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ABSTRACT

Dimensionality reduction provides a simple, two-dimsional representation of multi-element
geochemical assays, which facilitates visualisatiboomplex data and enhances their interpretation.
A recently proposed dimensionality reduction altjori, namely t-distributed stochastic neighbour
embedding (t-SNE), generates effective two-dimearaioepresentations of a wide range of datasets
based on pairwise statistical distances of thetindowever, direct application to multi-element
geochemical assays has been shown to produce egfatisns which can fail to separate specimens
by a desired geological property, such as stalgafation. Since t-SNE is a statistical distanceelia
method, these sub-optimal representations may badathe presence of dimensions (i.e., elements)
irrelevant to the desired property—an issue ofeemed the ‘curse of dimensionality’. To address thi
shortcoming, t-SNE was applied to (i) 31 elementa geochemical assay database covering 16 000
drill core intervals intersecting the Kevitsa matfieramafic intrusion (Lapland, Finland); and (@)
subset of 11 elements capable of discriminating/éen unaltered and altered host rock specimens, as
determined by a Random Forest classifier withineeursive feature elimination framework. The
resulting representation more effectively separaaiered and unaltered specimens, and we
demonstrate that it produces more favourable reptasons than alternative well-known methods
(namely, a self-organising map and principal congmi® analysis) applied to the same dataset. We
also demonstrate that the proposed t-SNE reprdsenis applicable for re-logging of the specimens’
alteration state as logged by geologists, and nticodar provides visual insight into the labels

suggested by a black box statistical re-loggingttigm.

! Mr. Tom Horrocks was responsible for experimedesign, evaluation, and writing the manuscriptf FEan-
jung Holden and Dr. Daniel Wedge critically revielviihe manuscript with focus on computational eletsien
Dr. Chris Wijns provided details regarding the catedy (Kevitsa). Both Dr. Chris Wijns and Dr. Marc
Fiorentini critically reviewed manuscript with fogwn geoechemical interpretation.
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1 INTRODUCTION

Geochemical analysis, which decomposes geologpdisens into their elemental concentrations,
can refine the geological understanding of mindegosits (Kyser et al., 2015). For example, rock
units can be defined by clustering geochemicalyasshdrill core (e.g., Ellefsen et al., 2014; Mestg
al., 2011), and predictive chemical models of litlyy and alteration can be built with reference to
corresponding geological interpretations (e.g..ckmall et al., 2014). However, modern geochemical
assays frequently contain concentrations for ovity £lements (Grunsky, 2010) and are thus
considered high dimensional data, where the surpluslements not only hinders effective
visualisation, but also necessitates complicatatissital analysis. Dimensionality reduction is a
solution to this problem, whereby the input dai teansformed into a lower (often two) dimensional
space, known as asmbedding, which reveals the essential structure of the @dtavarinen et al.,
2001). The embedding is visually interpretable aad be a noise-reduced basis for further analysis
such as clustering (Templ et al., 2008; Reimanralet 2008; Grunsky, 2010). Dimensionality
reduction techniques recommended for geochemicsdyasare given by Grunsky (2010), which
include: principal component analysis (PCA) (Hotg)l 1933; Pearson, 1901), multidimensional
scaling (Torgerson, 1952), projection pursuit (Eman and Tukey, 1974), independent component
analysis (Hyvarinen et al., 2001), Sammon mappiBgn{mon, 1969), and self-organising maps

(SOM) (Kohonen, 1990).

Dimensionality reduction techniques can be divided linear techniques such as PCA, which are
computationally economical but not guaranteed foasse clusters (Chang, 1983); and nonlinear
techniques such as Sammon mapping, which can tieadhe represent nonlinear relationships

between points but commonly produce lower qualityoeddings on real-world data compared to
PCA (van der Maaten et al., 2009). SOMs in particdiave experienced increasing use in the

geosciences, such as in order to characterise eptiiry provenance (Lacassie et al., 2004),
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characterise phases of intrusive activity (Pen@520ntegrate with other geoscientific data (Frase

al., 2005; Fraser and Dickson, 2005), predict pa@ksources of airborne particulates (Gulson gt al
2007), and determine underlying processes conimigpib water quality measurements (Juntunen et
al., 2013). The SOM’s embeddings are discretised, @ridded) and the number of samples mapped
to SOM grid cells may differ significantly which cessitates careful interpretation, although the gri
structure can also be learned from the data wignosvable cell structure SOM (Alahakoon et al.,

2000) as demonstrated by Lacassie et al. (2004).acaksie and Ruiz-Del-Solar (2006).

A recently proposed nonlinear dimensionality retlucttechnique called t-distributed stochastic
neighbour embedding (t-SNE) produces high qualityd anon-discretised embeddings which
outperform many existing techniques on a varietyeal-world datasets (van der Maaten and Hinton,
2008). Moreover, an approximated form of the akponi extends its applicability to large & 1000)
datasets (van der Maaten, 2014) such as depoit-gchemical studies. One such study
demonstrated that t-SNE could separate minerabsetl unmineralised specimens in an iron ore
deposit, but could not produce adequate separaiétween hydrated and non-hydrated host rock
specimens despite the presence of loss on ign{Batamurali and Melkumyan, 2016), which is a
strong indicator of hydration. In this study, wepbpt-SNE to a large geochemical dataset (16 000
assays, 31 elements) of drill core intersectingktbeitsa mafic-ultramafic intrusion in Finland whic
hosts a world class Ni-Cu-PGE deposit, with thenary objective of creating an embedding that

clearly visualises the changes in elemental conagons involved in host rock hydration.

This study extends the previous work by Balamuaall Melkumyan (2016) in three ways. First, we
empirically identify a subset of elements that gmatly predictive of alteration, and use them to
produce an embedding that separates hydrated ambyaated specimens. The degree of separation
between hydrated and non-hydrated specimens istifiedrbased on the alteration status of each
specimen’s nearest neighbour in the embedding,iarsthown to compare favourably to a t-SNE
embedding generated using all elements, and andetimgebased on PCA. Practical improvements of
the t-SNE embedding over a SOM generated from #meesdata are also discussed. Second, we

propose modifications to the t-SNE algorithm to radd the compositional aspects of the input
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geochemical data. Last, we demonstrate t-SNE'stipadity for automated geochemical-based re-
logging of alteration, where an embedding visualibe output of a black box re-logging algorithm as

a function of the algorithm’s user-defined paramsete

The remainder of this paper is structured as fdlaw Section 2, the case study geochemical data an
methods for element selection and dimensionalitiucdon are discussed. Section 3 presents the t-
SNE embeddings generated from all elements and tihensubset of selected elements, and the latter
embedding is compared to those produced by PCASI. A demonstration of how the t-SNE
embedding can aid geochemical re-logging is alported. Finally, conclusions are given in Section

4.

2 MATERIALS AND METHODS

Section 0 below provides details on the projeca amed the multi-element geochemical dataset used
in this study. Section 2.2 describes the methodliimensionality reduction, which is summarised in

Figure 1.
2.1 Case study

2.1.1 Geological setting

The Kevitsa Ni-Cu-PGE deposit—also known as thevits or Keivitsansarvi deposit—lies within a
mafic-ultramafic intrusion hosted by the SavukoSkoup of the Central Lapland Greenstone Belt,
northern Finland. The intrusion is approximatelykb& in surface area (Mutanen, 1997) and formed
ca 2.06 Ga (Mutanen and Huhma, 2001). Mutanen (199.7135-139) separates the intrusion into
three zones: a basal marginal chill zone (0-8 m)uleramafic zone which hosts the deposit (up to 2
km thick), and a gabbro zone in the south-eastarh qf the intrusion. Significant veining occurs

throughout the deposit (Le Vaillant, 2014; Le Vailt et al., 2016).

During regional greenschist facies metamorphisra, tfafic minerals were hydrated into minerals
including serpentine, amphibole, and talc (Mutan&B97). The olivine pyroxenite host rock

underwent pervasive amphibole alteration, which \Wwagjed as metaperidotite by the mine-site
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geologists (Gregory et al.,, 2011). The metapetielots generally accompanied by carbonate
alteration, which is contained within the selveddenearby millimetre to metre-scale carbonate or

carbonate-quartz veining (Gregory et al., 2011yhdlant et al., 2016).

2.1.2 Data

The Kevitsa geochemical assay database (August) 2015 unprocessed form contained 141 465
assays of exploration and grade control holes.tAl wf 51 elements were recorded in the database,
however a mean of only 18 elements were presemiach assay. A set of 31 regularly assayed
elements were selected for further analysis: Ag,As$, Au, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Li,
Mg, Mn, Mo, Na, Ni, P, Pb, Pd, S, Sb, Sc, Sr, Th VI Y, and Zn. The subset of assays containing
all 31 previously listed elements described diamdnlli core intervals (i.e., no grade control hgles
These assays were then coupled with their correporgeology logs, which contained optional
fields for lithology (rock type), major and minoftexation, and type and degree of veining. The
geology log depth intervals and assayed core daphvals were not aligned, meaning that multiple

geology logs often existed for one assay.

Assays were excluded from further analysis underféliowing circumstances. First, where the drill
core interval was logged multiple times inconsilierti.e., had overlapping geology logs with
different lithologies). Second, where the drill eomterval contained a vein, as the vein is
volumetrically small and does not represent theugibn alteration. Third, where the drill core
interval was logged against a lithology not preseititin the intrusion, as the analysis was restdct
to within the intrusion and not country rock. Thieal geochemical dataset comprised 16 165
chemical assays with a 31-element suite and namgissilues. The final distribution of lithologies i

described in Table 1, subdivided by whether thelidgy is considered unaltered or altered.

2.2 Method

The dimensionality reduction method presented mmmsarised in Figure 1: first, replacement of

rounded zeros in the geochemical assays (Sectoh)2second, an optional step of element selection
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(Section 2.2.2); and third, multiple applications teSNE with only the lowest error embedding

returned (Section 2.2.3). Each of these computaltisteps are discussed in turn below.

2.2.1 Rounded zero imputation

Many concentrations in the final subset of assagsewnarked as below detection limit (zero or
negative of the detection limit). Unfortunately, bstituting zero for these values excludes the
application of logarithms, which is necessary farttier analysis. A simple substitution to half the
detection limit changes the covariance structurthefdata (Martin-Fernandez et al., 2011), which ha
an unpredictable effect in dimensionality reductidro avoid these problems, the R package
‘robCompositions’ (Templ et al., 2011) was usegésform a model-based replacement of rounded
zeroes (Martin-Fernandez et al., 2012) using legqiséres regression and iterating until convergence.
This method required predefined detection limitsthe absence of this metadata the largest negative
number for each element was assumed to indicatddteetion limit. In the case where no detection
limits were indicated, the smallest measured pa@sitiumber was used. These detection limits are

given alongside the proportion of concentrationsWwaletection limit in Table 2.

2.2.2 Element selection

The term ‘element selection’ refers to the prooafsempirically determining a subset of elements
which discriminate between specimens according rtoegternal geological property. To create
embeddings which may better discriminate betweedrdtgd and non-hydrated specimens, the
specimens in the geochemical data were assignetslab‘altered’ or ‘unaltered’ according to their
logged lithology (Table 1), and whether any alteratwas explicitly logged against them. If a
specimen had an unaltered lithology but had explidbgged alteration, it was still considered
altered. The labelled specimens were then usedttyrdine a set of elements that were predictive of
this alteration state using Random Forests withireaursive feature elimination framework, which
are described in turn below. Note that a ‘featueders to single dimension in the input data, whgch

an element in the context of geochemical datasets.
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A Random Forest (Breiman, 2001) is a classifier posed of an ensemble of independently trained
classification trees (Breiman, 1984) which aggregdie constituent trees’ votes for a given inpukt a
classifies accordingly. The performance of the godepends upon the strength of its trees, but also
on their lack of vote correlation: the strengthtloé trees determines how frequently they cast the
correct vote, while their low intercorrelation adsia unilateral (possibly incorrect) vote. The rodth

by which vote correlation is reduced is twofoldsfj each tree is trained on a randomly resampled
data set which covers approximately two-thirdshef original training set, created by sampling (with
replacement) the original training set (i.e., baglji second, the features used to split branchesglu

training are chosen randomly.

Random Forests further leverage the bagged trasehby evaluating each tree with its so-catied
of-bag samples, which constitute an unseen test set &irtthe. The Random Forest calculates a
‘feature importance’ by randomly permuting valuéswgiven feature between all out-of-bag samples
on a tree-by-tree basis and calculating their ayeerdecrease in classification accuracy, known as
‘out-of-bag accuracy’. Unfortunately, the featuraportance is diluted between highly correlated
features, as a highly correlated feature can cosgierfor the permuted feature with little resulting
decrease in prediction accuracy. This effect camitigated by applying recursive feature eliminatio
(Gregorutti et al., 2017), whereby the lowest ragkieature is iteratively removed with importances

recalculated.

In this study, recursive feature elimination waplegul to the labelled data. Feature importancegwer
averaged from 20 Random Forests to reduce randi@otef The Random Forests were trained with
1000 trees, and during bagging the unaltered sgasinvere subsampled to prevent class imbalance

affecting the feature importances (10 704 unaltspEtimens vs. 5461 altered specimens).

2.2.3 t-SNE

Given a set of assays from a (possibly reduceddfsetements, t-SNE was applied to produce two-

dimensional embeddings.
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2.2.3.1 Algorithm

Given a matrix ofn D-dimensional pointX = (x;,x,,-,x, | x; € RP), t-distributed stochastic
neighbour embedding (t-SNE) aims to produce a spoeding matrix of low (typically two)
dimensional point¥ = (y1,¥5,, V. | yi € RX), K < D, where points that are similar in the
original space are placed close together in thedimmensional space. For geochemical datasets, each
pointx; represents a single assayed specimen with onendiamreper elemental concentration. The

joint probabilityp;; defines the pairwise similarity (in the high dirseonal space) between points
andx;, and is defined as the mean of the pairwise cmmdit probabilitiesp;; =%(pj|i +pi|j).

While this definition of joint probability is unceentional, it has favourable characteristics o\sng
conditional probability alone (see end of this Eggt The conditional pairwise probabilities are
estimated using Gaussian kernels (Equation 1), evheés the standard deviation of the Gaussian

kernel forx;, and||:|| denotes thé?-norm:

(1)

_exp(gllxi=xl*/a?)
Dji

* Spwiexp(—3llxi-xill?/0?)
Note that the raw similarity (the numerator) ismatised by all other raw pairwise similarities wéer

i %

The standard deviatian controls how quickly ‘similarity’ between two pdfdecays as a function
of their distance, and is dynamically computed stiat similarity in regions of low density (i.e.,
where the closest neighbour is distant) decays ngoadlually. This is implemented by solving
Equation 2 by binary search, whelieis the user-defined parameter ‘perplexity’ thabsely

corresponds to how many points should be considegidy similar tox;:
0i: exp(— 2P lnpj|i) =h. 2)

In the two-dimensional embedding, the pairwise kirity g;; between embedded pointsandy; is

calculated using a Student t-distribution with diegree of freedom:

2\~ 1
C (tHenl?)
U Skt llye—yil»H 1

(3)
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The corresponding errdrin the embedding is calculated as the Kullbaclblezidivergence between

the joint probabilitiep andg:

C=Zi2jpijlogzz_ga (4)
which corresponds to information lost (in bits) wilg; is used to approximajg;. The algorithm

randomly initialises the embedded poipis and iteratively updates their positions by mirgimgC

by gradient descent.

The improved performance of t-SNE over its forelstachastic neighbour embedding is largely due
to two factors. First, the new functional form feimilarity between embedded points (Equation 3)
still requires that similar pointgp{; > 0) are placed close together in the embeddjpg € y;|| =

0), but importantly does not constrain dissimilar igei to be placed far apart. This enables

embeddings which accurately model local structaréné high dimensional space. Second, defining

similarity asp;; = %(pj“- +pi|j) rather than jusp;; ensures that outlying points have a minimum

similarity above zerovj # i,p;j; * 0 - p;; = %pﬂi. This penalises embeddings where outliers are
proximal to other points, thus preferring outliegosbe placed away from other points. These two

improvements allow t-SNE to retain local structuvkile also isolating statistical outliers in the

embedding.

2.2.3.2 Aitchison distance

The similarity functions that t-SNE uses rely oe tuclidean distance between points, expressed in
terms of ar¥?-norm in Equation 1 and Equation 3 above. Howetrer,Euclidean distance is a poor
metric for comparing geochemical assays for twsoaa. First, elemental concentrations are zero-
bounded, typically log-normally distributed, andhdaave vastly different ranges; assays should at
least be log-transformed or normalised lest théedihces between major elements dominate those
between minor and trace elements. Second, assayamositional data (i.e., describe proportions
of a whole), and therefore lie on a lower-dimenalosimplex instead of occupying the full (half-

)space.



228  Aitchison (1992, 1984) devised a distance functigpropriate for data on a simplex based on

229 elemental logratios, which can be written in twiealative but equivalent forms:

2

X2,j

231 Dby Aitchison(1992, and

2
2 _yvD X1i X2,i
232 dA(xl,xz)—Zizl(logg(xl) logg—(xz)) (6)

233 by Aitchison (1986, p. 193), whetg is the Aitchison distanc®, is the number of dimensions (i.e.,
234 number of elements in the assay);) is the geometric mean, arg; andx,; are scalars from the
235 i'th dimension of pointx; andx,, respectively. The difference between the Euchddiatance of the

236 log-transformed data and the Aitchison distancebsaabtained by rearranging Equation 6 to give

237 da(x1,%,)? = lllogx, — log x, I? — D log? £ | @)
2

2 8(x1)

ensures that the
g(xz)

238 where logx = (logx;,logx,,:--,logxp) . The correcting facto log

239  Aitchison distance is scale invariant, that isp&h each point,; andx, to be scaled by different

240 positive factors (e.gax,, fx,) without changing value (Aitchison, 1992). Thisniecessary where

241 the underlying data encodes size information alibat specimen, either directly such as when
242 measured in grams instead of units of densityuaesgtitiously such as when mixing volumetric and
243 mass density units (which may both be denotedgnparts per billion). This correction is greatest
244  between a point with roughly equal components apdiat with many components close to zero; the
245 Euclidean distance, Euclidean distance of log-fransed points, and the Aitchison distance on the

246  simplex are compared geometrically in Figure 2(a&3pectively.

247  2.2.3.3 Implementation

248 All embeddings presented in the following sectisrese computed alongside nine other embeddings
249  with randomised initialisations and were selectadf@irther analysis on the basis of embedding error

250 (Equation 4). The Barnes-Hut t-SNE approximatioan(\der Maaten, 2014) as provided by the

10
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‘Rtsne’ R package (Krijthe, 2015) was used dueht® abundance of assays, as it requires only
O(nlogn) computation and(n) memory wheren is the number of specimens. The trade-off
parameter was sét= 0.5, which has been shown to work well on real-worklitagets (van der

Maaten, 2014).

All similarity calculations used the Aitchison distce in place of the Euclidean distance, which was
implemented by applying an isometric logratio (tirnsform (Egozcue et al., 2003) to the assays
before supplying them to t-SNE: the Euclidean distain the ilr-space is equivalent to the Aitchison
distance in the original space. This enabled tleeaiiexisting t-SNE libraries without modification.
Note that the transformed data occupies one feimsgrtsion even though the ilr transform is lossless;
this is because the original data is restricte@ tolane (i.e., a simplex) in the original space, bu

occupies the entire transformed space.

3 RESULTS AND DISCUSSION

This section presents a t-SNE embedding generaiad all elements in the geochemical dataset and
discusses the cluster structure present withirethbedding. Following this, a t-SNE embedding is
generated from the elements selected in Sectia@ ar&l compared to the previous embedding and
alternative dimensionality reduction techniquestenms of separability of altered and unaltered
specimens. Finally, a practical demonstration usimgmbedding to understand the output of a black

box statistical re-logging algorithm is presented.

3.1 Embedding of all elements

Embeddings were first computed using all 31 elesamd are presented in Figure 3, where each
point represents one specimen (i.e., one drill ¢oterval). The subfigures show the embedding
coloured by the normalised log-concentration ofhedaput element, using a 2% linear clip. The

relevant ranges are given in Table 3 along withttibe minimum and maximum for each element.

The embeddings produced by t-SNE can be used taligs inter-cluster and intra-cluster structure

with some caveats (Wattenberg et al., 2016): ioliester distances and the positions of the clugters

11
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the embedding are not necessarily informative, #ed size of the clusters (in diameter) is not
informative of the range of values within that ¢&rsdue to the dynamic adaptation of the similarity
measure to sparse regions (Equation 2). Cognishrthese caveats, Figure 3 can be used to

interrogate the qualitative degree to which eaelmeht controls the (distance-based) assay clugterin

Elements which cover a range of values across Itletec are unlikely to significantly contribute to
the cluster structure. Such elements within a elusppear either ‘peppered’ or are lain out in ignatd
bands across the cluster. Examples include goldurba cobalt, copper, iron, molybdenum, lead,
palladium, sulphur, and silver to a lesser ext&éhtese elements may benefit from further analysis,

either independently or within a specifically-choseibset of elements.

Elements which are highly bimodal (e.g., presentigh concentrations or not at all) appear to
strongly influence the division of clusters. Foample, arsenic and thorium, which are either ctose

zero or are present in high concentrations (40%0#b of values are below detection limit, see Table
2), are not clustered in mixed values. In somesé#se clusters are not split (e.g., molybdenumd, bu

the small-valued specimens are forced to one etttbatluster.

Figure 4 shows the embedding coloured by (a) themsist frequently logged unaltered lithologies
(n=11940), and (b) the three most frequently logged alteliftblogies (n = 3803). Any
specimens with lithology outside of the legend sh®wn in grey, which includes twelve minor
unaltered lithologiesn(= 272) and six minor altered lithologies: & 150). The lithology colour
scheme approximates olivine content (blue is lamd specimens which also have an entry under

logged alteration (regardless of lithology) aretigld as triangles.

Overlaying the embeddings with logged lithologygiie 4) shows that the cluster structure within
the full suite of elements can only distinguishpsettinite (pink cluster in Figure 4(b)) and a

combination of gabbro and uralite gabbro (blue teltssin Figure 4(a-b)). The embedding shows no
discrimination between unaltered and altered labis. This does not indicate that there is no such
discriminative information within the chosen set @éments, but rather that the elements jointly

exhibit patterns that are unconnected to litholeggs previously discussed, the cluster structure

12
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appears to be heavily influenced by the bimodahelgs. An embedding with a subset of elements

more suited to discriminating between altered amaltared specimens is presented in Section 3.2.

Interestingly, almost all specimens which had satberation logged against them (triangular points
in Figure 4 were placed in several clusters towdh#gsbottom of the embedding. Many elements
contributed to this clustering: Figure 3 shows thetadium, yttrium, titanium, scandium, strontium,
calcium, aluminium, and cadmium are all presenumguely elevated concentrations within this
cluster. Silver and antinomy hold a tight rangentérmediate values within this cluster, which @& n

seen elsewhere in the embedding. Still other el&snare present in generally higher but more

variable concentrations within this cluster, sustsadium and magnesium.

It should be noted here that the changes in eleomrdentrations in Figure 2 are in fact dependant o
changes of concentration for all the other elemdfis example, an apparent elevation in scandium,
which is not normally associated with alteratioan de explained by a reduction in many other
elements that have been leached from the samule tsat a greater proportion of scandium remains,
even though scandium itself has not been addechéyalteration process. The tight grouping of
specimens with logged alteration provides strorigence for the validity of the alteration logging b
geologists, although there are a few specimens libed alteration positioned elsewhere in the

embedding which may be strong candidates for rgiag

3.2 Embedding of selected elements

Statistical distance-based analytic methods, sadkrmeans clustering or t-SNE embedding, can be
influenced by which dimensions from the underlydaja are used as input. This is because different
clusters are apparent in the data depending onhwtlimensions are present, either due to true
underlying structure or due to corruption by uninfative or noisy dimensions. This section reports
how applying t-SNE to a subset of elements whichiewagetermined to be highly discriminative
between altered and unaltered specimens improwedetulting embeddings in terms of separability

between hydrated and non-hydrated specimens. Tttorseconcludes with a comparison with
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existing dimensionality reduction techniques PCAl &0M, and an example of practical use for

geochemical-based re-logging of alteration state.

3.2.1 Selected elements

Figure 5 shows the result of the recursive feaslireination used to select the subset of elements
pertinent to alteration, where the y-axis shows dhéof-bag classification error of the Random
Forests for discriminating altered and unalteregtBpens using the number of elements in the x-axis.
Each point in the figure is labelled by the curreleiment with the lowest average feature importance
which is the next element to be eliminated. Whex feom left to right, the elements occur from teas
to most discriminative of altered and unalteredcspens. The classification error was judged to
rapidly increase when fewer than eleven elememsireed; hence, the eleven elements to the right of
strontium (inclusive) were chosen for the alteraaite. In decreasing order of discriminative iagil
these are: chromium, scandium, magnesium, yttriveamadium, manganese, calcium, aluminium,

titanium, sodium, and strontium.

3.2.2 Embedding the selected elements

The embedding constructed from the eleven seleetethents is given in Figure 6 (coloured
identically to Figure 3). Figure 7 shows the emhegdverlain with unaltered and altered logged
lithology as previously in Figure 4, where a relaly strong separation can now be seen between the
host rock olivine pyroxenite (yellow points in Figu 7(a)) and its amphibolised counterpart
metaperidotite (green points in Figure 7(b)). Imtijoalar, the transition from olivine pyroxenite to
metaperidotite can be seen to correlate with degrganagnesium and manganese, and to a lesser
degree with increasing calcium, vanadium, yttriamg chromium (Figure 6, from the bottom-right to
the top-left of the main cluster). The caveat eix@d in Section 3.1 regarding relative changes in
element abundances applies here again: it is pl®lbiadt yttrium was immobile during hydrothermal

alteration, and the apparent increase in concéoregt due to the removal of other elements.

This separation of hydrated host rock from non-hjelt host rock was completely absent from the

previous embedding, perhaps due to the splittingclobters by highly bimodal elements. This
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separation was also absent in the t-SNE embeddaggpted by Balamurali and Melkumyan (2016),
despite the presence of a strong indicator of Higiran the underlying assays (loss on ignitiorfisT
further demonstrates the importance of elementsefeprior to the application of t-SNE so that the
salient elements (which in this case pertain toréjon) can sufficiently impact the resulting

embedding.

Specimens with logged alteration (triangular points=igure 7) are no longer completely disjoint
from specimens without logged alteration as thegevire the previous embedding (Figure 4). Manual
inspection of the previous embedding shows elermmth as cadmium and antimony clustered well
in these points, but were not identified as disgrative by recursive feature elimination where they
were eliminated first and fourth, respectively. §hé because the order in which features are
eliminated does not strongly indicate their induadldiscriminative ability, only that the strongéesa

set of correlated features is removed last.

The improvement of separability between altered amdltered specimens was quantified by
relabelling each specimen according to its neareigthbour in the embedding, and calculating the
resulting accuracy (i.e., 1NN classification). lasvfound that the prior step of element selection
improved 1NN classification accuracy on the embegldiom 65.5% to 81.8% for altered specimens,
and from 82.4% to 91.0% for unaltered specimenblélrd). The improvement seen in the embedding
is a direct consequence of achieving better saparan the higher dimensional space: element
selection improved the 1NN classification accuranythe original (ilr-transformed) data from 75.5%
to 82.3% for altered specimens, and from 87.7%2@% for unaltered specimens (Table 4). Note
that better separability is to be expected in thié dimensional space (which cannot be directly
visualised), since a low dimensional embeddingaag approximate the inter-point distances in the
original space. Indeed, the proportion of pointsclvimaintain their nearest neighbour is a meastre o

embedding quality (Sanguinetti, 2008; van der Maateal., 2009).

3.2.3 Comparison with other techniques
The separability of altered and unaltered specimeas compared with two existing techniques:
visualisation of the first two principal componeriigure 8) and an SOM embedding (Figure 9).
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Both techniques used the ilr-transformed assayisenl 1l selected elements for direct comparison. For
visual clarity, both figures are coloured by thee@dtion status used during element selection (i.e.
‘altered’ or ‘unaltered’) rather than the loggethdilogies. It is important to note that the t-SNE

embeddings derived from the selected subset ofezltsrare being compared with embeddings from
alternative techniques PCA and SOM on the sameesufslements. PCA and SOM are included

here for comparison only; they are not being suggedor dimensionality reduction prior to

application of t-SNE, nor are they related to thatfire selection performed in this study.

Although PCA (Hotelling, 1933; Pearson, 1901) ienaar technique which is desirable for various
applications, it is often used for dimensionaligluction due to its computational simplicity, freed

of user-supplied parameters, and interpretableubutfde show here that it can be inadequate for this
application where the data contain subtle, nontimbamical patterns: Figure 8 displays the firsh tw
principal components, where significant mixing begéw the altered and unaltered specimens can be
seen. The nearest neighbour classification accusd@6.6% for altered specimens and 90.3% for
unaltered specimens, which are both lower thartHercorresponding t-SNE embedding (Table 4).
Further scatter plots were produced to visualitgemhaining pairs of principal components; some
pairs were able to produce a small cluster of enadt specimens, however, the remaining specimens

(i.e., the majority) remained mixed as in Figure 8.

The SOM embedding (Figure 9) shares the importgetscale characteristics of the corresponding
t-SNE embedding (Figure 6), namely a separatiorwden altered and unaltered specimens
characterised primarily by low magnesium and maagarconcentrations (lower third of the right
side of the SOM embedding), and a region correspgntb specimens with logged alteration
(bottom-left corner of the SOM embedding). Howetbeg discrete grid embedding that characterises
the SOM technique hides individual outliers (peppegpoints in Figure 9(a)), and is more difficult to
plot with multiple labels (each grid must show prdns of labels). Moreover, plotting the
elemental concentrations on the SOM gives a fa@ssesof scale: the high-manganese region covers

approximately one third of the SOM cells but onbceunts for a small number of points (Figure 6,
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406 clusters to the top and bottom). Correct interpi@taof the SOM requires reference to a ‘hit chart’

407  detailing the number of points assigned to eadh cel

408 3.3 Example scenario: geochemical re-logging

409 The lithology and alteration of drill core at Kesat was logged by multiple geologists over a span of
410 time and is subject to human error. Geochemicak aerlogging is a quantitative method for
411  correcting erroneous geological logging, wherelgjaasifier is trained and executed for predictibn o
412  geological logging from geochemistry. The classitan be made to favour a simpler geochemical
413 model over a more complex model with higher prédictaccuracy on the training set by
414  regularisation. The degree of regularisation is usually deterohibg maximising predictive accuracy
415 on an unseen test set (rather than the trainingreetever, if the labels are incorrect then masging

416 accuracy leads to an incorrect model. In this eactha Random Forest is used to re-log the simglifie
417  alteration status (i.e., ‘altered’ or ‘unaltereddnd demonstrate how visualising the forest's
418 classification on the embedding of selected elemémtm the previous section can be useful in

419 determining an appropriate degree of regularisation

420 A Random Forest with 1000 trees was trained toipredteration status (‘altered’ or ‘unaltered’)
421  from the geochemical data (all 31 elements); it desmed unnecessary to use the feature-selected set
422  of elements as the Random Forest performs intdigalire selection during training. Although
423 Random Forests are not prone to overfitting, theay lse forcibly regularised by limiting the size of
424  the constituent trees. By default, the trees withRandom Forest are grown to their maximum depth
425 such that each leaf node describes one instantieedbagged training set. Enforcing a minimum
426 terminal node size limits the size of the individtieees and thus regularises the forest. In this
427  experiment, the minimum terminal node size of trendm Forest was varied between 1 (fully
428 grown trees) to 8192 in a doubling sequence anddhelting predictions for all specimens were

429 recorded and visualised on the 11-element embed8iection 3.2).

430 Figure 10(a-c) shows the Random Forest classificatof altered and unaltered specimens using the

431 entire geochemical dataset as a function of inargaminimum terminal node size (2, and 9),
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visualised on the feature-selected embedding. Tigedding allows the visualisation of precisely
which geochemical region is being affected by #gutarisation. Figure 10(d) shows the out-of-bag

error rates for the Random Forest, which increasmsotonically as the forest is regularised.

The full-depth Random Forest (minimum terminal neg® of 1) achieves excellent accuracy on the
out-of-bag samples, however outliers are visiblgatols the bottom of the main cluster which are
logged as metaperidotite but are geochemicallylamto olivine pyroxenite. As the regularisation
increases (minimum terminal node size of 16), thmsats are re-logged (Figure 10(b)). It becomes
clear when the forest is too heavily regularisethege, homogeneously logged clusters of specimens
are re-classified (Figure 10(c), red circle). There, the adequate level of regularisation for this
model is a minimum terminal node size of approxeghafl6 and certainly below 512. In addition, it
should be noted that Random Forests are not basediovise distances as t-SNE embeddings are;
the intuitive correspondence between the Randorestalassifications of the specimens and their

location on the t-SNE embedding, for varying degreferegularisation, validates the embedding.

4 CONCLUSIONS

In this study, two t-SNE embeddings of geochemitata from the Kevitsa Ni-Cu-PGE deposit

(Lapland, Finland) were created to visualise geickigpatterns: one using all 31 elements, the other
using a subset of eleven elements empirically demesd (using a feature selection process) to
differentiate between altered and unaltered spawméhe first embedding revealed that highly
bimodal elements tended to control the distancedbaduster structure of the data, but did not
adequately separate altered and unaltered specifibaessecond embedding could lay out non-
hydrated and hydrated host rocks (i.e., olivineoggnite and metaperidotite) such that the gradation
of the former to the latter was apparent, which was$ present in the embedding based on all
elements. The second embedding was also demounistaaten effective tool for interpreting the

output of black box classifiers: visualising théeetd/unaltered classifications of a Random Forest
classifier trained at different levels of regulation facilitated judgement of the level of

regularisation, which aided in the re-logging dleedtion status. Overall, the findings in this stud
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illustrate that t-SNE is capable of producing gewultal embeddings wherein clusters or intra-cluster
structure may reflect external geological propsrtieowever, this is reliant on exclusion of input

elements which are statistically irrelevant to diesired geological property.

Future development that will increase the practicdle of t-SNE embeddings is their integration
with other geoscientific data, primarily spatial ocdinates and petrophysical measurements.
Incorporating spatial coordinates may produce afatconsistent clusters which are valuable for
geochemical domaining (e.g., Le Vaillant et al.120 However, this approach eliminates spatial
plotting as a form of independent validation (Tengtl al., 2008). Incorporating petrophysical
measurements could further separate lithologiesiaf® velocity and density jointly relate to
lithology and degree of alteration in Kevitsa, aseismic reflection has been used to identify
lithological contacts (Koivisto et al., 2015). Tlkeeadditional geoscientific data could be integrated
with geochemical data directly alongside the #msformed assays, but numeric scaling would be
required so that their contribution to the inteipodistance is known relative to that from the
elemental concentrations. Alternatively, separadérwise conditional probabilitiep;; could be
calculated for each type of geoscientific data, anldsequently combined in a weighted sum. This
falls under the paradigm of multi-view learningdaindeed a multi-view variant of t-SNE has been

proposed by Xie et al. (2011).
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Figure 1 Overview of the dimensionality reduction technigsee Method (Section 2.2) for elaboration. No# tithology and alteration logs

may be used for element selection but are othematkout from the dimensionality reduction process
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Figure 2 A synthetic compositional dataset in (a) regulacsp (b) log, space, and (c) lagspace with points normalised by their geometric
mean. The straight-line distances in each subfigoreespond to (a) Euclidean distance, (b) Eucliddiatance of log-transformed points, and
(c) Aitchison distance. Note that the bolded poartthe boundary are equidistant in (b) and (c) abe both closer to the bolded centre point in

(c) since the Aitchison distance corrects for gemimenean.
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Figure 3 Embedding of the geochemical dataset with all efemecoloured by elemental concentrations (logedcadlarge-scale clustering is
strongly influenced by elements with bimodal dlafitions such as arsenic and thorium, while elemsitkslittle influence appear in all clusters

as peppered or in rainbow bands (e.g., gold aqghau.
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Figure 4 Embedding of the geochemical dataset of all elesp@atoured by (a) unaltered logged lithology; éodaltered logged lithology with
colour approximately indicates olivine content ¢bis low). Specimens with lithologies outside of tegend (including 18 minor lithologies)

are coloured grey.
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Figure 5 The Random Forest’'s out-of-bag classification efyeaxis) when discriminating between altered andliemed specimens during
recursive feature elimination. The x-axis shows mo&ny elements are in the current iteration ofdlimination procedure and the next element

to be eliminated. Error bars represent the 95%iden€e level in out-of-bag classification erroreraver 20 forests.
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Figure 6 Embedding of selected elements from the geochemataket, coloured by elemental concentrationsqtade).
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Figure 7 Embedding of selected elements from the geochendigi@set, coloured by (a) unaltered logged lithgland (b) altered logged

lithology. Refer to Figure 4’s caption for colouhsme details.
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Figure 8 First two principal components generated from thecpemical dataset (selected elements only).
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concentrations, while the bottom row shows: (I¢f distribution of altered and unaltered specimevex the grid cells; and (right) the U-

matrix, which outlines distinct regions in embeadgin
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Figure 10 (a-c): Random Forest classifications of alterecddk) and unaltered (yellow) specimens using the debchemical dataset, but
plotted on the alteration suite embedding, as &tfon of changing minimum terminal node size; (e classification error on out-of-bag
specimens, which increases with minimum terminalensize. The embedding characterises how the RaRdoest classifications change as it
is increasingly regularised: the classificationgbh are less peppered than in (a), signifyingnapr geochemical model, while (c) is simpler

again at the expense of misclassifying a large@taf specimens (red circle).
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TABLES

Table 1 Population of specimens (drill core intervals) gred by logged lithology.

Lithology Count

Unaltered 12212
Olivine pyroxenite 10 445
Gabbro 440
Pyroxenite 399
Dunite 276
Olivine websterite 227
Olivine gabbro 153
Diorite 86
Peridotite 55
Magnetite gabbro 36
Plagioclase bearing olivine websterite 36
Diabase 20
Granophyre 16
Pegmatite 9
Ultramafic (undifferentiated) 7
Microgabbro 3
Intrusive (mafic) 2
Intrusive (felsic) 1
Websterite 1

Altered 3953
Metaperidotite 3494
Serpentinite 159
Uralite gabbro 150
Hornfels 71
Completely altered (lithology unknown) 38
Albitite 21
Hornblendite 12
Meta-gabbro 7
Amphibolite 1

Table 2 Detection limits (DL) used for each element in thended zero imputation, and percentage of inseabe®w detection limit (< DL).

All concentrations were above detection limit fdr 8a, Fe, Mg, Mn, Sr, and Ti.

<DL (%) DL

Co <0.1 0.01 ppm
\% <0.1 2.32 ppm
Cr <0.1 0.77 ppm
Sc <0.1 0.08 ppm
P <0.1 0.02 ppm
Na <01 0.01 %
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Zn
Ba

<

Li
Ni

Pb
La
Au
Cu
Pd
Sh
Cd
Ag
Mo
Th
Ars

0.3 0.20

0.6 0.04
0.7 0.01
14 0.01
14 0.01
1.8 0.01
28 0.36
3.7 0.01
57 0.01
8.0 0.10
79 0.01
17  0.10
24  0.01
24 0.01
25 0.01
35 0.01
41  0.01
50 0.01

ppm
ppm
%

ppm
ppm
%

ppm
ppm
ppm
ppb
%

ppb
ppm
ppm
ppm
ppm
ppm
ppm

Table 3 Minimum, maximum, and®land 99' percentile concentrations of all assayed elensmiested for further analysis.

Per centiles
Min. 1° 99"  Max.
Ag (ppm) 0.000 233  0.00150 3 861
Al (%) 0.00773  0.0864 7.78 10.3
Ars (ppm) 6.30x10° 5.20x10°  40.9 3500
Au (ppb)  7.08x10’ 0.0551 270 4700
Ba (ppm) 0.0350 1 200 754
Ca(%) 0.00850  0.0941 10.1  39.9
Cd (ppm) 0.000384 0.00253 1.01 4.75
Co (ppm) 0.0100 159 237 2590
Cr (ppm) 0.770 6.82 1680 11100
Cu (%) 3.72x10° 0.00334 0.860 7.79
Fe (%) 0.348 1.25 112 60.8
K (%) 2.19x10° 2.78x10° 1.76 5
La (ppm) 0.00381 0.00678 33.1 493
Li (ppm)  0.00748 0.00865 17.4 80.3
Mg (%) 0.0219 0.496 19.6 27.2
Mn (ppm) 19 89 1470 4840
Mo (ppm) 0.000275 0.00107 351 184
Na (%) 0.00772  0.0213 4.02 8.3
Ni (%) 1.48x10° 0.00380 0.510 4.16
P (ppm) 0.0200 8.71 940 4640
Pb (ppm)  0.00360 0.00726 16.9 50.1
Pd (ppb) 1.31x10° 0.0227 464 8090
S (%) 2.77x10 0.0100 3.37 265
Sb (ppm) 0.00054 0.00136 21.8 4338
Sc (ppm) 0.0618 0.780 56.2 845
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Sr (ppm) 0.300 1.18 176 448
Th (ppm) 2.08x10° 4.18x10° 9.70 57.4
Ti (%) 0.000125 0.00882 0.723  1.69

V (ppm) 2.19 7.59 293 6290
Y (ppm) 0.00730 0.00884 22.4 63.9
Zn (ppm) 0.185 2.11 78 888

Table 4 Effect of element selection on nearest neighbeuafassification accuracy (‘altered’ vs. ‘unaltejedis applied to the original (ilr-

transformed) data, the t-SNE embedding, and tketfiro principal components.

Dims  Accuracy (%)

All elements altered unaltered
Original (ilr) 30 75.5 87.7
t-SNE 2 65.5 82.4
PCA 2 54.2 75.9

Selected elements
Original (ilr) 10 83.3 92.2
t-SNE 2 81.8 91.0
PCA 2 76.6 90.3
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* Dimensionality reduction applied to Kevitsa's multi-element drill core
assay database

* Produced representations separated hydrated core despite absence of
loss on ignition

* Assay-based core re-logging visualised using representations

* Feature selection prior to dimensionality reduction improved produced
representations

* Compositional nature of assays addressed using Aitchison distance



