillant, 2014; Le Vaillant et al., 2016).  100 

During regional greenschist facies metamorphism, the mafic minerals were hydrated into minerals 101 

including serpentine, amphibole, and talc (Mutanen, 1997). The olivine pyroxenite host rock 102 

underwent pervasive amphibole alteration, which was logged as metaperidotite by the mine-site 103 
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geologists (Gregory et al., 2011). The metaperidotite is generally accompanied by carbonate 104 

alteration, which is contained within the selvedge of nearby millimetre to metre-scale carbonate or 105 

carbonate-quartz veining (Gregory et al., 2011; Le Vaillant et al., 2016). 106 

2.1.2 Data 107 

The Kevitsa geochemical assay database (August 2014) in its unprocessed form contained 141 465 108 

assays of exploration and grade control holes. A total of 51 elements were recorded in the database, 109 

however a mean of only 18 elements were present in each assay. A set of 31 regularly assayed 110 

elements were selected for further analysis: Ag, Al, Ars, Au, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Li, 111 

Mg, Mn, Mo, Na, Ni, P, Pb, Pd, S, Sb, Sc, Sr, Th, Ti, V, Y, and Zn. The subset of assays containing 112 

all 31 previously listed elements described diamond drill core intervals (i.e., no grade control holes). 113 

These assays were then coupled with their corresponding geology logs, which contained optional 114 

fields for lithology (rock type), major and minor alteration, and type and degree of veining. The 115 

geology log depth intervals and assayed core depth intervals were not aligned, meaning that multiple 116 

geology logs often existed for one assay.  117 

Assays were excluded from further analysis under the following circumstances. First, where the drill 118 

core interval was logged multiple times inconsistently (i.e., had overlapping geology logs with 119 

different lithologies). Second, where the drill core interval contained a vein, as the vein is 120 

volumetrically small and does not represent the intrusion alteration. Third, where the drill core 121 

interval was logged against a lithology not present within the intrusion, as the analysis was restricted 122 

to within the intrusion and not country rock. The final geochemical dataset comprised 16 165 123 

chemical assays with a 31-element suite and no missing values. The final distribution of lithologies is 124 

described in Table 1, subdivided by whether the lithology is considered unaltered or altered. 125 

2.2 Method 126 

The dimensionality reduction method presented is summarised in Figure 1: first, replacement of 127 

rounded zeros in the geochemical assays (Section 2.2.1); second, an optional step of element selection 128 
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(Section 2.2.2); and third, multiple applications of t-SNE with only the lowest error embedding 129 

returned (Section 2.2.3). Each of these computational steps are discussed in turn below. 130 

2.2.1 Rounded zero imputation 131 

Many concentrations in the final subset of assays were marked as below detection limit (zero or 132 

negative of the detection limit). Unfortunately, substituting zero for these values excludes the 133 

application of logarithms, which is necessary for further analysis. A simple substitution to half the 134 

detection limit changes the covariance structure of the data (Martín-Fernández et al., 2011), which has 135 

an unpredictable effect in dimensionality reduction. To avoid these problems, the R package 136 

‘robCompositions’ (Templ et al., 2011) was used to perform a model-based replacement of rounded 137 

zeroes (Martín-Fernández et al., 2012) using least squares regression and iterating until convergence. 138 

This method required predefined detection limits; in the absence of this metadata the largest negative 139 

number for each element was assumed to indicate the detection limit. In the case where no detection 140 

limits were indicated, the smallest measured positive number was used. These detection limits are 141 

given alongside the proportion of concentrations below detection limit in Table 2. 142 

2.2.2 Element selection 143 

The term ‘element selection’ refers to the process of empirically determining a subset of elements 144 

which discriminate between specimens according to an external geological property. To create 145 

embeddings which may better discriminate between hydrated and non-hydrated specimens, the 146 

specimens in the geochemical data were assigned labels of ‘altered’ or ‘unaltered’ according to their 147 

logged lithology (Table 1), and whether any alteration was explicitly logged against them. If a 148 

specimen had an unaltered lithology but had explicitly logged alteration, it was still considered 149 

altered. The labelled specimens were then used to determine a set of elements that were predictive of 150 

this alteration state using Random Forests within a recursive feature elimination framework, which 151 

are described in turn below. Note that a ‘feature’ refers to single dimension in the input data, which is 152 

an element in the context of geochemical datasets. 153 
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A Random Forest (Breiman, 2001) is a classifier composed of an ensemble of independently trained 154 

classification trees (Breiman, 1984) which aggregates the constituent trees’ votes for a given input and 155 

classifies accordingly. The performance of the forest depends upon the strength of its trees, but also 156 

on their lack of vote correlation: the strength of the trees determines how frequently they cast the 157 

correct vote, while their low intercorrelation avoids a unilateral (possibly incorrect) vote. The method 158 

by which vote correlation is reduced is twofold: first, each tree is trained on a randomly resampled 159 

data set which covers approximately two-thirds of the original training set, created by sampling (with 160 

replacement) the original training set (i.e., bagging); second, the features used to split branches during 161 

training are chosen randomly. 162 

Random Forests further leverage the bagged training set by evaluating each tree with its so-called out-163 

of-bag samples, which constitute an unseen test set for that tree. The Random Forest calculates a 164 

‘feature importance’ by randomly permuting values of a given feature between all out-of-bag samples 165 

on a tree-by-tree basis and calculating their average decrease in classification accuracy, known as 166 

‘out-of-bag accuracy’. Unfortunately, the feature importance is diluted between highly correlated 167 

features, as a highly correlated feature can compensate for the permuted feature with little resulting 168 

decrease in prediction accuracy. This effect can be mitigated by applying recursive feature elimination 169 

(Gregorutti et al., 2017), whereby the lowest ranking feature is iteratively removed with importances 170 

recalculated. 171 

In this study, recursive feature elimination was applied to the labelled data. Feature importances were 172 

averaged from 20 Random Forests to reduce random effects. The Random Forests were trained with 173 

1000 trees, and during bagging the unaltered specimens were subsampled to prevent class imbalance 174 

affecting the feature importances (10 704 unaltered specimens vs. 5461 altered specimens). 175 

2.2.3 t-SNE 176 

Given a set of assays from a (possibly reduced) set of elements, t-SNE was applied to produce two-177 

dimensional embeddings. 178 
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2.2.3.1 Algorithm 179 

Given a matrix of �  � -dimensional points � = �	
, 	�,⋯ , 	�	|		� ∈ ℛ�� , t-distributed stochastic 180 

neighbour embedding (t-SNE) aims to produce a corresponding matrix of low (typically two) 181 

dimensional points � = ��
, ��,⋯ , ��	|	�� ∈ ℛ�� , � < � , where points that are similar in the 182 

original space are placed close together in the low dimensional space. For geochemical datasets, each 183 

point 	� represents a single assayed specimen with one dimension per elemental concentration. The 184 

joint probability ��� defines the pairwise similarity (in the high dimensional space) between points 	� 185 

and 	� , and is defined as the mean of the pairwise conditional probabilities: ��� = 

� ���|� + ��|��. 186 

While this definition of joint probability is unconventional, it has favourable characteristics over using 187 

conditional probability alone (see end of this section). The conditional pairwise probabilities are 188 

estimated using Gaussian kernels (Equation 1), where  � is the standard deviation of the Gaussian 189 

kernel for 	�, and ‖∙‖ denotes the ℓ�-norm: 190 

��|� = $%&'()*+	,(	-+
*//,*0

∑ $%&'()*‖	,(	2‖*//,*023,
 .          (1) 191 

Note that the raw similarity (the numerator) is normalised by all other raw pairwise similarities where 192 

4 ≠ 6. 193 

The standard deviation  � controls how quickly ‘similarity’ between two points decays as a function 194 

of their distance, and is dynamically computed such that similarity in regions of low density (i.e., 195 

where the closest neighbour is distant) decays more gradually. This is implemented by solving 196 

Equation 2 by binary search, where ℎ  is the user-defined parameter ‘perplexity’ that loosely 197 

corresponds to how many points should be considered highly similar to 	�: 198 

 � :	exp�−∑ ��|� 	ln	��|�� � = ℎ .         (2) 199 

In the two-dimensional embedding, the pairwise similarity ?�� between embedded points �� and �� is 200 

calculated using a Student t-distribution with one degree of freedom: 201 

?�� = '
@+�,(�-+*0
A)

∑ �
@‖�2(�B‖*�A)23B
 .         (3) 202 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 
 

The corresponding error C in the embedding is calculated as the Kullback-Leibler divergence between 203 

the joint probabilities � and ?:  204 

C = ∑ ∑ ��� log� F,-G,-��  ,          (4) 205 

which corresponds to information lost (in bits) when ?�� is used to approximate ���. The algorithm 206 

randomly initialises the embedded points ��, and iteratively updates their positions by minimising C 207 

by gradient descent. 208 

The improved performance of t-SNE over its forebear stochastic neighbour embedding is largely due 209 

to two factors. First, the new functional form for similarity between embedded points (Equation 3) 210 

still requires that similar points (��� 	≫ 0) are placed close together in the embedding (+�� − ��+ ≈211 

0� , but importantly does not constrain dissimilar points to be placed far apart. This enables 212 

embeddings which accurately model local structure in the high dimensional space. Second, defining 213 

similarity as ��� = 

� ���|� + ��|�� rather than just ��|�  ensures that outlying points have a minimum 214 

similarity above zero: ∀6 ≠ 4, ��|� ≈ 0	 → ��� ≈ 

���|�. This penalises embeddings where outliers are 215 

proximal to other points, thus preferring outliers to be placed away from other points. These two 216 

improvements allow t-SNE to retain local structure while also isolating statistical outliers in the 217 

embedding. 218 

2.2.3.2 Aitchison distance 219 

The similarity functions that t-SNE uses rely on the Euclidean distance between points, expressed in 220 

terms of an ℓ�-norm in Equation 1 and Equation 3 above. However, the Euclidean distance is a poor 221 

metric for comparing geochemical assays for two reasons. First, elemental concentrations are zero-222 

bounded, typically log-normally distributed, and can have vastly different ranges; assays should at 223 

least be log-transformed or normalised lest the differences between major elements dominate those 224 

between minor and trace elements. Second, assays are compositional data (i.e., describe proportions 225 

of a whole), and therefore lie on a lower-dimensional simplex instead of occupying the full (half-226 

)space.  227 
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Aitchison (1992, 1984) devised a distance function appropriate for data on a simplex based on 228 

elemental logratios, which can be written in two alternative but equivalent forms: 229 

LM��	
, 	�� = 

�∑ Nlog O),,

O),- − log O*,,
O*,-P

���Q�          (5) 230 

by Aitchison (1992), and 231 

LM��	
, 	�� = ∑ 'log O),,
R�	)�− log O*,,

R�	*�0
���S
          (6) 232 

by Aitchison (1986, p. 193), where LM is the Aitchison distance, � is the number of dimensions (i.e., 233 

number of elements in the assay), T�∙� is the geometric mean, and U
,� and U�,� are scalars from the 234 

4’th dimension of points 	
 and 	�, respectively. The difference between the Euclidean distance of the 235 

log-transformed data and the Aitchison distance can be obtained by rearranging Equation 6 to give 236 

LM�	
, 	��� = ‖log	
 − log 	�‖� − � log� V�	)�V�	*�  ,      (7) 237 

where log 	 = �log U
 , log U� , ⋯ , log U�� . The correcting factor � log� V�	)�V�	*�  ensures that the 238 

Aitchison distance is scale invariant, that is, allows each point 	
 and 	� to be scaled by different 239 

positive factors (e.g., W	
, X	�) without changing value (Aitchison, 1992). This is necessary where 240 

the underlying data encodes size information about the specimen, either directly such as when 241 

measured in grams instead of units of density, or surreptitiously such as when mixing volumetric and 242 

mass density units (which may both be denoted in e.g. parts per billion). This correction is greatest 243 

between a point with roughly equal components and a point with many components close to zero; the 244 

Euclidean distance, Euclidean distance of log-transformed points, and the Aitchison distance on the 245 

simplex are compared geometrically in Figure 2(a-c), respectively. 246 

2.2.3.3 Implementation 247 

All embeddings presented in the following sections were computed alongside nine other embeddings 248 

with randomised initialisations and were selected for further analysis on the basis of embedding error 249 

(Equation 4). The Barnes-Hut t-SNE approximation (van der Maaten, 2014) as provided by the 250 
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‘Rtsne’ R package (Krijthe, 2015) was used due to the abundance of assays, as it requires only 251 

Y�� log��  computation and Y���  memory where �  is the number of specimens. The trade-off 252 

parameter was set Z = 0.5, which has been shown to work well on real-world datasets (van der 253 

Maaten, 2014).  254 

All similarity calculations used the Aitchison distance in place of the Euclidean distance, which was 255 

implemented by applying an isometric logratio (ilr) transform (Egozcue et al., 2003) to the assays 256 

before supplying them to t-SNE: the Euclidean distance in the ilr-space is equivalent to the Aitchison 257 

distance in the original space. This enabled the use of existing t-SNE libraries without modification. 258 

Note that the transformed data occupies one fewer dimension even though the ilr transform is lossless; 259 

this is because the original data is restricted to a plane (i.e., a simplex) in the original space, but 260 

occupies the entire transformed space.   261 

3 RESULTS AND DISCUSSION 262 

This section presents a t-SNE embedding generated using all elements in the geochemical dataset and 263 

discusses the cluster structure present within the embedding. Following this, a t-SNE embedding is 264 

generated from the elements selected in Section 2.2.2 and compared to the previous embedding and 265 

alternative dimensionality reduction techniques in terms of separability of altered and unaltered 266 

specimens. Finally, a practical demonstration using an embedding to understand the output of a black 267 

box statistical re-logging algorithm is presented.  268 

3.1 Embedding of all elements  269 

Embeddings were first computed using all 31 elements and are presented in Figure 3, where each 270 

point represents one specimen (i.e., one drill core interval). The subfigures show the embedding 271 

coloured by the normalised log-concentration of each input element, using a 2% linear clip. The 272 

relevant ranges are given in Table 3 along with the true minimum and maximum for each element. 273 

The embeddings produced by t-SNE can be used to visualise inter-cluster and intra-cluster structure 274 

with some caveats (Wattenberg et al., 2016): inter-cluster distances and the positions of the clusters in 275 
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the embedding are not necessarily informative, and the size of the clusters (in diameter) is not 276 

informative of the range of values within that cluster due to the dynamic adaptation of the similarity 277 

measure to sparse regions (Equation 2). Cognisant of these caveats, Figure 3 can be used to 278 

interrogate the qualitative degree to which each element controls the (distance-based) assay clustering. 279 

Elements which cover a range of values across the cluster are unlikely to significantly contribute to 280 

the cluster structure. Such elements within a cluster appear either ‘peppered’ or are lain out in gradient 281 

bands across the cluster. Examples include gold, barium, cobalt, copper, iron, molybdenum, lead, 282 

palladium, sulphur, and silver to a lesser extent. These elements may benefit from further analysis, 283 

either independently or within a specifically-chosen subset of elements. 284 

Elements which are highly bimodal (e.g., present at high concentrations or not at all) appear to 285 

strongly influence the division of clusters. For example, arsenic and thorium, which are either close to 286 

zero or are present in high concentrations (40% to 50% of values are below detection limit, see Table 287 

2), are not clustered in mixed values. In some cases the clusters are not split (e.g., molybdenum), but 288 

the small-valued specimens are forced to one end of the cluster. 289 

Figure 4 shows the embedding coloured by (a) the six most frequently logged unaltered lithologies 290 

�� = 11	940� , and (b) the three most frequently logged altered lithologies (� = 3803 ). Any 291 

specimens with lithology outside of the legend are shown in grey, which includes twelve minor 292 

unaltered lithologies (� = 272) and six minor altered lithologies (� = 150). The lithology colour 293 

scheme approximates olivine content (blue is low), and specimens which also have an entry under 294 

logged alteration (regardless of lithology) are plotted as triangles. 295 

Overlaying the embeddings with logged lithology (Figure 4) shows that the cluster structure within 296 

the full suite of elements can only distinguish serpentinite (pink cluster in Figure 4(b)) and a 297 

combination of gabbro and uralite gabbro (blue clusters in Figure 4(a-b)). The embedding shows no 298 

discrimination between unaltered and altered lithologies. This does not indicate that there is no such 299 

discriminative information within the chosen set of elements, but rather that the elements jointly 300 

exhibit patterns that are unconnected to lithology – as previously discussed, the cluster structure 301 
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appears to be heavily influenced by the bimodal elements. An embedding with a subset of elements 302 

more suited to discriminating between altered and unaltered specimens is presented in Section 3.2.  303 

Interestingly, almost all specimens which had some alteration logged against them (triangular points 304 

in Figure 4 were placed in several clusters towards the bottom of the embedding. Many elements 305 

contributed to this clustering: Figure 3 shows that vanadium, yttrium, titanium, scandium, strontium, 306 

calcium, aluminium, and cadmium are all present in uniquely elevated concentrations within this 307 

cluster. Silver and antinomy hold a tight range of intermediate values within this cluster, which is not 308 

seen elsewhere in the embedding. Still other elements are present in generally higher but more 309 

variable concentrations within this cluster, such as sodium and magnesium. 310 

It should be noted here that the changes in element concentrations in Figure 2 are in fact dependent on 311 

changes of concentration for all the other elements. For example, an apparent elevation in scandium, 312 

which is not normally associated with alteration, can be explained by a reduction in many other 313 

elements that have been leached from the sample, such that a greater proportion of scandium remains, 314 

even though scandium itself has not been added by the alteration process. The tight grouping of 315 

specimens with logged alteration provides strong evidence for the validity of the alteration logging by 316 

geologists, although there are a few specimens with logged alteration positioned elsewhere in the 317 

embedding which may be strong candidates for re-logging. 318 

3.2 Embedding of selected elements 319 

Statistical distance-based analytic methods, such as k-means clustering or t-SNE embedding, can be 320 

influenced by which dimensions from the underlying data are used as input. This is because different 321 

clusters are apparent in the data depending on which dimensions are present, either due to true 322 

underlying structure or due to corruption by uninformative or noisy dimensions. This section reports 323 

how applying t-SNE to a subset of elements which were determined to be highly discriminative 324 

between altered and unaltered specimens improved the resulting embeddings in terms of separability 325 

between hydrated and non-hydrated specimens. The section concludes with a comparison with 326 
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existing dimensionality reduction techniques PCA and SOM, and an example of practical use for 327 

geochemical-based re-logging of alteration state. 328 

3.2.1 Selected elements 329 

Figure 5 shows the result of the recursive feature elimination used to select the subset of elements 330 

pertinent to alteration, where the y-axis shows the out-of-bag classification error of the Random 331 

Forests for discriminating altered and unaltered specimens using the number of elements in the x-axis. 332 

Each point in the figure is labelled by the current element with the lowest average feature importance, 333 

which is the next element to be eliminated. When read from left to right, the elements occur from least 334 

to most discriminative of altered and unaltered specimens. The classification error was judged to 335 

rapidly increase when fewer than eleven elements remained; hence, the eleven elements to the right of 336 

strontium (inclusive) were chosen for the alteration suite. In decreasing order of discriminative ability, 337 

these are: chromium, scandium, magnesium, yttrium, vanadium, manganese, calcium, aluminium, 338 

titanium, sodium, and strontium. 339 

3.2.2 Embedding the selected elements 340 

The embedding constructed from the eleven selected elements is given in Figure 6 (coloured 341 

identically to Figure 3). Figure 7 shows the embedding overlain with unaltered and altered logged 342 

lithology as previously in Figure 4, where a relatively strong separation can now be seen between the 343 

host rock olivine pyroxenite (yellow points in Figure 7(a)) and its amphibolised counterpart 344 

metaperidotite (green points in Figure 7(b)). In particular, the transition from olivine pyroxenite to 345 

metaperidotite can be seen to correlate with decreasing magnesium and manganese, and to a lesser 346 

degree with increasing calcium, vanadium, yttrium, and chromium (Figure 6, from the bottom-right to 347 

the top-left of the main cluster). The caveat explained in Section 3.1 regarding relative changes in 348 

element abundances applies here again: it is probable that yttrium was immobile during hydrothermal 349 

alteration, and the apparent increase in concentration is due to the removal of other elements. 350 

This separation of hydrated host rock from non-hydrated host rock was completely absent from the 351 

previous embedding, perhaps due to the splitting of clusters by highly bimodal elements. This 352 
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separation was also absent in the t-SNE embedding presented by Balamurali and Melkumyan (2016), 353 

despite the presence of a strong indicator of hydration in the underlying assays (loss on ignition). This 354 

further demonstrates the importance of element selection prior to the application of t-SNE so that the 355 

salient elements (which in this case pertain to hydration) can sufficiently impact the resulting 356 

embedding. 357 

Specimens with logged alteration (triangular points in Figure 7) are no longer completely disjoint 358 

from specimens without logged alteration as they were in the previous embedding (Figure 4). Manual 359 

inspection of the previous embedding shows elements such as cadmium and antimony clustered well 360 

in these points, but were not identified as discriminative by recursive feature elimination where they 361 

were eliminated first and fourth, respectively. This is because the order in which features are 362 

eliminated does not strongly indicate their individual discriminative ability, only that the strongest in a 363 

set of correlated features is removed last.  364 

The improvement of separability between altered and unaltered specimens was quantified by 365 

relabelling each specimen according to its nearest neighbour in the embedding, and calculating the 366 

resulting accuracy (i.e., 1NN classification). It was found that the prior step of element selection 367 

improved 1NN classification accuracy on the embedding from 65.5% to 81.8% for altered specimens, 368 

and from 82.4% to 91.0% for unaltered specimens (Table 4). The improvement seen in the embedding 369 

is a direct consequence of achieving better separation in the higher dimensional space: element 370 

selection improved the 1NN classification accuracy on the original (ilr-transformed) data from 75.5% 371 

to 82.3% for altered specimens, and from 87.7% to 92.2% for unaltered specimens (Table 4). Note 372 

that better separability is to be expected in the full dimensional space (which cannot be directly 373 

visualised), since a low dimensional embedding can only approximate the inter-point distances in the 374 

original space. Indeed, the proportion of points which maintain their nearest neighbour is a measure of 375 

embedding quality (Sanguinetti, 2008; van der Maaten et al., 2009). 376 

3.2.3 Comparison with other techniques 377 

The separability of altered and unaltered specimens was compared with two existing techniques: 378 

visualisation of the first two principal components (Figure 8) and an SOM embedding (Figure 9). 379 
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Both techniques used the ilr-transformed assays of the 11 selected elements for direct comparison. For 380 

visual clarity, both figures are coloured by the alteration status used during element selection (i.e., 381 

‘altered’ or ‘unaltered’) rather than the logged lithologies. It is important to note that the t-SNE 382 

embeddings derived from the selected subset of elements are being compared with embeddings from 383 

alternative techniques PCA and SOM on the same subset of elements. PCA and SOM are included 384 

here for comparison only; they are not being suggested for dimensionality reduction prior to 385 

application of t-SNE, nor are they related to the feature selection performed in this study. 386 

Although PCA (Hotelling, 1933; Pearson, 1901) is a linear technique which is desirable for various 387 

applications, it is often used for dimensionality reduction due to its computational simplicity, freedom 388 

of user-supplied parameters, and interpretable output. We show here that it can be inadequate for this 389 

application where the data contain subtle, nonlinear chemical patterns: Figure 8 displays the first two 390 

principal components, where significant mixing between the altered and unaltered specimens can be 391 

seen. The nearest neighbour classification accuracy is 76.6% for altered specimens and 90.3% for 392 

unaltered specimens, which are both lower than for the corresponding t-SNE embedding (Table 4). 393 

Further scatter plots were produced to visualise all remaining pairs of principal components; some 394 

pairs were able to produce a small cluster of unaltered specimens, however, the remaining specimens 395 

(i.e., the majority) remained mixed as in Figure 8. 396 

The SOM embedding (Figure 9) shares the important large-scale characteristics of the corresponding 397 

t-SNE embedding (Figure 6), namely a separation between altered and unaltered specimens 398 

characterised primarily by low magnesium and manganese concentrations (lower third of the right 399 

side of the SOM embedding), and a region corresponding to specimens with logged alteration 400 

(bottom-left corner of the SOM embedding). However, the discrete grid embedding that characterises 401 

the SOM technique hides individual outliers (peppered points in Figure 9(a)), and is more difficult to 402 

plot with multiple labels (each grid must show proportions of labels). Moreover, plotting the 403 

elemental concentrations on the SOM gives a false sense of scale: the high-manganese region covers 404 

approximately one third of the SOM cells but only accounts for a small number of points (Figure 6, 405 
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clusters to the top and bottom). Correct interpretation of the SOM requires reference to a ‘hit chart’ 406 

detailing the number of points assigned to each cell. 407 

3.3 Example scenario: geochemical re-logging 408 

The lithology and alteration of drill core at Kevitsa was logged by multiple geologists over a span of 409 

time and is subject to human error. Geochemical core re-logging is a quantitative method for 410 

correcting erroneous geological logging, whereby a classifier is trained and executed for prediction of 411 

geological logging from geochemistry. The classifier can be made to favour a simpler geochemical 412 

model over a more complex model with higher predictive accuracy on the training set by 413 

regularisation. The degree of regularisation is usually determined by maximising predictive accuracy 414 

on an unseen test set (rather than the training set); however, if the labels are incorrect then maximising 415 

accuracy leads to an incorrect model. In this section, a Random Forest is used to re-log the simplified 416 

alteration status (i.e., ‘altered’ or ‘unaltered’) and demonstrate how visualising the forest’s 417 

classification on the embedding of selected elements from the previous section can be useful in 418 

determining an appropriate degree of regularisation. 419 

A Random Forest with 1000 trees was trained to predict alteration status (‘altered’ or ‘unaltered’) 420 

from the geochemical data (all 31 elements); it was deemed unnecessary to use the feature-selected set 421 

of elements as the Random Forest performs internal feature selection during training. Although 422 

Random Forests are not prone to overfitting, they can be forcibly regularised by limiting the size of 423 

the constituent trees. By default, the trees within a Random Forest are grown to their maximum depth 424 

such that each leaf node describes one instance of the bagged training set. Enforcing a minimum 425 

terminal node size limits the size of the individual trees and thus regularises the forest. In this 426 

experiment, the minimum terminal node size of the Random Forest was varied between 1 (fully 427 

grown trees) to 8192 in a doubling sequence and the resulting predictions for all specimens were 428 

recorded and visualised on the 11-element embedding (Section 3.2).  429 

Figure 10(a-c) shows the Random Forest classifications of altered and unaltered specimens using the 430 

entire geochemical dataset as a function of increasing minimum terminal node size (20, 24, and 28), 431 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 
 

visualised on the feature-selected embedding. The embedding allows the visualisation of precisely 432 

which geochemical region is being affected by the regularisation. Figure 10(d) shows the out-of-bag 433 

error rates for the Random Forest, which increases monotonically as the forest is regularised. 434 

The full-depth Random Forest (minimum terminal node size of 1) achieves excellent accuracy on the 435 

out-of-bag samples, however outliers are visible towards the bottom of the main cluster which are 436 

logged as metaperidotite but are geochemically similar to olivine pyroxenite. As the regularisation 437 

increases (minimum terminal node size of 16), these points are re-logged (Figure 10(b)). It becomes 438 

clear when the forest is too heavily regularised as large, homogeneously logged clusters of specimens 439 

are re-classified (Figure 10(c), red circle). Therefore, the adequate level of regularisation for this 440 

model is a minimum terminal node size of approximately 16 and certainly below 512. In addition, it 441 

should be noted that Random Forests are not based on pairwise distances as t-SNE embeddings are; 442 

the intuitive correspondence between the Random Forest classifications of the specimens and their 443 

location on the t-SNE embedding, for varying degrees of regularisation, validates the embedding. 444 

4 CONCLUSIONS 445 

In this study, two t-SNE embeddings of geochemical data from the Kevitsa Ni-Cu-PGE deposit 446 

(Lapland, Finland) were created to visualise geological patterns: one using all 31 elements, the other 447 

using a subset of eleven elements empirically determined (using a feature selection process) to 448 

differentiate between altered and unaltered specimens. The first embedding revealed that highly 449 

bimodal elements tended to control the distance-based cluster structure of the data, but did not 450 

adequately separate altered and unaltered specimens. The second embedding could lay out non-451 

hydrated and hydrated host rocks (i.e., olivine pyroxenite and metaperidotite) such that the gradation 452 

of the former to the latter was apparent, which was not present in the embedding based on all 453 

elements. The second embedding was also demonstrated as an effective tool for interpreting the 454 

output of black box classifiers: visualising the altered/unaltered classifications of a Random Forest 455 

classifier trained at different levels of regularisation facilitated judgement of the level of 456 

regularisation, which aided in the re-logging of alteration status. Overall, the findings in this study 457 
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illustrate that t-SNE is capable of producing geochemical embeddings wherein clusters or intra-cluster 458 

structure may reflect external geological properties, however, this is reliant on exclusion of input 459 

elements which are statistically irrelevant to the desired geological property. 460 

Future development that will increase the practical value of t-SNE embeddings is their integration 461 

with other geoscientific data, primarily spatial coordinates and petrophysical measurements. 462 

Incorporating spatial coordinates may produce spatially consistent clusters which are valuable for 463 

geochemical domaining (e.g., Le Vaillant et al., 2017). However, this approach eliminates spatial 464 

plotting as a form of independent validation (Templ et al., 2008). Incorporating petrophysical 465 

measurements could further separate lithologies: P-wave velocity and density jointly relate to 466 

lithology and degree of alteration in Kevitsa, and seismic reflection has been used to identify 467 

lithological contacts (Koivisto et al., 2015). These additional geoscientific data could be integrated 468 

with geochemical data directly alongside the ilr-transformed assays, but numeric scaling would be 469 

required so that their contribution to the inter-point distance is known relative to that from the 470 

elemental concentrations. Alternatively, separate pairwise conditional probabilities ���  could be 471 

calculated for each type of geoscientific data, and subsequently combined in a weighted sum. This 472 

falls under the paradigm of multi-view learning, and indeed a multi-view variant of t-SNE has been 473 

proposed by Xie et al. (2011). 474 
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FIGURES 

 

Figure 1 Overview of the dimensionality reduction technique; see Method (Section 2.2) for elaboration. Note that lithology and alteration logs 

may be used for element selection but are otherwise held out from the dimensionality reduction process. 
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Figure 2 A synthetic compositional dataset in (a) regular space, (b) log10 space, and (c) log10 space with points normalised by their geometric 

mean. The straight-line distances in each subfigure correspond to (a) Euclidean distance, (b) Euclidean distance of log-transformed points, and 

(c) Aitchison distance. Note that the bolded points on the boundary are equidistant in (b) and (c), but are both closer to the bolded centre point in 

(c) since the Aitchison distance corrects for geometric mean. 
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Figure 3 Embedding of the geochemical dataset with all elements, coloured by elemental concentrations (log-scale). Large-scale clustering is 

strongly influenced by elements with bimodal distributions such as arsenic and thorium, while elements with little influence appear in all clusters 

as peppered or in rainbow bands (e.g., gold and sulphur). 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

26 
 

 

Figure 4 Embedding of the geochemical dataset of all elements, coloured by (a) unaltered logged lithology; and (b) altered logged lithology with 

colour approximately indicates olivine content (blue is low). Specimens with lithologies outside of the legend (including 18 minor lithologies) 

are coloured grey.  

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

27 
 

 

Figure 5 The Random Forest’s out-of-bag classification error (y-axis) when discriminating between altered and unaltered specimens during 

recursive feature elimination. The x-axis shows how many elements are in the current iteration of the elimination procedure and the next element 

to be eliminated. Error bars represent the 95% confidence level in out-of-bag classification error rate over 20 forests. 
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Figure 6 Embedding of selected elements from the geochemical dataset, coloured by elemental concentrations (log-scale). 
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Figure 7 Embedding of selected elements from the geochemical dataset, coloured by (a) unaltered logged lithology; and (b) altered logged 

lithology. Refer to Figure 4’s caption for colour scheme details. 
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Figure 8 First two principal components generated from the geochemical dataset (selected elements only). 
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Figure 9 SOM embedding of the geochemical data subset of alteration discriminator elements. The top three rows show the log-scale elemental 

concentrations, while the bottom row shows: (left) the distribution of altered and unaltered specimens over the grid cells; and (right) the U-

matrix, which outlines distinct regions in embedding.  
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Figure 10 (a-c): Random Forest classifications of altered (black) and unaltered (yellow) specimens using the full geochemical dataset, but 

plotted on the alteration suite embedding, as a function of changing minimum terminal node size; (d): the classification error on out-of-bag 

specimens, which increases with minimum terminal node size. The embedding characterises how the Random Forest classifications change as it 

is increasingly regularised: the classifications in (b) are less peppered than in (a), signifying a simpler geochemical model, while (c) is simpler 

again at the expense of misclassifying a large cluster of specimens (red circle). 
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TABLES 

Table 1 Population of specimens (drill core intervals) grouped by logged lithology. 

Lithology Count 
Unaltered 12 212 
 Olivine pyroxenite 10 445 

Gabbro 440 
Pyroxenite 399 
Dunite 276 
Olivine websterite 227 
Olivine gabbro 153 
Diorite 86 
Peridotite 55 
Magnetite gabbro 36 
Plagioclase bearing olivine websterite 36 
Diabase 20 
Granophyre 16 
Pegmatite 9 
Ultramafic (undifferentiated) 7 
Microgabbro 3 
Intrusive (mafic) 2 
Intrusive (felsic) 1 
Websterite 1 

Altered 3 953 
 Metaperidotite 3 494 

Serpentinite 159 
Uralite gabbro 150 
Hornfels 71 
Completely altered (lithology unknown) 38 
Albitite 21 
Hornblendite 12 
Meta-gabbro 7 
Amphibolite 1 

 

Table 2 Detection limits (DL) used for each element in the rounded zero imputation, and percentage of instances below detection limit (< DL). 

All concentrations were above detection limit for Al, Ca, Fe, Mg, Mn, Sr, and Ti. 

 < DL (%) DL  
Co < 0.1 0.01 ppm 
V < 0.1 2.32  ppm 

Cr < 0.1 0.77 ppm 
Sc < 0.1 0.08 ppm 
P < 0.1 0.02 ppm 

Na < 0.1 0.01 % 
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Zn 0.3 0.20 ppm 
Ba 0.6 0.04 ppm 
S 0.7 0.01 % 
Y 1.4 0.01 ppm 
Li  1.4 0.01 ppm 
Ni 1.8 0.01 % 
K 2.8 0.36 ppm 

Pb 3.7 0.01 ppm 
La 5.7 0.01 ppm 
Au 8.0 0.10 ppb 
Cu 7.9 0.01 % 
Pd 17 0.10 ppb 
Sb 24 0.01 ppm 
Cd 24 0.01 ppm 
Ag 25 0.01 ppm 
Mo 35 0.01 ppm 
Th 41 0.01 ppm 

Ars 50 0.01 ppm 

 

Table 3 Minimum, maximum, and 1st and 99th percentile concentrations of all assayed elements selected for further analysis. 

  Percentiles  
Min. 1st 99th Max. 

Ag (ppm) 0.000 233 0.00150 3 8.61 
Al (%) 0.007 73 0.0864 7.78 10.3 

Ars (ppm) 6.30×10-6 5.20×10-5 40.9 3500 
Au (ppb) 7.08×10-7 0.0551 270 4700 
Ba (ppm) 0.0350 1 200 754 

Ca (%) 0.008 50 0.0941 10.1 39.9 
Cd (ppm) 0.000 384 0.002 53 1.01 4.75 
Co (ppm) 0.0100 15.9 237 2590 
Cr (ppm) 0.770 6.82 1680 11 100 

Cu (%) 3.72×10-8 0.003 34 0.860 7.79 
Fe (%) 0.348 1.25 11.2 60.8 
K (%) 2.19×10-5 2.78×10-5 1.76 5 

La (ppm) 0.003 81 0.006 78 33.1 493 
Li (ppm) 0.007 48 0.008 65 17.4 80.3 
Mg (%) 0.0219 0.496 19.6 27.2 

Mn (ppm) 19 89 1470 4840 
Mo (ppm) 0.000 275 0.001 07 3.51 184 

Na (%) 0.007 72 0.0213 4.02 8.13 
Ni (%) 1.48×10-6 0.003 80 0.510 4.16 

P (ppm) 0.0200 8.71 940 4640 
Pb (ppm) 0.00360 0.007 26 16.9 50.1 
Pd (ppb) 1.31×10-8 0.0227 464 8090 

S (%) 2.77×10-7 0.0100 3.37 26.5 
Sb (ppm) 0.000 54 0.001 36 21.8 43.8 
Sc (ppm) 0.0618 0.780 56.2 84.5 
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Sr (ppm) 0.300 1.18 176 448 
Th (ppm) 2.08×10-6 4.18×10-5 9.70 57.4 

Ti (%) 0.000 125 0.008 82 0.723 1.69 
V (ppm) 2.19 7.59 293 6290 
Y (ppm) 0.007 30 0.008 84 22.4 63.9 

Zn (ppm) 0.185 2.11 78 888 

 

Table 4 Effect of element selection on nearest neighbour reclassification accuracy (‘altered’ vs. ‘unaltered’), as applied to the original (ilr-

transformed) data, the t-SNE embedding, and the first two principal components. 

 Dims  Accuracy (%) 
All elements  altered unaltered 
 Original (ilr) 30 75.5 87.7 
 t-SNE 2 65.5 82.4 
 PCA 2 54.2 75.9 
Selected elements    
 Original (ilr) 10 83.3 92.2 
 t-SNE 2 81.8 91.0 
 PCA 2 76.6 90.3 
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* Dimensionality reduction applied to Kevitsa's multi-element drill core 

assay database 

* Produced representations separated hydrated core despite absence of 

loss on ignition 

* Assay-based core re-logging visualised using representations 

* Feature selection prior to dimensionality reduction improved produced 

representations 

* Compositional nature of assays addressed using Aitchison distance 


